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Abstract

Maintaining the attitude of a spacecraft precisely aligteed given orientation is crucial for commer-
cial and scientific space missions. The problem becometedigahg when on/off thrusters are employed
instead of momentum exchange devices due to, e.g., whéalefaior power limitations. In this case,
the attitude control system must enforce an oscillatingiomoabout the setpoint, so as to minimize the
switching frequency of the actuators, while guaranteeingetefined pointing accuracy and rejecting
the external disturbances. This paper develops a threeadtiiude control scheme for this problem,
accounting for the limitations imposed by the thruster tetbgy. The proposed technique is able to track
both the period and the phase of periodic oscillations athegotational axes, which is instrumental to
minimize the switching frequency in the presence of inputptimg. Two simulation case studies of a
geostationary mission and a low Earth orbit mission are ntepo showing that the proposed controller

can effectively deal with both constant and time-varyingtatibance torques.

Index Terms

Minimum switching control, On/off thrusters, Attitude dool, Optimal control.

. INTRODUCTION

Spacecraft attitude control systems based on reactiorstdreuhave been widely used in the past
(see e.g. [1], [2]) and are receiving renewed attention wWlith recent advances of micropropulsion

technologies [3], [4], [5], [6]. The advent of electric mi@ropulsion [7], [8], providing a much higher fuel
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efficiency with respect to traditional cold-gas systemsthier motivates the study of attitude regulation
schemes involving reaction thrusters. In fact, this teébgioal solution enables the development of
all-electric spacecraft which exploit the same propellgpe for both orbit control and precise attitude
regulation, thus reducing costs and providing an effecm@plement to momentum exchange devices [9],
[10]. On the other hand, these engines present some segéietiens, the most important one concerning
the fact that they are usually operated in on/off mode, whlehrly limits the control authority. Moreover,
the thruster switching frequency can have a significant ochpa the performance and the lifetime of
this type of actuators.

The use of on/off thrusters for spacecraft precision pogtalls for a switching controller delivering
some kind of pulse modulation, in order to reject the extedisturbances and to comply with the
minimum firing time of the engines [11], [12], [13]. To achethe best efficiency, the minimization of
both the fuel consumption and the switching frequency of dbiators must be pursued. A common
approach is to convert the control input provided by a camtirs regulator into discrete pulses, by
using pulse-width or pulse-width-pulse-frequency motlafatechniques, see e.g. [14], [15], [16]. These
methods hold significant advantages over conventional4bamng control strategies, including a reduced
thruster activity and a near-linear duty cycle, but requréime-consuming trial-and-error procedure
to tune the modulator parameters, as outlined in [17], [B8lother major drawback of these control
techniques is that they do not allow the pointing accuraguirements to be enforced directly as state
constraints in the control problem.

A more general approach consists in the formulation of am@dtcontrol problem, in which the on/off
characteristics of the thrusters are explicitly taken axtoount, see e.g. [19], [20], [21]. However, very few
contributions have addressed explicitly the minimizatidthe switching frequency. Until recently, results
have been confined to the single-axis attitude control prabiwvith the error dynamics approximated by a
double integrator model [22], [23]. In fact, the multivdsia problem becomes very challenging when the
control design cannot be decoupled along the principal eketertia of the spacecraft, due to the chosen
thruster configuration. In [10], a model predictive contfidlPC) scheme has been proposed for the thee-
axis case. This method involves a high computational byrddérch may not fit the processing power
available onboard a spacecraft. In [24], [25], a periodibogiimal solution to the minimum switching
control problem has been derived for systems of double iategs perturbed by a constant disturbance.

By building on these preliminary results, this paper depsla high precision, three-axis attitude control
scheme for spacecraft with on/off thrusters. As a first stephe design, the minimum fuel/switching
control problem introduced in [24] is reformulated by indilug constraints on both the attitude error and

its derivative. Two solutions to this problem are derivethviding reference trajectories to the attitude
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regulation system. Then, an adaptive feedback controlselie proposed, which extends the applicability
of the control law derived in [25] to the case of time varyingtdrbances, while accounting for restrictions
on the minimum duration of a thruster firing. The performarmdethis approach is investigated for
geostationary (GEO) and low Earth orbit (LEO) missions. @ations based on the full nonlinear attitude
dynamic model show that the controller is able to meet thatpaj accuracy requirements, in the presence
of constant or slowly time-varying disturbance torques.

The paper is organized as follows. In Section Il, the atétdgnamic model is introduced, along with
the attitude control requirements. In Section lll, the o attitude control problem is formulated and
the reference trajectory to be tracked by the control syssederived. In Section IV, the thruster control
scheme under consideration is presented. The performdiice proposed approach is evaluated through
numerical simulations of a GEO mission and a LEO mission icti8e V, while some concluding remarks

are given in Section VI.

Il. SPACECRAFT PRECISION POINTING

In this section, the small angle approximation of the aftwerror dynamics is presented, and the

attitude control requirements are discussed, for spaftgmecision pointing with on/off thrusters.

A. Notation

The orientation of a reference franteé with respect to a reference framé is represented by the
quaterniongap = [pas, (IEB]T, wherepap and ¢4 are the scalar part and the vector part of the

qguaternion. The quaternion multiplication: = gpc © gap is defined by

PBCPAB — QpodaB
qac = - R I (1)
PBCYAB + PABIBC — qBC X AB
where x denote the cross product operation ang:, ggc represent the orientation of frant@ with
respect to frames! and B, respectively.
The skew-symmetric matrix constructed from a vectds denoted byv*. The rest of the notation is
standardu; indicates thej-th entry of vectoru, || - ||, denotes the-norm of vectors and matrices and

sgn-) denotes the signum function, where it is assumed that0$ga 1.

B. Attitude error dynamics

The attitude of the spacecraft is described as the orientatf a reference frame centered at center
of mass and aligned with the principal axes of inertia of theyh which is termed as the body frame,

with respect to the Earth centered inertial frame. Let therpation of the body frame with respect to
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the inertial frame be denoted by the four-dimensional quate ¢;5, and the angular rate of the body
frame with respect to inertial frame, expressed in the badyé, be denoted by the three-dimensional

vectorwp. The kinematics of the attitude quaternion are given by

. 1 0
qiB = 5 °(qIB- (2)
wB

Under the rigid body assumption, the angular rate dynamiegen by
WwR :I]\_/[1 (Td—i-Tu—wEIM wB) . (3)
where I, is the spacecraft inertia matrix and
T=T4+ Ty (4)

denotes the torque acting on the system, including a dishad torquer, and a control torque,. For
spacecraft equipped with on/off thrusters, the contrajuerr,, can only take discrete values. Specifically,

when a minimal set of thruster is employed, the control terqan be expressed as
Ty = MN’ (5)

wherep € {0, 1}° represents the on/off thruster command, and the mafriexpresses the linear mapping
from the thruster command to the control torque. For the comoase in which the thruster configuration
is symmetric, so that torques of opposite direction are gpeced with respect to the rotational axes, one

hasM = [-B, B] and (5) can be rewritten as
T = Bp, (6)

whereji € {—1,0,1}3.

The desired attitude and rotation rate are specified by tiemtationg;r of a target reference frame
with respect to the inertial frame and by the angular veyogit of the target frame with respect to the
inertial frame, expressed in the target frame. dgt denote the inverse rotation @fz. Using quaternion
algebra, the attitude errerzrz, which indicates the orientation of the body frame relativehe target
frame, can be expressed @sg = qrp o qgy. If the attitude error is small, it can be approximated by
the three-dimensional rotation vecté#t, which is obtained from the vector paft s of the attitude error
guaternion as

00 = 2qRp. (7)

Now, let us define

ow = wp — WR. (8)
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For smalljf and ow, the kinematics of the attitude error (7) and the dynamicghefangular velocity
error (8) can be approximated by a linearized model. Theatimed kinematic model is given by the
Bortz equation [26]

80 = dw — w360, (9)

where the ternw ;36 accounts for the fact thatz andwgr, in (8) are expressed in two different coordinate
frames. Concerning the dynamic model, by differentiatiBy With respect to time and exploiting (3),
one gets

ow = 1;417 — I]T/[l(wR + 5w)XIM(wR + (5&)) — WR. (10)

In most practical applications, the target frame is eitpémrsing at a constant angular velocity or inertially
fixed. In the first case, the linearized dynamic model is fobp@nforcingur = 0 in (10) and linearizing

the resulting expression aboti = 0, thus yielding

0w = Adw + 1;417', 11
where I, = diag(¢1, 2, t3),
Llo—1L Lo—1L
0 2L1 3 wg 2L1 3 W2
A= —LS;“ w3 0 —LS;“ w1 | > (12)
L1—Ll2 Wy L1 —Ll2 w1 0

L3 L3

¢; denotes the principal moments of inertia ang = [w1,wo, ws3]T. For the case in which the desired
attitude is inertially fixed, one hasz = 0 in (9) and (11)-(12). Hence, the error dynamics take on the
form of the double integrator system

60 = I} (13)

As long as precise attitude control of Earth-pointing speaf is concerned, gyroscopic inter-axis
coupling is negligible [23] and the dynamics (9),(11) ardhapproximated by system (13). By applying

the coordinate transformation

r =G 1B, 60, (14)
u=G""p, (15)
k=G ', (16)

wherep = B~ 7; and G = diag(sgn(p)), system (13) can be cast into the equivalent form
i=u-+k, a7

with k£ > 0. In this paper, model (17) will be used to design the contchlesne to be applied to system

(2)-(6) for disturbance rejection and attitude regulation
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C. Attitude control requirements

Due to the presence of on/off input restrictions and of peesit disturbances affecting the attitude
dynamics (2)-(6), the system cannot be regulated exactltheoorigin with a finite input switching
frequency. Therefore, the attitude errors (7) and ratererf® must be controlled within a predefined

accuracy. Formally, this amounts to ensure that

W,60(t)]| <1,
Wy '( | 18)
[Wr60(t)[|oc <1,

where the weighting matrice®, and IV, are usually diagonal. For system (17), according to the

transformation (14)-(16), the pointing accuracy requieats (18) become

Cx(t)oo <1,
1C =(t)|| 19)
D &(t)loo < 1,
where
C=Ww,I;'B,
pP-M (20)
D =W, I,;'B.

Notice thatGG does not appear in the right hand side of (20), as it would hanhge constraints (19).
Moreover, the dynamics of system (17) are decoupled, busthie constraints (19) are coupled if the
input matrix B is not diagonal. This occurs frequently in applicationg.,ewhenever non-orthogonal
thruster configurations are adopted, in order to meet caingércoming from the spacecraft layout or to
maximize the efficiency of the propulsion system.

Besides guaranteeing that (19) holds, the control systeagisred to minimize both the fuel consump-
tion and the switching frequency of the thrusters. In fdog, former is a limiting factor for the lifetime
and the capabilities of the spacecraft, while the latterrigpprtional to the number of thruster valve
activations and hence to the electrical power consumptiwhthe wear of the engines. This problem

will be addressed in detail throughout the rest of the paper.

I1l. REFERENCETRAJECTORYOPTIMIZATION

In the section, the optimal attitude control problem is fatated and two suboptimal solutions are
derived, providing reference trajectories to be trackedtloy thruster controller. We will make the
simplifying assumption that in (17) is constant, since in the considered applicationdisturbance
variation is usually much slower than the attitude erroraiyits.

The average fuel consumption is defined as

T
It = Jim [ o) e 1)

T—o00
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Notice that any input sequence for whidi(u) < ||k|[; cannot satisfy both constraints (19) indefinitely.

In addition, it can be shown that any sequence of the form
u;(t) € {~1,0}, j=1,2,3, (22)

guaranteeing that (19) hold, is such that(u) = [|k||1, and therefore it is fuel-optimal [24]. Among
all the fuel-optimal input sequences, we aim at finding the which minimizes the thruster switching
frequency.

The switching frequency of a single thruster can be expreaséhe average number of input transitions

per time unit, commanded by the control system. This is glwgn

N R A
Tug) = Jim % [ fis (o) a. (23)
Since we are interested in reducing as much as possible #lecfinsumption and the number of
input transitions per actuator, while satisfying the statmstraints, the optimal control problem can
be formulated as

min max Js(u;)

v (24)
s.t.  (17)(19),(22).

Hereafter, the single-axis solution to problem (24) is fyieeviewed and suitably extended to the
multivariable case. We will restrict our attention to these& > 0, since fork = 0 system (17) can be
steered to the origin in finite time by using well-known reésudtom the literature [27] (notice that this
does not hold when restrictions on the duration of thrustergls are taken into account; this case will

be addressed in Section IV-B).

A. Single-axis solution

Consider a single-axis double integratar€ R). In this case, the solution to problem (24) is known

since long time [28], and corresponds to the limit cycle kestion /¥ U+” depicted in the phase plane

in Fig. 1, where
v = {(z,2) : x—iﬁvzz—a, —a <z <a(l-—2k)}, (25)
. 5
= - 3" = 1-2k)<z< 2
wU {(wvw) Zz Q(k—l)x a, a’( k) _1’_@}, ( 6)
u* = —1 when (z,4) € ¥V, u* = 0 when (z,4) € ¥*, anda denotes the oscillation amplitude. When

constraints on the attitude error rate are not enforcedfji.e- 0 in (19)), one has trivially that = 1/C.

In the presence of both attitude error and attitude err@ canstraints, the amplitude is given by

. 1 1
a = 1min <5’ W) y (27)
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Y
8

Fig. 1. Limit cycle obtained by solving problem (24): singlris case.

wherey = k(1 — k)/16, the peak velocity along the limit cycle being= 8,/va. Notice that the period
of the oscillation isp = y/a/~ and the resulting input switching frequency.Js(u*) = 2/p. To verify
that the provided minimum switching solution is also a fuptimal solution, observe that the time spent

along the branch)y of the limit cycle is equal td:p. Then, it can be easily shown thadj(u*) = k.

B. Multi-axis solution

Except for the trivial case in whiclh’ and D are diagonal, the multivariable problem (24) is hard to
solve if all feasible input signala(t) are considered. Therefore, by building on the optimal sauobf
the single-axis problem, we restrict our attention to thesslof input sequences which generate periodic
trajectories of the form depicted in Fig. 1, for each axisisTdorresponds to parameterizing the trajectory

of the j-th double integrator as
z;(t) = piv fi(N),
Aj = modi/p; + ¢;,1),
wherey; = k; (1 — k;)/16, p; is the periodg; € [0,1) is the phase, mdd, b) indicates the remainder
of a/b, and f;(\;) € [-1, 1] is defined as

(28)

1—§( -—’“—J) if 0<\ <k
k; 2 — 77 ="
fi(Ag) = (29)
T2 k<) < 1
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The inputsu;(t) giving rise toz;(t) of the form (28) are pulse-width modulated signals with e,
and duty cyclek;, and can be expressed as
-1 if 0 <X\ <k
0 if k?j < )‘j < 1.
The input signals:; in (30) are fuel-optimal, becausk (u) = ||k||;. Being these signals double-switch

periodic, one has/;(u;) = 2/p;. Moreover, (19) is equivalent to

3

maxmax| 375, Cijx;(t)| < 1, (31)
miaxmtax| 2?21 Djja;(t)] <1,

where the coefficient€’;; and D;; are the entries of” and D. By enforcing (28) and replacing (19) by

(31), problem (24) becomes

min max 2/p;
P9

s.t. (28) (31) (32)
0<¢;<1
p; >0, j=1,2,3,
wherep = [p1,p2, p3]” and¢ = [¢1, g2, ¢3]".
This way, the dynamic optimization problem (24) has beewedad into a static optimization problem,
where the decision variables apeand ¢. Note, however, that the problem is still hard to solve, bein
non-convex in these decision variables. Consequentlyessimplifying assumptions will be made in

order to derive an upper bound to the solution of (32). Let luseove that by (28)

miaxmtax| 2?21 Cij ;)] < miaxZ?:1 Cyj] aj,

(33)
miaxmtax| Z?Zl Dy;i;(t)] < miaXE?Z1 |Dyj| vj,
where
a; = maxxz(t) = p?y;,
J P 717 (34)
vj = mtaXx(t) = 8,/7;a;.
Hence, (31) can be guaranteed by imposing
[Calle <1, (35)

IDvllo <1,
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wherea = [ay,as,a3)?, v = [v1,v9,v3]7 andC, D are the matrices whose entries &f&;| and |D;;|.

By replacing (31) with (35) and exploiting (34), problem }3iils down to

min max 2 %
a 7 a/j
st (35) (36)

a; >0, j=1,2,3.
By (33), the solution of (36) is an upper bound to that of (3RYurns out that problem (36) can be
solved analytically, as stated by the following theorem.
Theorem 1. A global minimum of problem (36) is attained at

1

= i, (37)
max{[|Q[loo, I5]1%}
wherel" = diag(y1,72,73), @ = CT, S = 8DI', and1 = [1,1,1]7.
Proof: The proof is reported in the Appendix. [ |

Since by (37) all the entries df—'a* are equal, it follows from the relationshig = \/a;/v; that the

trajectories corresponding to the solution of problem (8&Ye the same period

p1 = p2 = ps = max{y/[Qlloc, |S]lec} - (38)

Notice that the period (38) depends on the valué:.of
A less conservative relaxation of problem (32) can be foundxploiting the relative phases in (28).
In order to make the problem computationally tractable, wioree directly the property; = ps = p3
in (32). This leads to the new relaxed problem
min 2/m
s.t. (28) (31)
¢ =0, (39)
0<¢;<1,7=23,
p1=p2 =p3 >0,
where¢; = 0 has been set without loss of generality, since shiftinghal phases by the same quantity
does not alter the optimal solution of (39). The followingué holds.

Theorem 2: A global minimum of problem (39) is attained at

¢* = argminmax{\/c (), 7(¢)},
y (40)

p; = ph = pj = max{\/a(¢*),n(¢*)} ",
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where
3
i~ (41)
n(¢p) = mlax org%xl | X; Dy 'ijj(t + ¢J)|
j=
Proof: The proof is reported in the Appendix. "

Due to (33) and (38), the solution of problem (39) is a loweunrmbto that of (36), and an upper bound
to that of (32). According to (30), the resulting optimal in[signaISu;f are pulse-width modulated with
periodp; = pi and phaseg] = 0 and ¢ for j = 2,3. Beingo(¢) andn(¢) non convex functions, the
global minimizer (40) can be found by numeric search overftbe phase®, and¢s, as illustrated by
the following example.

Example 1. Let
0 0 —0.053

C=|-0.055 0.055 0], (42)
—0.055 0.055 0.055

D =0 andk = [0.2, 0.3, 0.6]T. Theorem 1 gives:* = [4.73,6.21,7.10]7, which corresponds to the
period pj = p3 = pj = 22.22 and the optimal costs(u}) = 0.090. In order to compute the solution
provided by Theorem 2, one has to search the 2-dimensioreagder space., ¢s for a global minimizer
of o(¢). This gives¢s = 0.90, ¢35 = 0.07 andp] = p5 = p3 = 35.60, corresponding to the optimal cost
Js(u}) = 0.056. Notice from Fig. 2 thatr(¢) is a non-convex function of the decision variabtesvith
multiple local minima. As expected, Theorem 2 requires aeloswitching frequency, while the average
fuel consumption is the same for both solutions, by consttncin particular, the optimal cost of (39) is
lower than the optimal cost of (36) by approximately 39%. Tiree-dimensional plot of the trajectories
x1(t), xo(t) andxs(t) is reported in Fig. 3, where it can be seen that the contralracy requirements

(represented by the 3-dimensional parallelotope) arsfati

IV. THRUSTERCONTROL

In this section the problem of tracking the reference ttajées corresponding to the periodic solutions
derived in Section Il is addressed. First, the control lagently developed in [25], for the case of
constant disturbances, is briefly recalled. Then, an agaptntrol scheme is proposed, which accounts
for the minimum firing duration imposed by the thruster tembgy and the presence of time-varying

disturbances.
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Fig. 2. An example of functiom (¢) in (41).

20 10 0 -10
€2

Fig. 3. Trajectories resulting from the solution to (36) ttéd) and (39) (solid), together with constraifj§ || < 1 (outer

parallelotope) and;| < a; (inner box).

A. Reference trajectory tracking

Since in system (17) the three double integrators are désguthree single-axis feedback control
laws (one per input channel), can be used to track the referénajectories provided by Theorems 1

and 2. This corresponds to steering system (17) to a trajeofathe form (28) with a prescribed period
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(Theorem 1), or both a prescribed period and phase (Theojefogn any initial condition. For ease
of exposition, in the following the subscrigtis dropped from the notation (i.e., it is left intended that
r =xj, a = a;, p=pj, ¢ =¢;, k= k;, unless otherwise indicated).
Let us start by showing how to steer system (17) to a trajgatbthe form (28) with given periog,
under the assumption of a constant disturba@nckhe following control law, termed MScan be adopted
—1if s(x,i;k) > a
MSi(a) : u(t) =< 0 if s(z,ik) <—a (43)

u,, otherwise

whereu, = —1 if s(z,4;k) > a occurred more recently thas(z,i;k) < —a, u, = 0 otherwise.
Moreover,
1 .9 - .
T— s if >0
s(a, @5 k) = Ay (44)
v— o d? if <0

is the classical fuel-optimal switching function for theudbbe integrator subject to a constant ldadsee
e.g. [29]). Notice that (43)-(44) describe a relay feedbsgdtem with hysteresis defined hy

The switching curves(z,4;k) = a and s(x, @;k) = —a are reported in the phase plane in Fig. 4,
together with an example of a controlled trajectory (ddttédis apparent that, by applying the control
law MS, to each axis of the perturbed double integrator (17), adtajg of the form (28) with period
p = \/m is reached in finite time, using only one switching per inpbamnel, from any initial
condition. Therefore, the reference trajectory specifigdibeorem 1 can be tracked by using the control
law MS;(a*), with a* given by (37).

In order to achieve the solution provided by Theorem 2, aquilesd phase must be tracked in addition
to the period. In [25], a control law has been introduced is flurpose, which exploits a time-varying
hysteresis defined by two parametefs anda”. More specifically, the control law (43) is modified as

—1if  s(z,d;k) > aV(t;p, ¢)

MSi(p,¢) : u(t) =14 0 if s(z,a;k) <—a”(t;p,d) (45)

u,, otherwise
whereu, = —1 if s(x,@;k) > oV occurred more recently thas(z,i;k) < —a®, u, = 0 otherwise,
anda” + oV > 0. The idea is to update the offset of a switching curve whenthe opposite curve is
reached, so as to steer the system to a periodic solutiongiviém periodp and phase). By assuming
without loss of generality that the curve which is hit firstsige, i; k) = oV at time z;, this results in
piece-wise constant parameters

aX(t;p, ) = ham—1 for t € [zom—1, 22m+1),

(46)
GU(t;p, Qb) = h2m for ¢t e [Z2m7 Z2m+2)a
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s(z, k) =—a

Fig. 4. Switching curves (solid) and example of a traject@uytted) from the application of the M$ontrol law.

Fig. 5. Switching curves (solid) and example of a traject@ytted) from the application of the MScontrol law.

where the sequendg;} denotes the time instants at which the state trajectoryhe=aa switching curve

(an example is shown in Fig. 5). The sequekag} defining these parameters is given by

ho = p*y, (47)

h = p*y (1+4A¢; + 2A¢7) (48)
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where
Ziyo — 2 1 1
A¢l:mod<w+_, 1) L (49)
P 2 2
. () | q(z) V2|, i
_ 50

q(z) = |u(z) + d|, and{z;} is defined according to

Z2771—1 - _(bpv
Zom, = (k - (b) p-
It is shown in [25] that, by applying to each rotational axie tontrol law Mg (p*, ¢*), with p* and ¢*

(51)

given by (40), system (17) is steered in finite time to theraiee trajectory (28) provided by Theorem 2.
Moreover, only three switchings of the control input areuieed to reach this trajectory from any initial
condition.

Example 2. Consider the problem of tracking the reference trajectqrgcgied by Theorem 2 in
Example 1 (i.e. the blue, solid trajectory in Fig. 3). For le@dwput channel of system (17), the control
law MS;, is implemented through the event-based switching logidateg in Fig. 6. The initial conditions
for the simulation are set to(ty) = [10, 25, —10]7 andi(ty) = [3, 2, —4]. The trajectory of the closed-
loop system is reported in Fig. 7. It can be clearly seen #iftdr a finite transient, the system trajectory
converges to the reference limit cycle (marked). The cpording control inputs are reported in Fig. 8.
As expected, the desired duty cycle is attained from thetfiounput transition onwards, for each input

channel.

Seta”(t;p*, ¢*) by (46)-(51)

Seta” (t;p*, ¢) by (46)-(51)

Fig. 6. Event-based switching logic.

B. Firing duration restrictions

If one or more elements; of the the disturbance vectarin (17) are close to zero, the firing time

required by the MSand MS, schemes may not be compatible with the minimum pulse duralit,,
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Fig. 8. Control inputs.

imposed by the thruster technology. This must be taken intmant for a reliable implementation of
the control system. In particular, in order to ensure thaifglity of the reference trajectory provided by

Theorem 2, one must havgp; > At,, Vj, wherek;p? is the required duration of theth thruster firing

16

according to (28)-(30). Conversely, whérp; < At,, for somej, there is no input signat; € {-1,0}



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 17

hysteresis

Fig. 9. Oscillation resulting from the application of the M&;) scheme, withk; = 0.

which guarantees that (19) holds, i.e. problem (24) doesduwiit any feasible solution of the considered
form. To circumvent this issue, one possibility is to enéoen oscillating motion in which; =—1 and
uj=1 are applied for the minimum possible firing intenat,,, so as to keep the attitude error within
a boundb;, i.e. |z;| < b;. A standard control scheme based on linear switching fanstivith deadzone
and hysteresis (Schmitt trigger), which is denoted by,M5, can be adopted to this purpose, see e.g.
[30]. The resulting trajectory is reported in the phase elam Fig. 9, for the casé; = 0. One can
verify that both the fuel consumption and the input switchfrequency required by such trajectory are
proportional tol/b;. Hence, the objective of the minimum switching problem lees to optimize over
the parameters;, while guaranteeing that constraints (19) are satisfieids ¢an be done by applying

the same relaxation leading to problem (36), which amountsotve the static optimization problem

. 1

min max -—

i 05
st [|Cb]|le <1 (52)

b; >0, j=1,2,3.
By using the same reasoning as in Theorem 1, the solution2pig5found as
b* = L 1 (53)
1Clloe

The solution (53) is applied whelyp; < At,, V.
If k;p; < At,, only for someyj, in order to derive a less conservative solution, one mayiaaamixed

strategy, that consists in applying Theorem 1 for the axesvfich this is feasible. This corresponds to
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choosing the reference trajectory (28)-(30) with amplhtud

= min(a}, b}), (54)

Jr 77

wherea} is provided by Theorem 1, for all axgsfor which
kjﬁ;( = k‘j d;/’}/j > Atm. (55)

For the remaining axes, an oscillating motion of the formvaman Fig. 9, with amplitudeb;f, is selected.
Summarizing, in order to track the reference trajectonjimed in the previous discussion and satisfy
the minimum firing time restrictions, the following contrtigic MS can be used. Let = min; k;p;.
Then
MSi(p}, ¢5) if &= At

MS(p", ¢",a",b") : § MS; (@) if £ < Aty A kit > Aty (56)

MSo (b7) if & < Aty A kjp; < A,
wherea; andp; are given by (54) and (55), respectively. In other words,Nt& scheme is applied to
track the trajectory provided by Theorem 2 only when the ltggpfiring time is feasible for all actuators

(i.e. £ > At,,), otherwise the mixed strategy MBMS, is resorted to.

C. Adaptive control scheme for time-varying disturbances

In the following, the case in which the disturbance actingsgstem (17) is a time-varying signalt)
is considered. This is of practical interest, whenever ibathance torque is generated by environmental
perturbations. Since the time constants of such pertanmstre in the order of the orbital period, they turn
out to be usually much larger than the period of the attituderescillations. Therefore, one can assume
that the variation of:(¢) is small during one period of the error oscillations. Undgs tassumption, it
is shown hereafter how the control schemes introduced iniddet/-A can be adapted to cope with
time-varying disturbances.
The control law M$in (43) can be readily modified as
—1if  s(x,2;k(t)) > a*(t)
MSi(a*(t)) : u(t)=4¢ 0 if sz, i k(t)) <—a*(t) (57)
u,, otherwise
wherea*(t) is computed according to (37). Notice that now alsm (37) is time-varying, as it depends
on k(t).
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The adaptation of the control scheme Mi@ (45) requires a more careful treatment. First, one has to
evaluate (40)-(41) online. In order to make the procedurapidationally feasible, this is done only at
time instants;,., such that

tr-l—l =1, + Ataa (58)

wherety = 0, and At, is a fixed adaptation step. Then, the control law,NMB(t), ¢*(t)) is applied,
with the piecewise constant time-varying parameters

p(t) = p(tr),

¢ () = ¢*(tr),

where p*(t,) and ¢*(t,) are computed according to Theorem 2, with= k£(¢,). This amounts to

for t, <t <ty (59)

approximatek(t) with a piecewise constant signal for the computation of gference period and phase.
Clearly, At, is a tuning parameter that allows to trade off the computaliburden and the performance
of the control scheme. The numerical search algorithm reduo evaluate (40)-(41) has to be tweaked
to avoid that small variations of(¢) result in abrupt changes i*(¢), due to the presence of multiple
local minima inmax{\/a(¢),n(¢)}. This is done by performing at each time a local search in a
neighborhood of the previous solutia#t(¢,—1). Another minor amendment has to be adopted in the
computation of the parameten$ (¢; p* (1), ¢*(t)), a (t; p*(t), $*(t)), according to (46)-(51). In fact, in
(49) one has to compute both, » and 2,12 modulop*(¢), which is now itself a time-varying signal. In

order to reset the modulo operator every time interval offlenp*(¢), the timing signal (¢) is introduced,

such that
¢ =1 for mod(¢,p*(t)) # 0 0)
¢ =0 for mod¢,p*(t)) =0
and((0) = 0. Then, (50) is replaced by
A [Z(=)| | a(=) V2 | hi—1
Zl+2—§(zl)+m+7p (Zl)‘l'T D Q(Zl)+ma (61)

where((z;) denotes the value af(t) defined by (60) at the time instant, at which a switching curve
of the control law M9 is reached.
Finally, the presence of both time varying disturbances famty time limitations can be tackled by

applying the control scheme MS in (56), with the time varypagameter®*(t), ¢*(t) anda*(t).

V. PRECISIONPOINTING APPLICATIONS

To assess the performance of the proposed approach, a GE@masd a LEO mission are numerically

simulated. In both cases, the objective is to maintain athHawinting attitudey; z rotating at a constant
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angular velocitywg, using a set of on-off thrusters. The truth model for the $ation is given by (2)-(4).
The disturbance torque; in (4) accounts for the most significant environmental pégtions (gravity
gradient, atmospheric drag, magnetic moment, solar iadigiressure) as well as the torques arising
from the operation of the orbit control system. White noiseadded to the commanded thrust (6) in
order to model uncertainty in the actuation system. Thedstahdeviation of the thruster noise is set to
5% of the nominal thrust. An extended Kalman filter processipg@nd star-tracker measurements takes
care of estimating the spacecraft attitude, angular ratietlaa disturbance torque, which are used in the
computation of the control law. More details on the conssdesimulation environment and navigation

system can be found in [10].

A. GEO mission

Consider a 2000 kg satellite similar to the Small-GEO platfd31] on a geostationary orbit, with
wr = [0,—7.3-1072,0]” mrad/s. The size of the spacecraft bug is2 x 2.5 m* and the inertia matrix is
Iy = diag(1.9,1.47,1.55) - 10® kg-m?. The propulsion system consists of the four orbit contraliskers
01-04 and the eight attitude control thrusters A1-A6b diepién Fig. 10. Thrusters A3a-A3b and A6a-
A6b are fired in pairs, and hence referred to as thrusters A3A&n Moreover, A1-A3 produce opposite
torques with respect to A4-A6. Each thruster delivers ashagual tol.5 mN. The resulting thrusting

configuration can be modeled as in (6), with

-22 0
B = 22 0| mMNm. (62)
0042

During station-keeping maneuvers, a disturbance torqgenerated due to misalignment of thrusters
01-04 with respect to the spacecraft center of mass. Suchiqaegds usually orders of magnitude
larger than that generated by environmental perturbatiBasause a station-keeping maneuver requires
to fire two orbit control thrusters in sequence, to correct ddbital inclination and longitude errors,
the disturbance torque is piecewise constant. In the ceresidsetting, one has; = [~1.6,1.4, —2]7
mN-m during the first half of the station-keeping maneuver ape- [—0.6, —1.5,0.7]7 mN-m during the
second half. The maneuver lasts for 3300 s. In order to mnaitit@ desired Earth-pointing orientation,
T4 Mmust be compensated using thrusters A1-A6. The uncertaiifégting the attitude sensors used by
the navigation system is modeled as in [10].

In the following, the proposed control strategy is comparethe MPC scheme developed in [10] for

disturbance rejection. The MPC scheme is based on a finitedmoreformulation of the optimal control
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Earth
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Yaw axis

Roll axis
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Fig. 10. Thruster configuration: GEO spacecraft.

problem (24) relying on model (9),(11), and requires theusoh of a mixed integer linear program
(MILP). Such an approach has been found to deliver a signifieaduction of both the fuel consumption
and the thruster switching frequency with respect to a stahdontrol scheme based on the combination
of a linear quadratic regulator and a pulse-width-puleepfiency modulator.

The required attitude control accuracy|iff||o, < 0.5 mrad and||60||., < 10 prad/s, whereid,, 56,
anddfs are the roll, pitch and yaw errors, respectively. ThBf, = 1/(5-10~*) and W, = I/(107°) in
(18). According to (62), the control torque on the yaw axigégoupled from those on the roll and pitch
axes. Hence, the results presented in Section Ill-A can bd far the yaw axis, while those in Section
I1I-B can be applied to the two dimensional system includihg roll and pitch axes. This amounts to
apply Theorem 2 to system (17) with= 1,2, and Theorem 1 foj = 3. Consequently, the control law
MS, is applied forj = 1,2, while MS is employed forj = 3. The resulting control scheme is denoted
by MS, + MS,. The period and phase to be tracked are evaluated twice,ctmuatfor the impulsive
variation of the disturbance d@t= 1650 s (due to the switch between two orbit control thrusters). In
Fig. 11, the tracking error9 anddd obtained with this approach are compared to those restftimg
the application of the MPC scheme. The two controllers sedde keeping the tracking errors within
the bounds. Notice that the constraints on the angular rade &e more stringent than the attitude error
ones.

The fuel consumption and the switching performance are amedsbhy the sum of the actuator firing
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Fig. 12. Time evolution of the number of thruster firings fbetMS, + MS; scheme.

times and the maximum number of firings per thruster, respEgt The time evolution of the number of
firings required by the MB+ MS, scheme is depicted in Fig. 12, where each line representfeaedit
thruster. Notice that, among the six thrusters A1-A6, ohleé can be active at the same time to comply
with the minimum fuel condition (22). Moreover, those enyad during the first part of the maneuver

are different from those employed in the second part (extmphruster A2), due to the dependance of
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TABLE |

CONTROL SYSTEM PERFORMANCEGEOMISSION

Parameter MS+MS, | MPC
Firing time (s) 3610 3614
Thruster firings (#) 56 79

the mapping (15) on the direction of the disturbance throthghtermG~!. The performance of both
controllers is reported in Table I. The fuel consumptionppraximately the same for the two solutions,
but the number of thruster firings commanded by the MPC schem@’ higher.

The superior performance of the proposed approach is egquldiy the fact that the MPC optimization
problem has to be solved over a short prediction horizonrdeioto retain the computational feasibility
of the receding horizon strategy. In this respect, it is tvaemarking that the MS+ MS, scheme takes
only a fraction of the overall computational time requiredthe MPC scheme. In fact the time needed
to solve the MILP in the MPC scheme is much greater than tlatired to evaluate Theorem 2 through
a one-dimensional search @n. Moreover, while the former has to be done at each samplistgiin,

the latter is performed only twice per station-keeping naee

B. LEO mission

Consider now a 100 kg minisatellite similar to the BIRD path [32] on a low Earth orbit, such that
wr = [0,—1.1,0]” mrad/s. The size of the spacecraft bu®.i& x 0.6 x 0.6 m*> and the inertia matrix is
Iy = diag(6,5.7,5.7) kg-m?. The propulsion system consists of the six attitude contmister A1-A6
depicted in Fig. 13. Thrusters A1-A3 produce opposite tesgwith respect to A4-A6. Each thruster
delivers a thrust equal 0.5 mN. The resulting thrusting configuration can be modeledcha$), with

0 0 —0.15
B=|-015 0.15 0 | mN-m. (63)
0.15 0.15 —-0.15

According to the typical hardware and sensing instrumevesdable onboard this type of minisatellite,
the uncertainty of attitude measurements has been set daeafrmagnitude greater than that considered
in the GEO case study. The required pointing accuradipfs|., < 0.5 mrad, corresponding tol,, =
I/(5-107%) and W, = 0 in (18). The matricex” and D resulting in (19) are the same reported in
Example 1.

Because the orbit of the spacecraft is uncontrolled, thieidiance torquey,(t), depicted in Fig. 14, is

due to environmental sources only. As opposed to the GEGanisxample, in this case the disturbance
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Fig. 13. Thruster configuration: LEO spacecraft.

signal is indeed continuously time-varying, with periodialjto the orbital period5600 s). Moreover, it

is such that one or more entries of the vedtér) in (17) are close to zero at different points along the
orbit. These mission characteristics require to accounbédh disturbance variations and firing duration
restrictions, which is accomplished by using the adaptivetrol scheme M&*(t), ¢*(t),a*(t),b*) in
(56). The minimum duration of a thruster firing is setAg,, = 0.5 s, which is compatible with the
specification of mN-class engines. An adaptation gk&p = 100 s is employed in (58).

The MS strategy is compared to the pi&heme, which is a common solution for disturbance rejaectio
and attitude regulation with thrusters (see e.g. [33],)[3Bhe system is simulated for 5600 s. In Fig. 15,
it can be seen that the two controllers are able to maintairirticking error within the required accuracy.
Two transitions between the M&nd MS, schemes, due to the variation qu(t)p;?(t) in (56), are clearly
visible in the roll error profile betweeh= 1000 s andt = 2000 s. Moreover, notice that the tracking
error resulting from the application of the iScheme is kept closer to zero, because the size of the
feasible setr; < b7 used by this approach is significantly smaller that that &etbpy the MS scheme.
Clearly, this has an impact on the efficiency of the contraltem. The performance the control schemes
is reported in Table Il. The results obtained for the case fiickvthe control law M$ is replaced by
MS; in (56) are also included for completeness, and denoted byM&x The overall firing time and
the maximum number of firings per thruster required by the Miseme are much lower than the ones
delivered by the M& scheme (by25% and60%, respectively), resulting in important fuel and electrica
power savings, as well as an increased lifetime of the amtslaMoreover, it is confirmed that the use
of the M§, control law in the MS scheme provides a significant reductibthe number of switching,

with respect to employing only MS
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TABLE Il

CONTROL SYSTEM PERFORMANCELEO MISSION

Parameter MS | MS/MS, | MSo
Firing time (s) 1730 1726 2310
Thruster firings (#)| 78 98 185

Finally, it should be stressed that this last case study isra ehallenging test for the proposed control
technique, because LEO satellites feature a high orbite) véhich translates into a high variation rate of
the environmental disturbance torque. Nevertheless, dnéaler bandwidth has proven to be sufficient

to reject such perturbation, while satisfying the pointamguracy requirements. Moreover, the required
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computational burden is compatible with the limited preieg power of spacecraft hardware. In fact,
Theorem 2 is evaluated only once every 100 s, through a twmekional search ofy andg, that takes

about 20 ms on a 2 Ghz single-core CPU.

VI. CONCLUSIONS

This paper has presented an optimal attitude control scf@mspacecraft precision pointing with on/off
actuators. The problem of minimizing the fuel consumptiod the thruster switching frequency has been
addressed by approximating the attitude error dynamids avitystems of three coupled double integrators
subject to a constant disturbance. The online solutionitogfoblem has been exploited in the design of
an adaptive control strategy able to deal with both firingation restrictions and disturbance variations.
Simulation results on two realistic missions have shown tha controller is able to keep the pointing
error and its derivative within a predefined accuracy, iringronly a minor performance degradation in
the presence of time-varying disturbances. The proposdathigue represents an attractive option for a
number of future small satellite missions, in view of therertely limited computational burden required.
Moreover, this approach can be effective also in differg@miiaation domains, involving perturbed double
integrator dynamics. Future work includes a robustnes$/sisawith respect to parametric uncertainty

and the extension of this technique to other classes ofrlitiee-invariant systems.

APPENDIX
Proof of Theorem 1
Let » = I'"'a. Then, problem (36) can be rewritten as
min 5

/B7r

sit. 2/ <
[Qrlle <1 (64)

ISVrIt]lo <1

r; > 0.
The statement of the theorem is proven if the feasible soiutié = max{||Q|~, ||S||§O}_1]1, g* =
2/4/r* is a global minimum for problem (64). Let, /3 be a feasible solution of (64). Then, we get

. 4 2
r]Z?v\/EZE ]_172737 (65)
and, beingQ;; > 0, S;; > 0 Vi, j, where@;; and S;; denote the entries ap and S, one has
4
3 . 3
1>370 4 Qijfy > B > =1 Qijs

3 — o 23 4 (66)
1> Zj:l Sij\/rj > E Zj:l Sij,  1=1,2,3.
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It follows that

5 / 3 o
B =>2 mZaXZj:1 Qij =2 [[o3]S% (67)

B> 2ml.aXZ§:1 Sij = 2[|Sloo
and therefore

B > 2max{\/]|Qllc. [ Sllc} = 87, (68)

which concludes the proof. [ |

Proof of Theorem 2

By using (28), constraint (31) can be rewritten as

pio'(¢) <1, (69)
(o) <1,
where
o'(¢) = max max |30 Gy f (/o + 65)], 70)
n'(¢) = max max | S5y Dig v f(t/p1 + 65).

Notice thato'(¢) = o(¢) and n'(¢) = n(¢), with o(¢) and n(¢) given by (41), because the peak
values of the sums of thg;-periodic functionsf (t/p1 + ¢;), f(t/p1 + ¢;), evaluated over the period,

are independent from the period itself. Then, problem (29) loe rewritten as

min 7
T,

st yo(o) <7

n(¢) <, (71)
0<¢;<1,5>2
o1 =0,7 >0,

wherer = 2/p;. The global minimum of Problem (71) is attained7dt= 2/pj, with p given by (40),

which concludes the proof. [ |
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