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SUMMARY

The development of feedback control systems for autonomousorbital rendezvous is a key technological
challenge for next generation space missions. This paper presents a new class of control laws for the
orbital rendezvous problem. The controllers belonging to this class are guaranteed to globally asymptotically
stabilize the relative dynamics of two satellites in circular or elliptic orbits. The proposed design procedure
builds on control techniques for nonlinear systems in cascade form, by exploiting the geometric properties of
the orbital element description of the satellite motion. A numerical simulation of a formation flying mission
demonstrates the effectiveness of this approach for long-range and low-thrust rendezvous operations.
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1. INTRODUCTION

Orbital rendezvous technologies play a fundamental role ininterplanetary exploration, on-orbit
servicing, and remote sensing space missions. They enable two spacecraft starting a long distance
apart to get closer and perform activities such as inspection or docking. Historically, rendezvous
maneuvers have been performed through manual or semi-automated procedures [1]. Despite the
success of these methods, they are not suited to applications in which ground communication is
limited or delayed, and often very expensive to implement [2]. For these reasons, the development
of fully autonomous rendezvous techniques has been identified as a key challenge for current and
future formation flying missions, see, e.g., [3, 4, 5].

The rendezvous control problem can be tackled by using open-loop optimization techniques
or feedback stabilization methods. In the former approach,no closed-form solution is available
in general and a two-point boundary value problem is solved numerically to obtain the optimal
thrusting profile (see, e.g., [6, 7, 8]). The related computations are lengthy, thus making this
approach not suitable for applications in which the controlsignal must be computed online. On
the contrary, feedback stabilization methods typically provide closed-form control laws, that can be
employed within an autonomous guidance, navigation and control system.

Many of the rendezvous control schemes discussed in the formation flying literature rely on
results from linear control theory. Linear quadratic regulator design techniques are adopted in
[9, 10, 11]. A robust control problem is addressed in [12, 13], by usingH∞ synthesis methods.
Model predictive control strategies, able to cope with bothinput and state constraints, are presented
in [14, 15, 16, 17]. Unfortunately, most of these approaches are based on linearized, time-invariant
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dynamic models, which limits the domain of attraction of thecontrol system to a local neighborhood
of the rendezvous location. In order to mitigate this issue,linear time-varying controllers have been
presented in [18, 19]. These approaches require to solve numerically a periodicRiccati equation or
a parametric Lyapunov equation.

Several nonlinear control techniques have also been considered in the literature. Feedback
linearization is proposed in early works such as [20, 21]. Adaptive control schemes, accounting for
both parametric uncertainties and unknown disturbances, are presented in [22, 23, 24, 25]. In these
approaches, the control input is chosen so as to exactly cancel or to dominate the effect of differential
gravity (i.e., the difference between the gravitational accelerations acting on the two spacecraft).
This can lead to a large control effort and consequently to poor fuel efficiency, especially when
the relative position error is large. Hence, constraints onthe maximum thrust that can be delivered
by the actuators and on the amount of available propellant may restrict the applicability of these
controllers to short-range maneuvers. In order to deal withinput and state constraints, approaches
based on nonlinear model predictive control and receding-horizon strategies have been proposed
(see, e.g., [26, 27, 28]). These techniques are usually computationally intensive, as they require to
solve a nonlinear optimal control problem at each time step.Moreover, it is often difficult to prove
the stability of these methods.

In [29], a nonlinear Lyapunov-based control law is obtained by parameterizing the satellite
relative motion in terms of orbital element differences. Itis found that, in this way, the control energy
can be made significantly smaller than the one resulting fromthe application of cartesian feedback
control laws, such as those cited above. The authors, however, recognize that their design is not
supported by a rigorous stability proof. A similar approachis taken in [30], where backstepping
and forwarding techniques are adopted to derive a passivity-based controller. This control strategy
applies only to perfectly circular reference orbits, whichleaves out many scenarios of theoretical
and practical interest. It is known, for instance, that low Earth orbits cannot have zero eccentricity,
due to the asymmetry of the Earth’s gravity field. Other control schemes based on orbital elements
can be found in the literature [31, 32, 33]. However, they do not address the tracking of the satellite
phase angle along the orbit, and hence cannot be employed forrendezvous.

In this paper, a new class of orbital element feedback control laws is presented for the rendezvous
problem. The controllers belonging to this class are guaranteed to globally asymptotically stabilize
the relative dynamics of a satellite pair, for both circularand elliptic reference orbits. Our design
procedure is in the spirit of previous studies dealing with the global stabilization of nonlinear
time-varying systems in cascade form, see, e.g., [34, 35, 36]. A set of tunable design functions is
introduced to parameterize the stabilizing controller family. Such parametrization may be exploited
to enforce further control specifications, or to optimize suitable performance indices. A simulation
case study is presented in order to demonstrate the applicability of the proposed method. It is
observed that, by applying the proposed design, the thrust command can be scaled down to meet
the constraints dictated by modern low-thrust actuator technologies, such as electric propulsion.
A qualitative robustness analysis with respect to environmental disturbances and parametric
uncertainties is also carried out. A preliminary version ofthis work has been presented in [37].

The paper is organized as follows. In Section2, a brief introduction to the orbital element
parametrization is given and the considered rendezvous control problem is formulated. Section3
is devoted to the controller design, which is demonstrated by the numerical case study in Section4.
Some concluding remarks are outlined in Section5.

Notation

The notation is fairly standard.Rn is the realn−space, andZ denotes the set of integer numbers;
for a real vector or matrixx, xT denotes its transpose. The symbol0n×m denotes a null matrix or
vector withn rows andm columns, while the identity matrix of ordern is denoted byIn. The partial
derivative∂f/∂x is expressed as a row vector. To save space,cos(·), sin(·) are abbreviated with c(·)
and s(·), respectively. Moreover,

R(φ) =

[

c(φ) −s(φ)
s(φ) c(φ)

]
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is the counter-clockwise rotation operator, by an angleφ, in R
2. The definition of the signum

function follows the convention

sgn(x) =







1 x > 0
0 x = 0

−1 x < 0 ,

wherex ∈ R. The continuous time index is denoted byt ∈ R
+.

2. PROBLEM FORMULATION

Classical orbital elements are commonly used as a parametrization of the positionr ∈ R
3 and

velocity ṙ ∈ R
3 of an orbiting body, since they provide a clear physical insight of the body motion.

The semi-major axisa > 0 and eccentricitye ∈ [0, 1] define the shape of the orbit. The inclination
i ∈ [0, π] and longitude of the ascending nodeΩ ∈ [0, 2π] define the orientation of the orbital plane
with respect to a given inertial, right-handed reference frame centered at the central body (e.g.,
the Earth). The argument of perigeeω ∈ [0, 2π] describes the position of the perigee in the orbital
plane, and the true anomalyν(t) ∈ [0, 2π] defines the instantaneous angle at which the orbiting body
is located relative to the perigee position, as illustratedin Fig. 1.

X

Y

Z

ω

Ω

Line of nodes

i

νr

L

Perigee

Equatorial orbit

Inclined orbit

Figure 1. Classical orbital elements.

It is well known thatω is indeterminate for circular orbits (i.e., whene = 0) andΩ is indeterminate
for equatorial orbits (i.e., wheni = 0). These singularities can be avoided by adopting a different
parameterization of the orbit using the modified equinoctial elementsψ = [ψ1 . . . ψ6]

T , defined as
[38]

ψ1 = L = Ω+ ω + ν
ψ2 = p = a(1− e2)
ψ3 = eX = e c(Ω + ω)
ψ4 = eY = e s(Ω + ω)
ψ5 = hX = tan(i/2) c(Ω)
ψ6 = hY = tan(i/2) s(Ω).

(1)

In this parameterization,L is the true longitude shown in Fig.1, p is the orbit semi-parameter,
eX , eY are the components of the eccentricity vector, andhX , hY are the components of the
inclination vector. Notice that any closed Keplerian orbitis such thatψ2 = p > 0. Moreover, the
escape to parabolic orbits (i.e.,e = 1) is not possible with continuous feedback [33], which is the
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case considered in this paper. Therefore, in the following we restrict our attention to the casee < 1.
Hence, the orbital element vectorψ must belong to the set

Ψ = {ψ ∈ R
6 : ψ2 > 0, ψ2

3 + ψ2
4 < 1}. (2)

The transformation that relates the equinoctial elements to the cartesian positionr and velocityṙ,
expressed in the inertial frameXY Z, can be found in astrodynamics textbooks (e.g., [39]), and is
not reported here for brevity.

The dynamics of the orbital elementsψ in (1), in the presence of perturbing accelerations, are
described by the Gauss’ variational equations. Let us introduce the input vectoru = [ur uθ uh]

T ,
whereur, uθ and uh denote the radial, tangential and normal components of the acceleration,
respectively, in a local-vertical-local-horizontal (LVLH) frame centered at the orbiting body. The
resulting dynamics are given by ([39], Chapter 10)

ψ̇ = f(ψ) + g(ψ)u, (3)

where the vector fieldsf(ψ) andg(ψ) are defined as

f(ψ) =

√

µ

ψ3
2

[

(1 + ζX)2 0 0 0 0 0
]T

(4)

g(ψ) =

√
ψ2√

µ(1+ζX)



























0 0 η

0 2ψ2 0

(1+ζX) s(ψ1) qX −η ψ4

−(1+ζX) c(ψ1) qY η ψ3

0 0
(1+h2)

2
c(ψ1)

0 0
(1+h2)

2
s(ψ1)



























, (5)

µ is the gravitational parameter of the central body, and

ζX = e c(ν) = ψ3 c(ψ1) + ψ4 s(ψ1)

qX = ψ3 + (2 + ζX) c(ψ1)

qY = ψ4 + (2 + ζX) s(ψ1)

η = ψ5 s(ψ1)− ψ6 c(ψ1)

h2 = ψ2
5 + ψ2

6 .

Most rendezvous applications involve a maneuvering spacecraft, called thechaser, and a passive
one, which is referred to as thetarget[40]. Letψ(t) be the state of the chaser spacecraft. The control
objective of the chaser is to track the known trajectory of the target, specified by the orbital elements
ψr(t) = [ψr

1, . . . , ψ
r
6 ]

T . It is assumed that the target spacecraft moves along an unperturbed orbit.
Consequently, the target dynamics are represented by equation (3) with u = 0, i.e.,

ψ̇r = f(ψr). (6)

It can be seen from (4) and (6) that the target phase angleψr
1(t) is time-varying, whileψr

2 , . . . , ψ
r
6

are constants that define the shape and orientation of the reference orbit.
The tracking error is defined as̃ψ = ψ − ψr. Hence, the error dynamics evolve according to the

nonlinear time-varying system

˙̃
ψ = f̃(ψ̃, ψr) + g(ψ̃ + ψr)u, (7)

wheref̃(ψ̃, ψr) = f(ψ̃ + ψr)− f(ψr).
The orbital rendezvous problem considered in this paper canbe formulated as follows.
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Problem 1
Find a classU of continuous state feedback control lawsu = u(ψ̃, ψr) such that the origin of the
error system (7) is globally asymptotically stable, which guarantees that

lim
t→∞

ψ̃(t) = 0

for any initial conditionψ̃(0) = ψ(0)− ψr(0), with ψ(0) ∈ Ψ andψr(0) ∈ Ψ.

3. MAIN RESULTS

In order to derive a solution to Problem1, we first introduce a coordinate transformationx =
x(ψ̃, ψr) in system (7), defined as follows

x1 = ψ̃1

x2 =

√

1 +
ψ̃2

ψr
2

− 1





x3

x4



=











ψr
2

ψ̃2 + ψr
2

0

0

√

ψr
2

ψ̃2 + ψr
2











R(ψ̃1+ψ
r
1)





ψ̃3+ψ
r
3

−ψ̃4−ψr
4



+







− ψ̃2

ψ̃2 + ψr
2

0






−





ζrX

ζrY



 (8)

x5 = ψ̃5

x6 = ψ̃6,

where

[

ζrX
ζrY

]

= R(ψr
1)

[

ψr
3

−ψr
4

]

.

A similar transformation is used in [30] for the case of circular reference orbits (i.e.,ζrX = ζrY = 0).
System (7) in the new coordinate set takes on the form

ẋ =

[

F (χ, ψr)
02×1

]

+

[

G(χ, ψr)
02×2

] [

ur
uθ

]

+H(x, ψr)uh , (9)

whereχ = [x1 . . . x4]
T and

F (χ, ψr) =







0 F12 F13 0
0 0 0 0
0 0 −F33 −F12

0 F42 F12+F43 0






χ

G(χ, ψr) =







0 0
0 G22

0 0
G41 0







,
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being

F12 =

√

µ

(ψr
2)

3
(x3 + 1 + ζrX)

2

F13 =

√

µ

(ψr
2)

3
(x3 + 2 + 2ζrX)

F42 =

√

µ

(ψr
2)

3
(x2 + 2) (x3 + 1 + ζrX)3

F33 = F13 ζ
r
Y

F43 = F13 ζ
r
X

G22 =

√

ψr
2

µ

1

(x3 + 1 + ζrX)

G41 =

√

ψr
2

µ
.

By virtue of the properties of the considered problem (see (2)), all Fij andGij are strictly positive
functions ofχ andψr, except forF33 andF43. The vectorH(x, ψr) in (9) is given by

H(x, ψr) =
∂x

∂ψ̃
gh(ψ) =

G22

(x2 + 1)

























(x5 + ψr
5) s(x1 + ψr

1)− (x6 + ψr
6) c(x1 + ψr

1)

03×1

1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2

2
c(x1 + ψr

1)

1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2

2
s(x1 + ψr

1)

























(10)

wheregh(·) denotes the third column ofg(·) in (5). It can be verified that the vector fieldsF (χ, ψr),
G(χ, ψr) andH(x, ψr) in (9) are periodic inψr(t), and turn out to be periodic also int, with period
equal to the reference orbital period

T = 2 π

√

(ψr
2)

3

µ [1− (ψr
3)

2 − (ψr
4)

2]3
. (11)

The structure of system (9) allows us to tackle the control design problem in a two-step
procedure. The first step is equivalent to solving a co-planar rendezvous problem, by controlling
the χ components of system (9) with the inputsur anduθ. This is accomplished by applying a
backstepping-inspired technique. The second step amountsto asymptotically stabilizing thex5, x6
components of system (9) with the inputuh, while retaining the asymptotic stability of theχ
components. The proposed approach is described in detail inthe following.

3.1. Step 1

In this step, we assumeuh = 0 in (9) and derive a feedback stabilizer for the fourth order subsystem

χ̇ = F (χ, ψr) +G(χ, ψr)

[

ur
uθ

]

(12)

using the inputsur anduθ.
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For system (12), let us first introduce the following nonsingular transformation in the input
variables

ur =
1

G41

(vr − F43x3) (13)

uθ =
1

G22

(

vθ − F12

∂λ1
∂x1

)

, (14)

wherevr and vθ are the new input variables, andλ1 = λ1(x1) is a given positive-definite and
pseudoconvex function of classC2, to be treated as a design parameter. Then, system (12) becomes

ẋ1 = F12x2 + F13x3 (15)

ẋ2 = −F12

∂λ1
∂x1

+ vθ (16)

ẋ3 = −F33x3 − F12x4 (17)

ẋ4 = F42x2 + F12x3 + vr. (18)

Let

x∗4 =
1

F12

(

F13

λ5

∂λ1
∂x1

− F33x3 + λ3

)

, (19)

whereλ5 is a positive constant, andλ3 = λ3(x) is a given function of classC1 satisfying sgn(λ3) =
sgn(x3). Similarly to backstepping control design (see, e.g., [41]), we usex∗4 as a virtual input for
system (15)-(17), and consider the transformed state vector

z = [z1 z2 z3 z4]
T = [x1 x2 x3 (x4 − x∗4)]

T . (20)

In the new coordinates, equations (15)-(18) read

ż1 = F12z2 + F13z3 (21)

ż2 = −F12

∂λ1
∂z1

+ vθ (22)

ż3 = −F13

λ5

∂λ1
∂z1

− F12z4 − λ3 (23)

ż4 = F42z2 + F12z3 + vr − ẋ∗4, (24)

where clearlyλ1(z1) = λ1(x1). The following theorem addresses the global stabilizationof system
(21)-(24), and, equivalently, of (12).

Theorem 1
Let the control inputs of system (12)-(14) be given as

vr = ẋ∗4 − λ4 (25)

vθ = −F42 λ5 z4 − λ2, (26)

whereλ2=λ2(z) andλ4=λ4(z) are given functions of classC0 satisfying sgn(λ2)=sgn(z2) and
sgn(λ4) = sgn(z4), respectively. Then, the equilibrium pointχ = 0 of the closed-loop system (12)-
(14) with the control inputs (25)-(26) is uniformly globally asymptotically stable.

Proof
Consider the Lyapunov function candidate

V1(z) = λ1(z1) +
1

2
z22 +

λ5
2

(

z23 + z24
)

. (27)

The time derivative of (27), along the trajectories of (21)-(24), reads

V̇1(z) = (vθ+F42λ5z4)z2 − λ5λ3z3 + λ5(vr−ẋ∗4)z4. (28)
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By substituting (25)-(26) in (28), one gets

V̇1(z) = −λ2z2 − λ5λ3z3 − λ5λ4z4. (29)

Clearly, (29) is negative semidefinite and vanishes forz2 = z3 = z4 = 0. From (21), the latter
condition implies thatz1 is constant. Moreover, sinceλ1(z1) is pseudoconvex,∂λ1/∂z1 in (22)-(23)
vanishes if and only ifz1 = 0. Combining these observations, it follows that the largestinvariant
set in whichV̇1 = 0 is z = 0. Being system (21)-(26) periodic, by invoking LaSalle’s principle for
periodic systems ([42], Theorem 5.26), one has thatz = 0 is globally uniformly asymptotically
stable. Then, since the coordinate transformation (20) is diffeomorphic andχ = 0 if and only if
z = 0, it can be concluded that the equilibrium pointχ = 0 is globally asymptotically stabilized by
the proposed control scheme.

3.2. Step 2

The stabilization of the full system can be tackled by substituting into (9) the control inputsur, uθ
defined by (13)-(14) and (25)-(26), and rewriting the resulting dynamics as

ẋ =

[

Fcl(χ, ψ
r)

02×1

]

+H(x, ψr)uh, (30)

where

Fcl(χ, ψ
r) =











F12x2 + F13x3

−F12
∂λ1

∂x1

− F42 (x4 − x∗4)λ5 − λ2

−F13
1

λ5

∂λ1

∂x1

− F12(x4 − x∗4)− λ3

F42x2 + F12x3 + ẋ∗4 − λ4











.

Given the structure of (30), it turns out that the origin of the system can be globally stabilized using
uh via a damping-like controller, as stated by the next result.

Theorem 2
Consider the Lyapunov function candidate

V (x, ψr) = V1(z) +
1

2
x25 +

1

2
x26, (31)

with V1 defined by (27) andz as in (20). Let

uh = −λ6, (32)

whereλ6 = λ6(x, ψ
r) is a given function of classC0 satisfying

sgn(λ6) = sgn

(

∂V (x, ψr)

∂x
H(x, ψr)

)

. (33)

Then, the equilibrium pointx = 0 of the closed-loop system (30) with the control input (32) is
uniformly globally asymptotically stable.

Proof
The time derivative of (31), along the trajectories of (30),(32), can be written as

V̇ (x, ψr) =
∂V (x, ψr)

∂x

[

Fcl(χ, ψ
r)

02×1

]

+
∂V (x, ψr)

∂ψr
f(ψr)− ∂V (x, ψr)

∂x
H(x, ψr)λ6

= V̇1(z)−
∂V (x, ψr)

∂x
H(x, ψr)λ6,
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whereV̇1(z) is given by (29). Notice thatV̇ is negative semidefinite and vanishes if and only if














x2 = x3 = 0

x4 = x∗4

∂V (x, ψr)

∂x
H(x, ψr) = 0.

(34)

The above conditions implyuh = 0. By substituting (32) in (30) and enforcing (34), the closed-loop
system becomes,

ẋ =















0

−F12 ∂λ1/∂x1

−F13 λ
−1

5 ∂λ1/∂x1

γ̇

02×1















, (35)

whereγ = γ(x1, ψ
r) is obtained from (19) as

γ = λ−1

5

F13

F12

∂λ1
∂x1

.

Clearly, the only solution of system (35) satisfying the first two conditions in (34) is such thatχ = 0.
Hence, according to Theorem1, the setχ = 0 is invariant. Moreover,x5 andx6 are constant along
the solutions of (35). By using (10), for χ = 0 one gets

∂V (x, ψr)

∂x
H(x, ψr) =

√

ψr
2

µ

[1 + (x5 + ψr
5)

2 + (x6 + ψr
6)

2]

2(1 + ζrX)
[x5 c(ψr

1) + x6 s(ψr
1)] .

Beingψr
2 > 0, 1 + ζrX > 0 andψ̇1

r 6= 0, one must havex5 = x6 = 0 in order for the third condition
in (34) to hold. Summarizing, the largest invariant set in whichV̇ = 0 is x = 0. Then, by invoking
LaSalle’s principle for periodic systems, one has that thatthe proposed control strategy renders the
equilibrium pointx = 0 of system (30) globally uniformly asymptotically stable.

The final expression of the controlu = [ur, uθ, uh]
T is obtained from (13)-(14), (20), (25)-(26)

and (32) as

ur = ur(x, ψ
r;λ) = − 1

G41

(F43 x3 − ẋ∗4)−
λ4
G41

(36)

uθ = uθ(x, ψ
r;λ) = − F12

G22

∂λ1
∂x1

− F42

G22

(x4−x∗4)λ5 −
λ2
G22

(37)

uh = uh(x, ψ
r;λ) = −λ6, (38)

with x∗4 given by (19) andV (x, ψr) defined by (31).
Expressions (36)-(38) define a class of globally stabilizing feedback controllers parameterized by

the tunable vector-valued functionλ : R6 ×R
6 → R

6. Indeed, let

Λ=













































λ1
...
λ6







:

λ1 ∈ C2 positive definite,
∂λ1

∂x1

= 0 ⇔ x1 = 0

λ2 ∈ C0 : sgn(λ2) = sgn(x2)
λ3 ∈ C1 : sgn(λ3) = sgn(x3)
λ4 ∈ C0 : sgn(λ4) = sgn(x4−x∗4)
λ5 > 0 constant
λ6 ∈ C0 : sgn(λ6) = sgn(∂V

∂x
H)







































.

Then, the controller class
U =

{

u(x, ψr;λ) : λ ∈ Λ
}

(39)
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is a solution to Problem1.
Finally, note thatU can be further generalized by takingλ5 as a strictly positive function, with

minor amendments of the control law (36)-(38).

Remark 1
The degrees of freedom provided by the proposed controller class, i.e., by the tunable parameters
λ ∈ Λ, can be used to enforce further control specifications or to meet given performance
requirements. A typical specification in aerospace applications is to keep the magnitude of the thrust
command within the safe operating range of the satellite engines. Notice that this is a very simple
task for circular reference orbits (F33=F43=0), as it amounts to properly scale the tuning functions
λ. The problem is more challenging for elliptical reference orbits, due to the presence of the term
(F43x3 − ẋ∗4) in (36). An example that demonstrates the tuning ofλ for a specific case study is
presented in the next section. A systematic method for exploiting the proposed parameterization in
order to optimize relevant performance indices is the subject of current investigation.

Remark 2
Although U is a global stabilizer for Problem1, it can lead to unwinding when applied to the
physical system (7), in which the configuration space of the rotational degree of freedom ψ̃1 is
the unit circle [43]. A possible way to overcome this issue is suitably amend thedefinition of
λ1, by choosing e.g.λ1(x1) = κ(1− c(x1)), whereκ > 0. Notice that this introduces a set of
unstable equilibrium points in the closed-loop system dynamics, corresponding tox1 = π + 2mπ,
with m ∈ Z. In this setting, only almost global stability can be guaranteed by adopting a reasoning
similar to Theorems1 and2.

4. RENDEZVOUS CASE STUDY

In order to validate the proposed approach, a simulation model based on Cowell’s formulation [39]
has been implemented. In this model, the plant dynamics are given by











r̈ = − µ

‖r‖3 r + uI + d

r̈ r = − µ

‖rr‖3 r
r+ dr

(40)

wherer andrr denote the inertial position of the chaser and the target, respectively, anduI is the
control input of the chaser, expressed in the inertial frame. Moreover, the two vectorsd anddr in
(40) represent environmental perturbations (e.g., aspherical gravity). These are treated as exogenous
disturbances to be rejected by the control system. The proposed control law is applied to system (40)
by first convertingr, ṙ andrr, ṙr into orbital elements and then rotating the input vectoru given by
(36)-(38) from the LVLH frame to the inertial frame. The resulting closed-loop system is shown in
Fig. 2.

Plant Inertial states to
Orbital elements

LVLH to
Inertial Controller

d, dr

uI

u

r, ṙ, rr, ṙr ψ, ψr

Figure 2. Block diagram of the closed-loop system (36)-(38), (40).

The considered rendezvous case study involves an actively controlled chaser spacecraft that must
intercept a non-maneuvering target spacecraft, by using continuous, low-thrust propulsion. Both

Copyright c© 2017 John Wiley & Sons, Ltd. (2017)
Prepared using DOI: 10.1002/rnc.3817



11

spacecraft are released in a near-circular orbit with an altitude of about800 km above the Earth,
which is a typical setting for remote sensing missions. Their initial orbital elements are reported in
TableI, and correspond to the relative position error

y(0) = [−21, 102, 71]T km,

wherey(t) = r(t) − rr(t). The settling time for the rendezvous maneuver is defined as

t̄ : ∀t > t̄ ‖y(t)‖≤ 1 km,

where the relative distance of1 km typically marks the transition from the rendezvous phaseto the
close proximity phase [40]. It is required to keep the maximum input magnitude in the order of1
mm/s2, for the given initial condition. This value is compatible with the characteristics of missions
equipped with low-thrust propulsion technologies [44, 45].

In order to meet the control specifications, the following choices have been made for the tuning
functionsλ, by adopting a trial-and-error procedure:

λ1 = 10−4 · x21
λ2 = 10−8 · atan(104 · x2)
λ3 = 10−3 · x3
λ4 = 10−8 · atan(106 · (x4 − x∗4))

λ5 = 10−2

λ6 = 1.5 · 10−4 ·
∂V
∂x

H

10−9+

∣

∣

∣

∂V
∂x

H

∣

∣

∣

.

Notice thatλ2, λ4 andλ6 are tuned as saturation functions, in order to limit the control effort,
without increasing too much the settling time.

The proposed solution is compared to a traditional control law based on feedback linearization
(see, e.g., [29]). In this approach, the nominal error dynamics are obtained from (40) with
d = dr = 0, as follows

ÿ = r̈ − r̈ r = − µ

‖r‖3 r +
µ

‖rr‖3 r
r + uI . (41)

The control input vector is chosen as

uI =

(

µ

‖r‖3 r −
µ

‖rr‖3 r
r

)

−Kp y −Kv ẏ, (42)

whereKp > 0 andKv > 0 are diagonal gain matrices. By using (42) into (41), it can be verified that
this control law linearizes the nominal closed-loop systemand makes the equilibrium pointy = 0
asymptotically stable. The control gains of the three decoupled second order systems (41)-(42) have
been tuned so as to reduce as much as possible the magnitude ofthe control input (42), while
guaranteeing a settling time close to that of the proposed controller. This results inKp = 10−6 · I
andKv = 2 · 10−5 · I. The selected value ofKp is such that the natural frequency of system (41)-
(42) is 2π/T , with T given by (11).

Table I. Initial orbital elements of the chaser and the target

Orbital element Chaser Target

True longitude L(0) = 0.0175 rad Lr(0)= 0

Semi-parameter p(0) = 7158 km pr(0) = 7178 km

Eccentricity vector eX(0) = 1.1 · 10−3

eY (0) = 0

erX(0) = 10−3

erY (0) = 0

Inclination vector
hX (0) = 0.313

hY (0) = 0

hrX(0) = 0.315

hrY (0) = 0
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Figure 3. Relative position error magnitude obtained with the control schemes (36)-(38) (blue, dashed) and
(42) (red, solid).
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Figure 4. Magnitude of the control inputsuI(t) provided by (36)-(38) (top) and (42) (bottom).

System (40) has been numerically simulated withd = dr = 0 for a time interval of approximately
6 days (corresponding to 86 orbital revolutions), using thecontrol schemes (36)-(38) and (42). The
magnitude‖y(t)‖ of the relative position error, resulting from the simulation, is reported in Fig.3.
Both controllers are able to keep the inter-satellite distance below1 km, for all t > t̄, with t̄ = 5.5
days. In Fig.4, it can be seen that the maximum magnitude of the control input (42) is about70
times higher than that of the inputuI corresponding to (36)-(38), which explains the two different
transient behaviours in Fig.3. Notice that, due to the nonlinear contribution between brackets in
(42), it has not been possible to scale the amplitude of the control signal down to the desired level
(1 mm/s2), despite our best effort to tune the control gainsKp andKv. In this respect, the proposed
design procedure is clearly more flexible, as expected.

The true longitude tracking error̃ψ1(t) obtained with the control scheme (36)-(38) is depicted
in Fig. 5. Such angle turns out to be very small even for large initial spacecraft separations. The
three-dimensional profile of the trajectory of the chaser relative to the target is shown in Fig.6 for
the two controllers (note the different axis scale).
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Figure 5. True longitude tracking error̃ψ1, obtained with the control scheme (36)-(38).
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Figure 6. Relative trajectoryy(t) provided by the control laws (36)-(38) (left) and (42) (right), with the initial
conditiony(0) (circled).

A qualitative assessment of the robustness of the control law (36)-(38) with respect to exogenous
disturbances and parametric uncertainties has been also carried out. To this aim, the disturbance
termsd and dr in (40) have been specified so as to model the effect of the J2-harmonic of the
Earth’s gravity field, which is the dominant environmental disturbance in the considered scenario.
Moreover, actuator scale factor and alignment errors have been included in the simulation model,
by replacing the control commandu (see Fig.2) with a corrupted inputu of the form

u(t) = α

[

R(ǫ) 02×1

01×2 1

]

u(t), (43)

whereα andǫ denote the scale factor and alignment errors, respectively. Figure7 depicts the closed-
loop system response obtained for different values ofα ∈ [0.9, 1.1] and ǫ ∈ [−0.1, 0.1] rad (the
considered parametric intervals are in line with the typical uncertainties affecting the spacecraft
actuation mechanism). It can be observed that the tracking error asymptotically converges to zero,
for all parameter values in the specified range. This suggests an appreciable robustness of the design
with respect to both disturbances and parametric uncertainties.
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Figure 7. Relative position error magnitude obtained with the input u in (43), with α ∈ [0.9, 1.1] and
ǫ ∈ [−0.1, 0.1].

5. CONCLUSIONS

This paper has studied the rendezvous control problem for a formation of two spacecraft orbiting
about a central body. The problem is cast as that of tracking the modified equinoctial elements of
a target spacecraft moving along an unperturbed closed orbit. A class of globally asymptotically
stabilizing feedback control laws has been derived for thisproblem. They enable an actively
controlled chaser spacecraft to approach and eventually dock the target. The results of a numerical
case study demonstrate that the control system performanceis adequate for practical implementation
with low-thrust actuators. A systematic method for exploiting the proposed controller class for
performance optimization is the subject of ongoing research. Robustness analysis with respect to
disturbances and parametric uncertainties is another topic deserving further investigation.
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