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SUMMARY

The development of feedback control systems for autononoobisal rendezvous is a key technological
challenge for next generation space missions. This pamsepts a new class of control laws for the
orbital rendezvous problem. The controllers belongindgpi®elass are guaranteed to globally asymptotically
stabilize the relative dynamics of two satellites in ciezubr elliptic orbits. The proposed design procedure
builds on control techniques for nonlinear systems in adséarm, by exploiting the geometric properties of
the orbital element description of the satellite motion.ukrerical simulation of a formation flying mission
demonstrates the effectiveness of this approach for lange and low-thrust rendezvous operations.
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1. INTRODUCTION

Orbital rendezvous technologies play a fundamental rolenterplanetary exploration, on-orbit
servicing, and remote sensing space missions. They enablspacecraft starting a long distance
apart to get closer and perform activities such as inspedriodocking. Historically, rendezvous
maneuvers have been performed through manual or semi-ategdrproceduresl]. Despite the
success of these methods, they are not suited to applisatiowhich ground communication is
limited or delayed, and often very expensive to implemé&htior these reasons, the development
of fully autonomous rendezvous techniques has been idsht a key challenge for current and
future formation flying missions, see, e.@&, £, 5].

The rendezvous control problem can be tackled by using tpmm-optimization techniques
or feedback stabilization methods. In the former approach¢losed-form solution is available
in general and a two-point boundary value problem is solvadherically to obtain the optimal
thrusting profile (see, e.9.6[ 7, 8]). The related computations are lengthy, thus making this
approach not suitable for applications in which the consighal must be computed online. On
the contrary, feedback stabilization methods typicallyvte closed-form control laws, that can be
employed within an autonomous guidance, navigation antt@lesystem.

Many of the rendezvous control schemes discussed in theafmmflying literature rely on
results from linear control theory. Linear quadratic regot design techniques are adopted in
[9, 10, 11]. A robust control problem is addressed it2] 13], by using H,, synthesis methods.
Model predictive control strategies, able to cope with bopiut and state constraints, are presented
in [14, 15, 16, 17]. Unfortunately, most of these approaches are based oarizsel, time-invariant
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dynamic models, which limits the domain of attraction of teatrol system to a local neighborhood
of the rendezvous location. In order to mitigate this issinear time-varying controllers have been
presented in]8, 19]. These approaches require to solve numerically a periRiicati equation or
a parametric Lyapunov equation.

Several nonlinear control techniques have also been cemesidin the literature. Feedback
linearization is proposed in early works such 28 P1]. Adaptive control schemes, accounting for
both parametric uncertainties and unknown disturbancegrasented inZ2, 23, 24, 25]. In these
approaches, the control input is chosen so as to exactlgtanim dominate the effect of differential
gravity (i.e., the difference between the gravitationalederations acting on the two spacecraft).
This can lead to a large control effort and consequently tr el efficiency, especially when
the relative position error is large. Hence, constraintthenmaximum thrust that can be delivered
by the actuators and on the amount of available propellagt n@strict the applicability of these
controllers to short-range maneuvers. In order to deal injthit and state constraints, approaches
based on nonlinear model predictive control and recedorigbn strategies have been proposed
(see, e.g.,46, 27, 29]). These techniques are usually computationally intensig they require to
solve a nonlinear optimal control problem at each time Stgreover, it is often difficult to prove
the stability of these methods.

In [29], a nonlinear Lyapunov-based control law is obtained byapeaterizing the satellite
relative motion in terms of orbital element differencess found that, in this way, the control energy
can be made significantly smaller than the one resulting tteapplication of cartesian feedback
control laws, such as those cited above. The authors, howegsgnize that their design is not
supported by a rigorous stability proof. A similar approagtiaken in B0], where backstepping
and forwarding techniques are adopted to derive a pasdieised controller. This control strategy
applies only to perfectly circular reference orbits, whiehves out many scenarios of theoretical
and practical interest. It is known, for instance, that loartB orbits cannot have zero eccentricity,
due to the asymmetry of the Earth’s gravity field. Other carschemes based on orbital elements
can be found in the literatur&], 32, 33]. However, they do not address the tracking of the satellite
phase angle along the orbit, and hence cannot be employeehidezvous.

In this paper, a new class of orbital element feedback cbiains is presented for the rendezvous
problem. The controllers belonging to this class are guasihto globally asymptotically stabilize
the relative dynamics of a satellite pair, for both circudad elliptic reference orbits. Our design
procedure is in the spirit of previous studies dealing whhb global stabilization of nonlinear
time-varying systems in cascade form, see, e3, 35, 36]. A set of tunable design functions is
introduced to parameterize the stabilizing controllerifgnSuch parametrization may be exploited
to enforce further control specifications, or to optimizaahle performance indices. A simulation
case study is presented in order to demonstrate the apifiticadd the proposed method. It is
observed that, by applying the proposed design, the thamtreand can be scaled down to meet
the constraints dictated by modern low-thrust actuatdnrtetogies, such as electric propulsion.
A qualitative robustness analysis with respect to enviremtal disturbances and parametric
uncertainties is also carried out. A preliminary versiothi$ work has been presented 8V].

The paper is organized as follows. In Sectipna brief introduction to the orbital element
parametrization is given and the considered rendezvousatqgoblem is formulated. Sectiod
is devoted to the controller design, which is demonstrajetthé numerical case study in Sectibn
Some concluding remarks are outlined in Section

Notation

The notation is fairly standar@®™ is the realn—space, and denotes the set of integer numbers;
for a real vector or matrix, 27 denotes its transpose. The symbgl.,,, denotes a null matrix or
vector withn rows andm columns, while the identity matrix of orderis denoted by,,. The partial
derivatived f /Ox is expressed as a row vector. To save spag€;), sin(-) are abbreviated with(¢)
and g-), respectively. Moreover,
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is the counter-clockwise rotation operator, by an anglen R2. The definition of the signum
function follows the convention

1 >0
sgnz) = 0 z=0
-1 z<0,

wherez € R. The continuous time index is denotedby R™*.

2. PROBLEM FORMULATION

Classical orbital elements are commonly used as a paraatdn of the position- € R? and
velocityr € R3 of an orbiting body, since they provide a clear physicalghsof the body motion.
The semi-major axis > 0 and eccentricity € [0, 1] define the shape of the orbit. The inclination

i € [0, 7] and longitude of the ascending node= [0, 27] define the orientation of the orbital plane
with respect to a given inertial, right-handed refereneenie centered at the central body (e.g.,
the Earth). The argument of perigeec [0, 27| describes the position of the perigee in the orbital
plane, and the true anomalyt) € [0, 27| defines the instantaneous angle at which the orbiting body
is located relative to the perigee position, as illustrateiig. 1.

Z
A Inclined orbit

Line of nodes

Equatorial orbit

 J
~

Figure 1. Classical orbital elements.

Itis well known thatw is indeterminate for circular orbits (i.e., wher- 0) ands2 is indeterminate
for equatorial orbits (i.e., wheh= 0). These singularities can be avoided by adopting a differen
parameterization of the orbit using the modified equindeliements) = [; ... 16]?, defined as
[39]

b = L = Q+4wtv
Y2 = p = a(l—e?)

Y3 = ex = ec(Q+w) (1)
Yy = ey = es(Q+w)

vs = hx = tan(i/2)c(Q)

v = hy = tan(i/2)s(Q).

In this parameterizationl, is the true longitude shown in Fid. p is the orbit semi-parameter,
ex, ey are the components of the eccentricity vector, and hy are the components of the
inclination vector. Notice that any closed Keplerian oibisuch that). = p > 0. Moreover, the
escape to parabolic orbits (i.e.= 1) is not possible with continuous feedbadd], which is the
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case considered in this paper. Therefore, in the followiegestrict our attention to the casec 1.
Hence, the orbital element vectormust belong to the set

U={peR0: >0, ¥f+¢] <1} )

The transformation that relates the equinoctial elementke cartesian positionand velocityr,
expressed in the inertial fram€Y Z, can be found in astrodynamics textbooks (e80])[ and is
not reported here for brevity.

The dynamics of the orbital elementsin (1), in the presence of perturbing accelerations, are
described by the Gauss’ variational equations. Let usdiize the input vecton = [u, ug up?,
wherew,., ug andu; denote the radial, tangential and normal components of ¢taeleration,
respectively, in a local-vertical-local-horizontal (LYA) frame centered at the orbiting body. The
resulting dynamics are given by3{], Chapter 10)

b= f(¥) + g, (3)
where the vector fieldg(y) andg(«)) are defined as
f(w)\/%[(wcx)? 0000 0] @)
_ 0 0 . ;
0 21y 0
J (I+Cx)s(v1) ax —N P4
V¥ |—(1+¢x)C(¥1) ¢ NP3
o) = = X S| (5)
0 0 5 c(¢n)
0 0 W,

1 is the gravitational parameter of the central body, and

Cx = ec(v) =v3¢(h1) +1haS(¥1)
ax = 3+ (24 (x)c(vn)
gy = Y4+ (2+Cx)S(yr)

n = 5 S(Y1) — Ve C(1h1)
h? = g + 4.

Most rendezvous applications involve a maneuvering spaftecalled thechaserand a passive
one, which is referred to as thierget[40]. Let ¢)(¢) be the state of the chaser spacecraft. The control
objective of the chaser is to track the known trajectory eftdrget, specified by the orbital elements
Pr(t) = [vr, ..., 5T, It is assumed that the target spacecraft moves along anturiped orbit.
Consequently, the target dynamics are represented byieq@twith « = 0, i.e.,

o= f). (6)

It can be seen from4j and @) that the target phase anglé(¢) is time-varying, whileys, ... ¥5
are constants that define the shape and orientation of theeneie orbit.

The tracking error is defined as= ¢ — ¢"". Hence, the error dynamics evolve according to the
nonlinear time-varying system

b= f,¥") + g+ Y, ©)

where (¢, ¢7) = f(b +97) = f(47).
The orbital rendezvous problem considered in this papebednrmulated as follows.
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Problem 1
Find a class/ of continuous state feedback control laws= (¢, ") such that the origin of the
error system7) is globally asymptotically stable, which guarantees that

lim 9)(t) = 0

t—o0

for any initial condition:(0) = 4 (0) — ¥"(0), with ¢(0) € ¥ andy"(0) € .

3. MAIN RESULTS

In order to derive a solution to Problefiy we first introduce a coordinate transformation=
x(1, ") in system (), defined as follows

Z1 ZTZH
To = 1+¢—i71
2

- 2 0 n . Y .
T3 + ot - ¢3+¢§ PR e w2 ;{'
[ ] ][] o

0 - b —ahT r

T4 B2 + U g =Py 0 Y
Ts :1/;5
Ze :1/;67

where

=m0 )

A similar transformation is used ir3{] for the case of circular reference orbits (i.&, = ¢;- = 0).
System {) in the new coordinate set takes on the form

b {F(x,w’“)] n [G(X,W)] [“ ]+H(x,¢’“)uh, ©)

T
O2x1 022 ug

wherey = [z; ...24]7 and

[0 Fia Fi3 0
X 0 0 0 0
T —
FOGv) =1 g 0 _my  —Fpy |X
L0 Fyo Fiot+Fy3 0
r o 0
Ty __ 0 G22
G(Xﬂ/’ ) - O O 9
LGa O
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being

F 1

12 (?/}2) (3 + +CX)
F- 242

13 (%) (w3 + 2+ 2()
Fip = W) (22 +2) (w3 + 1+ C%)°
F33 = Fi3(y
Fi3 = Fi3(x

1y 1

Goy = i 7@5 1)
Gu = /22

By virtue of the properties of the considered problem (g &ll F;; andG,; are strictly positive
functions ofy andy", except forFss and Fys. The vectorH (z,¢") in (9) is given by

[ (x5 + ¢F) S(x1 + 7)) — (w6 + ¥F) C(z1 + 97) |
O3x1
P Ox G 2
Hzw") = 20 mW) = 2y | 14 (o ETCET T (10)
L+ (5 + wg); + @ Y8 oy

wheregy, () denotes the third column gf-) in (5). It can be verified that the vector field¥y, ¢"),
G(x,v")andH (x,4") in (9) are periodic i)™ (¢), and turn out to be periodic alsoinwith period
equal to the reference orbital period

T— 271'\/ (V)" N (11)
pl = (95)? — (¥5)?]

The structure of system9) allows us to tackle the control design problem in a two-step
procedure. The first step is equivalent to solving a co-pla@adezvous problem, by controlling
the x components of systen®) with the inputsu, anduy. This is accomplished by applying a
backstepping-inspired technique. The second step amtuatymptotically stabilizing thes, z¢
components of system®)Y with the inputw,, while retaining the asymptotic stability of the
components. The proposed approach is described in deth# ifollowing.

3.1. Step 1
In this step, we assumsg, = 0 in (9) and derive a feedback stabilizer for the fourth order sstzsy

%= Flou") + Gl ) [“] (12)

Ug
using the inputs:,. andu.
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For system 12), let us first introduce the following nonsingular transf@tion in the input
variables

1
= — (v, — Fysa: 13
u o (v 4373) (13)
1 O\
ug = G <U9 — Fi 8m1> ) (14)

where v, and vy are the new input variables, and = \;(z1) is a given positive-definite and
pseudoconvex function of clag¥, to be treated as a design parameter. Then, systénbécomes

1 = Fiowe + Fi3as (15)
. oA
To = 7F12—1 —+ vg (16)
6301
T3 = —F33w3 — Flaxy (17)
Ty = Fioxs + Froxs + v, (18)
Let o
1 [ Fi30M
co L (LsOM g 19
T4 Fiy ( A5 Oy 533 3) ’ (19)

where); is a positive constant, and = A\3(x) is a given function of clas§* satisfying sgii\3) =
sgn(x3). Similarly to backstepping control design (see, e4l])] we usez; as a virtual input for
system {5)-(17), and consider the transformed state vector

z=[z1 22 23 24]T =[z1 22 x5 (24 fo)]T. (20)

In the new coordinates, equatiori$)-(18) read

21 = Fiozo + Fizzs (21)

. O\

29 = —Fia—— +vg (22)
821

. Fi3 0

z3 = 7)\—1536—2171712247)\3 (23)

24 = Fyozo + Frazz + v, — a7, (24)

where clearly\; (z1) = A1 («1). The following theorem addresses the global stabilizatiosystem
(21)-(24), and, equivalently, ofi(2).

Theorem 1
Let the control inputs of system 2)-(14) be given as

Vy = l‘z — )\4 (25)
Vg = —F42 )\5 Z4 — )\2, (26)

where); = \y(z) and \y = A\4(2) are given functions of class® satisfying sgfi\2) =sgn(z2) and
sgnA\y) = sgn(zy), respectively. Then, the equilibrium poigt= 0 of the closed-loop system 2)-
(14) with the control inputsZ5)-(26) is uniformly globally asymptotically stable.

Proof
Consider the Lyapunov function candidate

1 A
Vi(e) = M=) + 5 25 + 5 (4 + #4). (27)

The time derivative ofZ7), along the trajectories o2()-(24), reads

Vl (Z) = (U9+F42)\5Z4)22 — AsA323 + )\5(1}7-—3';‘2)24. (28)
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By substituting 25)-(26) in (28), one gets
Vi(Z) = 7)\222 - )\5)\523 — )\5)\42:4. (29)

Clearly, @9) is negative semidefinite and vanishes for= z3 = z4 = 0. From @1), the latter
condition implies that; is constant. Moreover, sincg (z;) is pseudoconvexX)\; /9z; in (22)-(23)
vanishes if and only it; = 0. Combining these observations, it follows that the largegiriant
set in whichV; = 0 is z = 0. Being systemZ1)-(26) periodic, by invoking LaSalle’s principle for
periodic systems {[2], Theorem 5.26), one has that= 0 is globally uniformly asymptotically
stable. Then, since the coordinate transformati2®) {s diffeomorphic andy = 0 if and only if

z = 0, it can be concluded that the equilibrium pojnt= 0 is globally asymptotically stabilized by
the proposed control scheme. O

3.2. Step2

The stabilization of the full system can be tackled by stiistig into ©) the control inputst,., ug
defined by {3)-(14) and @5)-(26), and rewriting the resulting dynamics as

o _Fcz(XﬂPT) + H(z,¥") up, (59
02><1

where
Fioxe + Fizas
—F1a32 — Fup (w4 — 23)As — A2
7F13A—15§,—i1 — Fia(wg — 7)) — A3
Fioxo + Fioxs + 15 — M\

Fcl(Xvwr> =

Given the structure of30), it turns out that the origin of the system can be globakp#ized using
up, Via a damping-like controller, as stated by the next result.

Theorem 2
Consider the Lyapunov function candidate

X 1 1
V(z, ") =Vi(z) + §m§ + 533%, (32)
with V4 defined by 27) andz as in 0). Let
Up = *)\67 (32)

wherels = \g(x, ") is a given function of clas§ satisfying

Srhe) = sgn(% H(x,w) | (33)

Then, the equilibrium point = 0 of the closed-loop systen8(Q) with the control input 82) is
uniformly globally asymptotically stable.

Proof
The time derivative of31), along the trajectories 08(0),(32), can be written as

; oy V(@ 0") [Falx,v")] | OV(x,¥") 0 OV(z,9") "y
V(z,¢") = o |: Oy 1 :| + o f@") O H(z,9") e
= Vi) - T e,y
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whereVi(z) is given by @9). Notice that’ is negative semidefinite and vanishes if and only if
To = T3 = 0
Ty =)
oV (x,4")
ox

The above conditions imply,, = 0. By substituting 82) in (30) and enforcing$4), the closed-loop
system becomes,

(34)
H(xz,¢")=0.

0
—Fi30)\1 /011
= | —Fiz X' 0\ /021 |, (35)
g
O2x1
wherey = ~(z1,4") is obtained from19) as
v = Agl%%.

Clearly, the only solution of syster8%) satisfying the first two conditions ir3{) is such thaj = 0.
Hence, according to Theoreinthe sety = 0 is invariant. Moreovery; andxzg are constant along
the solutions of§5). By using (LO), for y = 0 one gets

oV (z,9") oy U5 L (s 4 95)* 4 (26 + 95)°]
—op @)=y 2(1+ C)

Beingy4 > 0,1+ (% >0 andw'{ = 0, one must have; = x4 = 0 in order for the third condition

in (34) to hold. Summarizing, the largest invariant set in whick= 0 is = = 0. Then, by invoking
LaSalle’s principle for periodic systems, one has thattih@fproposed control strategy renders the
equilibrium pointz = 0 of system 80) globally uniformly asymptotically stable. O

[z5 (7)) + w6 S(¢7)] -

The final expression of the control= [u,., u, up]” is obtained from 13)-(14), (20), (25)-(26)
and @2) as

1 . A4
Uy = Up (2,3 \) = ——=—— (Fy3 w3 — 34) — — 36
ur(x, 9" N) G41( 43 T3 1) O (36)
Fio O\ Fao A2
= "N = ——2=2 = = W\ — 2= 37
Ug Ug (Z) 1/} ) ) G22 al‘l G22 (1’.4 14) 5 G22 ( )
up = un(z, Y5 A) = =X, (38)

with =% given by (L9) andV (x, ") defined by 81).
Expressions36)-(38) define a class of globally stabilizing feedback contraligarameterized by
the tunable vector-valued function: RS x R — RS. Indeed, let

A1 € C? positive definite
i =0 a =0
AL Ay € 00 sgnhs) = sgn(a»)
A= D] s A3 € CisgnAs) = sgn(zs)
Py Ay € CY:sgn\y) = sgn(zy —x)
As >0 constant
X6 € C° 1 sgn(\e) = sgn( %X H)

Then, the controller class
L{:{u(x,d)r;)\) : )\GA} (39)
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is a solution to Probleri.
Finally, note that/ can be further generalized by taking as a strictly positive function, with
minor amendments of the control la&g)-(38).

Remark 1

The degrees of freedom provided by the proposed contrdissci.e., by the tunable parameters
A€ A, can be used to enforce further control specifications or #etngiven performance
requirements. A typical specification in aerospace apjitina is to keep the magnitude of the thrust
command within the safe operating range of the satelliténersg Notice that this is a very simple
task for circular reference orbit{; = Fy3 =0), as it amounts to properly scale the tuning functions
. The problem is more challenging for elliptical referenebits, due to the presence of the term
(Fuszs — 23) in (36). An example that demonstrates the tuning\dfor a specific case study is
presented in the next section. A systematic method for @xpdathe proposed parameterization in
order to optimize relevant performance indices is the sulgjecurrent investigation.

Remark 2

Although U/ is a global stabilizer for Probler, it can lead to unwinding when applied to the
physical system?), in which the configuration space of the rotational degrereedom; is
the unit circle B3]. A possible way to overcome this issue is suitably amenddinition of
A1, by choosing e.gA;(x1) = k(1 — c(z1)), wherex > 0. Notice that this introduces a set of
unstable equilibrium points in the closed-loop system dyiga, corresponding to; = 7 + 2m,
with m € Z. In this setting, only almost global stability can be guaead by adopting a reasoning
similar to Theorem4 and?2.

4. RENDEZVOUS CASE STUDY

In order to validate the proposed approach, a simulationainoased on Cowell’'s formulatior3g]
has been implemented. In this model, the plant dynamicsieee ty

o= — r+ur+d

I
[I71®
[A— _L

[l7]®

(40)
r’+d"

wherer andr” denote the inertial position of the chaser and the targspeeively, and.; is the
control input of the chaser, expressed in the inertial fralb@reover, the two vectoré andd” in
(40) represent environmental perturbations (e.g., aspHeyiasity). These are treated as exogenous
disturbances to be rejected by the control system. The paapcoontrol law is applied to systed)

by first converting-, 7 andr”, 7" into orbital elements and then rotating the input veetgiven by
(36)-(38) from the LVLH frame to the inertial frame. The resulting séml-loop system is shown in
Fig. 2.

d,d" ‘ ‘ |
Plant 7“77“77"77“1 Inertial states tg ¥, "
”|Orbital elements
uy

LVLHto | w

Inertial < Controller

Figure 2. Block diagram of the closed-loop syste36){(38), (40).

The considered rendezvous case study involves an actioatyadled chaser spacecraft that must
intercept a non-maneuvering target spacecraft, by usimgjramus, low-thrust propulsion. Both
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spacecraft are released in a near-circular orbit with dtudé of about800 km above the Earth,
which is a typical setting for remote sensing missions. Mimdial orbital elements are reported in
Tablel, and correspond to the relative position error

y(0) = [-21,102,71]" km,
wherey(t) = r(t) — r"(t). The settling time for the rendezvous maneuver is defined as
t:vVt>t |ly(t)]< 1km,

where the relative distance dfkm typically marks the transition from the rendezvous phagae
close proximity phased]. It is required to keep the maximum input magnitude in theéeorof 1
mm/<, for the given initial condition. This value is compatiblétiwthe characteristics of missions
equipped with low-thrust propulsion technologiég,[45)].

In order to meet the control specifications, the followingicles have been made for the tuning
functions), by adopting a trial-and-error procedure:

A= 1074 22

Ay = 1078 - atar(10* - )

A3 = 1073 - 24

Ay = 1078 - atan(10® - (x4 — x3))
As = 102 v,

Ag = 1.5~1074~W.

Notice that\,, Ay and \g are tuned as saturation functions, in order to limit the wmreffort,
without increasing too much the settling time.
The proposed solution is compared to a traditional conael hased on feedback linearization
(see, e.g.,49). In this approach, the nominal error dynamics are obtiaifrem (40) with
d=d" =0, as follows p )

y:T'*T :*WT"FWT'T*FU[ (41)

The control input vector is chosen as

[ T ,
ur = | —=r— = | - Kpyy — K, 9, (42)
<|7“||3 [l ]I > :

whereK, > 0 andK, > 0 are diagonal gain matrices. By usint) into (41), it can be verified that
this control law linearizes the nominal closed-loop systerd makes the equilibrium poigt= 0
asymptotically stable. The control gains of the three dptamisecond order system&l}-(42) have
been tuned so as to reduce as much as possible the magnittitke ©dntrol input 42), while
guaranteeing a settling time close to that of the proposettaiter. This results inK, = 1076 - 1
andK, =2-107° - I. The selected value df, is such that the natural frequency of systef){
(42) is 27/T, with T given by (L1).

Table I. Initial orbital elements of the chaser and the targe

Orbital element Chaser Target
True longitude L(0) = 0.0175 rad L"(0)=0
Semi-parameter p(0) = 7158 km p"(0) = 7178 km
. 0)=11-10"3 e (0) =103
Eccentricity vector| ¥ ( X
Y ey (0) =0 ¢ (0) =0
- hx(0) = 0.313 h'% (0) = 0.315
Inclination vector hy (0) = 0 B (0) = 0
Copyright© 2017 John Wiley & Sons, Ltd. (2017)
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Figure 3. Relative position error magnitude obtained wliia ¢ontrol schemes6)-(38) (blue, dashed) and
(42) (red, solid).
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Figure 4. Magnitude of the control inpuig (¢) provided by 86)-(38) (top) and ¢2) (bottom).

System 40) has been numerically simulated with= d” = 0 for a time interval of approximately
6 days (corresponding to 86 orbital revolutions), usingdbietrol schemes3g)-(38) and @2). The
magnitudd|y(t)|| of the relative position error, resulting from the simubati is reported in Fig3.
Both controllers are able to keep the inter-satellite distebelowl km, for all ¢ > ¢, with# = 5.5
days. In Fig.4, it can be seen that the maximum magnitude of the controlti(¥®) is about70
times higher than that of the input corresponding to36)-(38), which explains the two different
transient behaviours in Fi@. Notice that, due to the nonlinear contribution betweerckets in
(42), it has not been possible to scale the amplitude of the absitynal down to the desired level
(1 mm/g), despite our best effort to tune the control gaifjsand K. In this respect, the proposed
design procedure is clearly more flexible, as expected.

The true longitude tracking erraf, (¢) obtained with the control schemaq)-(38) is depicted
in Fig. 5. Such angle turns out to be very small even for large inijcecraft separations. The
three-dimensional profile of the trajectory of the chaskatiee to the target is shown in Fig.for
the two controllers (note the different axis scale).
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Figure 5. True longitude tracking errgf, obtained with the control schemegj-(39).
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Figure 6. Relative trajectory(t) provided by the control laws36)-(38) (left) and @2) (right), with the initial
conditiony(0) (circled).

A qualitative assessment of the robustness of the contro|38)-(38) with respect to exogenous
disturbances and parametric uncertainties has been aisedcaut. To this aim, the disturbance
termsd andd” in (40) have been specified so as to model the effect of the J2-hacrobnhe
Earth’s gravity field, which is the dominant environmentatdrbance in the considered scenario.
Moreover, actuator scale factor and alignment errors haes Iincluded in the simulation model,
by replacing the control command(see Fig2) with a corrupted input of the form

w0 =a| o) u, “3)
O1x2 1
wherea ande denote the scale factor and alignment errors, respecthiviglyre7 depicts the closed-
loop system response obtained for different values ef [0.9,1.1] ande € [-0.1,0.1] rad (the
considered parametric intervals are in line with the typigacertainties affecting the spacecraft
actuation mechanism). It can be observed that the trackiog @symptotically converges to zero,
for all parameter values in the specified range. This suggesappreciable robustness of the design
with respect to both disturbances and parametric uncégain
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Figure 7. Relative position error magnitude obtained wiik tnputz in (43), with « € [0.9,1.1] and
€ €[-0.1,0.1].

5. CONCLUSIONS

This paper has studied the rendezvous control problem forradtion of two spacecraft orbiting
about a central body. The problem is cast as that of trackiegrtodified equinoctial elements of
a target spacecraft moving along an unperturbed closedl érlalass of globally asymptotically
stabilizing feedback control laws has been derived for grisblem. They enable an actively
controlled chaser spacecraft to approach and eventuatly tthe target. The results of a numerical
case study demonstrate that the control system perforniadequate for practical implementation
with low-thrust actuators. A systematic method for exphgjtthe proposed controller class for
performance optimization is the subject of ongoing redeaRobustness analysis with respect to
disturbances and parametric uncertainties is another tigsierving further investigation.
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