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Introduction

In recent years, all the major spacecraft manufacturers have presented development pro-
grams for innovative satellite platforms based on electric propulsion (EP), motivated by
the high fuel efficiency of this technology. In particular, it has been demonstrated that the
application of EP for orbit raising and station-keeping (SK) operations enables significant
propellant mass savings, and therefore reduced satellite launch and servicing costs, com-
pared to traditional chemical propulsion. Electric propulsion technologies have also been
proposed for precise attitude control, as an alternative to momentum exchange devices.
The potential benefits of EP in this application area are an increased system reliability and a
higher pointing stability, as it allows to remove rotating and vibrating parts from the attitude
control subsystem.

With respect to chemical propulsion, EP systems can deliver a much smaller thrust. Con-
sequently, they are required to operate steadily for long time periods. Moreover, unlike
momentum exchange devices, EP-based reaction control systems must be operated in on/off
mode, and restrictions on the duration and number of switching cycles have to be taken into
account. One important implication of these aspects is that the conventional approach to
spacecraft operation, relying on large delta-v impulses for orbit control, and proportional
control torques for attitude stabilization, can no longer be used. Instead, efficient guid-
ance, navigation and control (GNC) techniques, accounting for the peculiarities of the EP
technology, have to be devised.

The contribution of the thesis in this context is threefold. First, a control law is derived
for autonomous station-keeping of low Earth orbiting spacecraft, by suitably adopting or-
bital element feedback methods to deal with the presence of atmospheric drag, and the lack
of radial thrust. Then, the rendezvous and docking problem is considered. By exploiting a
low complexity parametrization of the control sequence, an explicit model predictive con-
trol (MPC) scheme is derived, able to enforce the constraints required for safe maneuvering,
without incurring an excessive computational cost. Finally, the problem of maintaining the
attitude of a spacecraft aligned to a reference orientation, with minimum fuel consumption
and minimum switching frequency of the actuators, is studied. Two solutions are presented
for this problem. An event-based control law, extending the scalar fuel/switch-optimal solu-
tion to the multivariable case, and an MPC scheme, based on the real-time optimization of
the actuator switching cycles, as well as the overall fuel consumption.



The application of the proposed control techniques, within an autonomous guidance,
navigation and control system, is demonstrated on a realistic simulation environment, in-
cluding state-of-the-art mathematical models of the attitude and orbital perturbations.

Thesis organization

The thesis is organized as follows.

In Chapter 1, several emerging applications of EP technologies are discussed, with par-
ticular emphasis on the most common classes of Earth-orbiting spacecraft. An overview
of the challenges that need to be faced in the development of efficient control techniques
tailored to the considered applications is provided, along with a summary of the way such
problems are addressed in the literature and in this thesis.

In Chapter 2, some fundamental astrodynamic concepts are recalled, and an accurate
mathematical model describing the translational and rotational motion of the spacecraft,
as well as the most relevant orbital and attitude perturbations, is presented. This model
provides a testbed for validating all the techniques proposed in the thesis.

In Chapter 3, the problem of maintaining a desired low altitude orbit, and that of per-
forming autonomous rendezvous and docking, are addressed for spacecraft with low-thrust
propulsion. A hybrid continuous/impulsive control law, able to keep the spacecraft close
to the reference orbit, without the need for radial thrust, is derived for the first problem.
An explicit MPC scheme, based on a polynomial approximation of the control sequence, is
developed for the second one.

In Chapter 4, the problem of maintaining the attitude of a spacecraft aligned to a given
orientation, while minimizing both the propellant consumption and the on/off switching
frequency of the actuators, in the presence of persisting disturbances, is studied. The clas-
sical single-axis solution is extended to the coupled multivariable case, and an event-based
feedback control law is derived to steer the attitude of the spacecraft towards the provided
multivariable solution. An MPC scheme, based on real-time optimization of the fuel and
switching costs, is also presented, which can be applied to more general system dynamics.

In Chapter 5, an orbit determination filter, an attitude determination filter and a relative
navigation filter, based on extended Kalman filtering (EKF) techniques, are developed, in
order to assess the performance of the proposed control techniques within a closed-loop
GNC system.

In Chapter 6, the results of numerical simulations are reported and analyzed to evaluate
the performance of the proposed control techniques, and the applicability of the considered
EP technologies to different types of space missions.

In Chapter 7, the main contributions of this thesis are summarized and discussed, and
future directions of research are outlined.
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Chapter 1

Electric Propulsion Challenges

Electric propulsion represents nowadays a solid established technology which can provide
benefits over a large number of spacecraft missions and enable new challenging applica-
tions. An EP system is a set of devices arranged so as to convert electrical power from the
spacecraft power system into kinetic energy of a propellant jet engine exhaust. This can
be accomplished by using different types of engine architectures. Operation can be steady
or pulsed; the propellant can be a noble gas or even a solid; gas acceleration can be elec-
trothermal, electrostatic or electromagnetic. Of the many proposed architectures, the one
having reached a considerable level of maturity can be classified as: resistojets, arcjets,
Hall thrusters (HET), ion engines, pulsed plasma thrusters (PPT), field-effect electrostatic
propulsion (FEEP), colloidal ion thrusters, and magnetoplasmadynamic thrusters, see e.g.
[93]. The common paradigm of all these architectures is to provide a higher specific im-
pulse, i.e. a higher exhaust speed and therefore an increased fuel efficiency, when compared
to conventional chemical engines. This is especially relevant because, for a given amount of
propellant, the fuel efficiency ultimately dictates the lifetime and the capability of a space
mission. On the other hand, the thrust generated by EP systems is usually much weaker
than that of chemical engines, due to the limited power level that can be supplied to accel-
erate the propellant. Consequently, EP systems are required to operate continuously for a
significant period of the overall mission time.

The design of guidance, navigation and control schemes for spacecraft driven by low-
thrust EP systems is complicated by the fact that the relatively simple impulsive control
schemes available for high-thrust chemical systems can no longer be applied. Instead, a
continuous thrusting strategy, accounting for the peculiarities of the actuators, is required,
which often poses a difficult design challenge. In fact, analytical or approximate solutions
to low-thrust problems exist only for some special applications, but the general continuous-
thrust problem requires full numerical integration of each initial condition and thrust profile,
as well as the consideration of input amplitude constraints. For this reason, during the last
few years a considerable research effort has been directed towards the development of low-
thrust GNC techniques, with particular focus on two fundamental aspects: the open-loop
optimization of low-thrust trajectories, see e.g. [10, 26], and the derivation of closed-loop
control laws, see e.g. [75, 85, 87]. In this thesis, the interest lies mainly on the second
aspect. More specifically, the attitude and orbit control problems will be addressed for some
representative classes of Earth orbit missions that could greatly benefit from the application
of an EP system, within an autonomous GNC scheme.
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1.1 Electric propulsion applications

In this section, several emerging applications the EP technology are discussed, with particu-
lar emphasis on the most common classes of space missions, i.e. low Earth orbit, formation
flying and geostationary missions.

1.1.1 Low Earth orbit missions

While the use of EP technologies for station-keeping and orbit transfer of commercial geo-
stationary satellites and deep space missions is widely discussed in the literature (e.g. [90,
91, 103, 105, 114]), relatively few studies have been proposed for low Earth orbit (LEO)
missions. Nevertheless, the capability of EP to compensate for atmospheric drag effects
over several thousands of hours, together with the reduced propellant mass consumption,
allows for accurate LEO station-keeping operations over sufficiently long duration missions,
as opposed to traditional chemical technologies. In this regard, the GOCE mission repre-
sents a breakthrough in space technology [21, 100]. Some recent studies have been focused
on drag free spacecraft operations [12, 44]. Besides these challenging scientific missions,
there are other classes of LEO missions that have a potential commercial interest, like Earth
observation by means of small and cheap satellites. In [42], for instance, it is shown that
high resolution Earth imaging can be achieved, by using small optical instruments, from
altitudes of about 300 km and below. Moreover, recent ESA studies on remote sensing ap-
plications have clearly demonstrated that operating an EP system on a LEO orbit can give
a net advantage in terms of both reduced launch mass and enhanced payload performance
[25].

Miniaturized HET thrusters are particularly well-suited for LEO station-keeping when
compared to other classes of EP devices, thanks to the lower input power required. For a
given amount of available power, the thrust produced is nearly two times the one of gridded
ion thrusters and about four times the one provided by FEEP thrusters [116]. For this
reason, HET technologies enable a reduced orbit altitude for the benefit of low-budget Earth
observation missions, which could find a mass-market e.g. in cartographic applications. In
addition to HET, different types of low-power EP technologies, such as resistojet thrusters,
can be considered as a secondary propulsion system to counteract LEO perturbations other
than drag, in order to trade-off the thrust efficiency with the limitations imposed by the
spacecraft mass and available power [51, 102].

Besides the choice of a specific thruster architecture, it is worth remarking that maintain-
ing a given low Earth orbit traditionally requires frequent, ground-based control actions, in
order to compensate for atmospheric drag and other disturbing forces. For small, low cost
satellites, ground-in-the-loop control can be a dominant element of both cost and risk [73].
The combined use of EP technologies and autonomous GNC techniques provides an effec-
tive way to address this issue. In particular, the application of a suitable EP system allows
for significant savings of propellant mass and a consequent increase of the spacecraft life-
time. On the other hand, autonomous station-keeping provides reduced operational costs,
as demonstrated by the UoSat-12 [45], Demeter [78] and PRISMA [31] missions.
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1.1.2 Formation flying missions

Spacecraft formation flying is an enabling technology for many present and future space mis-
sions. Examples include technology demonstrators like PRISMA [54] and PROBA-3 [127],
the space interferometer DARWIN [46], the Mars sample return scientific mission [95], and
on-orbit servicing projects such as the Automated Transfer Vehicle [106] or the orbital life
extension vehicle SMART-OLEV [68]. In most current applications, active control of the for-
mation is achieved by using cold-gas thrusters, which represent the simplest type of chemical
propulsion. This type of thruster technology, however, is affected by a very low specific im-
pulse and by constraints on the minimum impulse capability, which limit both the number
of formation keeping/reconfiguration maneuvers that can be performed and the achievable
control accuracy.

Another application of recent interest is represented by formation flying of picosatellite
class spacecraft that follow the cubesat standard [48, 92]. This standard limits single-unit
(1U) cubesats to 1.5 kg and a 10 cm cube, and three-unit (3U) cubesats to 4 kg and a 30 cm
x 10 cm x 10 cm envelope. Despite their limited size, the increasing capabilities of cubesats,
together with the relatively inexpensive development and flight costs, create the opportunity
for these spacecraft to serve as a low-cost and reliable access to space for companies and
universities. Cubesat specifications does not currently allow for integration of high-pressure
tanks onboard the spacecraft due to the risk of rupture or misfire. Therefore, propulsion
technologies other than cold-gas thrusters may be required for orbit control of future cubesat
formations.

Motivated by the problems outlined above, EP technologies, such as FEEP and PPT
thrusters, have been considered as a possible alternative to cold-gas systems for spacecraft
formation flying [39, 110]. In terms of flight readiness, however, few EP systems are cur-
rently available. This is especially true for cubesat spacecraft, due to the severe volume,
power and mass constraints imposed to these platforms. This thesis addresses the suitability
of a miniaturized PPT called PPTCUP, which is very close to being flight qualified, having
recently completed one million shots in a life testing campaign [24]. Using a set of typical
requirements for rendezvous and docking operations, the applicability of a cluster of these
thrusters is investigated from a control perspective, i.e. whether the thrusters can meet the
control requirements, given the constraints on controllability, mass, number of engines and
their location. Notice that the very low thrust level delivered by PPT engines leads to severe
limitations in the performance achievable by the control system. Therefore, a constrained
control design is required, where both input and state constraints have to be enforced.

1.1.3 Geostationary missions

Spacecraft systems using geostationary orbit (GEO) have a high commercial and strategic
value, thanks to the ability to provide continuous coverage over a wide geographical area.
The vast majority of communication satellites and an increasing number of Earth observa-
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tion missions are in fact designed to operate in GEO, see e.g. [32, 74]. The recent growth of
satellite communication services has imposed severe restrictions on the size and the number
of free GEO locations. At the same time, many scientific organizations have suffered from
budget limitations. As a consequence, commercial platforms with shared communications
and observation payloads have received considerable interest, providing a consistent, de-
pendable and affordable access to space [3, 125]. In order to meet the mission requirements
imposed by multiple payloads, satellite operators are demanded to constantly upgrade the
performance of their systems.

All-electric spacecraft seems to be one of the most promising concepts to enable high
performance GEO missions at a substantially decreased cost compared to conventional plat-
forms. This is achieved through the considerable reduction of spacecraft mass and size
allowed by the use of high efficiency electric propulsion systems for orbit raising and SK op-
erations [43, 55]. Several solutions, however, are still under investigation to provide precise
attitude control of all-electric spacecraft, as required for operation of advanced communi-
cations and Earth observation payloads. Momentum exchange devices, such as ball-bearing
reaction wheels and control moment gyros, are by far the most commonly used actuators.
Their main advantage is that a minimum amount of fuel is needed to counteract attitude
perturbations, in particular when momentum dumping is conveniently performed during
SK maneuvers, using EP thrusters [9]. Nevertheless, micro-vibrations associated with wheel
unbalance, zero-rate crossing and friction instabilities represent serious drawbacks of these
systems, especially for applications that require high pointing accuracy. In addition, momen-
tum exchange devices tend to be costly, massive, and require a large amount of power. As an
attempt to solve some of these issues, a wheel-less EP-based attitude control system (ACS)
has been proposed in [77] for the Geo-Oculus mission. A solar pressure attitude control
concept has been successfully experimented on a class of GEO satellites, but there exist sev-
eral practical implementation problems to be solved prior to a large-scale application of this
advanced technique [138]. The potential application of teflon PPT has been investigated
in [70], and later demonstrated in space by the NASA mission EO-1 [143].

Reaction control systems based on xenon thrusters, sharing a common propellant bus
with the primary EP system, represent another viable solution, that could be beneficial to
reduce development complexity and costs of all-electric spacecraft [102]. Cold-gas and
electrothermal microthrusters, with thrust levels scaled down to the millinewton range, are
particularly well suited for precise attitude control, providing very small impulse bits and
a minimal excitation of the spacecraft flexible modes. While the poor fuel efficiency of
cold-gas systems restricts their use to operational environment where the delta-v budget
is considerably low, the foreseen availability of very high temperature resistojet and hol-
low cathode technologies, providing a substantial increase of the thruster specific impulse,
raises the possibility of replacing existing momentum exchange devices with simple, reli-
able and relatively inexpensive electrothermal microtrusters [23, 53, 80]. However, these
thrusters are typically operated in on/off mode, and restrictions on the duration and number
of thruster firings have to be accounted for in the design of the attitude control scheme.
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1.2 EP-based spacecraft control techniques

Having discussed the benefit of EP technologies for some representative classes of space
missions, this section gives an overview of the challenges that need to be faced in order to
develop efficient control techniques tailored to these applications, and briefly describes the
contribution of this thesis.

1.2.1 Autonomous station-keeping

Station-keeping refers to the process of controlling a spacecraft so as to maintain the nominal
orbit. In general, SK can be either ground-based, which means that a sequence of control
commands is transmitted from the ground segment to the spacecraft, or autonomous, which
indicates that the command is evaluated onboard the spacecraft. For high-performance
spacecraft, ground-in-the-loop orbit control can be the dominant factor of both mission cost
and risk, requiring frequent ground commands to be uplinked to the spacecraft. Conversely,
autonomous SK can provide reduced mission costs as well as increased reliability, thanks
to the possibility of executing the corrective actions in real time. In particular, the orbit
becomes fully predictable so that the position of the spacecraft at all future times is known
in advance within the accuracy of the control system.

Motivated by these advantages, autonomous SK systems have been developed since the
early 90’s [30, 73], and their potential application to spacecraft constellations has been in-
vestigated in terms of absolute orbit control of each vehicle in the formation [136]. However,
these systems are based on traditional impulsive control schemes, which are not directly ap-
plicable to low-thrust problems, mainly because in such problems the magnitude of the
orbital perturbations can approach the thrust level delivered by the propulsion system, as in
the case of small EP-based LEO missions.

Up to now, relatively few studies have been focused on developing autonomous SK strate-
gies for low-thrust spacecraft. Nevertheless, the theoretical framework for solving such type
of problems is already well-established in the formation flying literature. More specifically,
continuous control laws based on orbital element feedback [58, 120] provide an effective
way to evaluate the thrust command to EP-based orbit maintenance systems. In fact, the
SK problem can be recast as the problem of tracking the orbital elements of a virtual space-
craft [29, 50], and therefore it is not conceptually different from the rendezvous problem,
for which the above-mentioned orbital element control laws have been originally developed.
The orbit of the virtual spacecraft, however, is affected only by the Earth’s gravitational field,
so that non-conservative perturbations have to be considered in the design. In particular,
atmospheric drag can have a significant impact on the achievable control performance for
LEO missions. In such applications, the design of a real-time control scheme can be quite
challenging, due to the difficulty in obtaining a reliable estimate of the atmospheric density.

Another important requirement for autonomous SK is the availability of an autonomous
navigation system, providing absolute position and velocity information. For autonomous
navigation in LEO, a GPS receiver, coupled with an orbit determination filter, represents a
viable solution [73].
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In this thesis, a GNC system is proposed for autonomous SK of LEO spacecraft driven
by low-thrust propulsion. A simple control law is derived in Section 3.2, by suitably adopt-
ing orbital element feedback methods to account for the large amount of atmospheric drag
acting on the spacecraft. The navigation solution is based on an EKF that estimates the posi-
tion and velocity of the spacecraft from GPS measurements, as described in Section 5.1. The
simulation of a LEO mission is discussed in Section 6.1, to validate the proposed GNC solu-
tion and evaluate the performance of a propulsion system consisting of HET and resistojet
thrusters.

1.2.2 Low-thrust rendezvous and docking

The development of guidance and control techniques for spacecraft formation flying is the
subject of significant research efforts, due to the key role of such problems in many present
and future space missions. Of particular interest in this field is the optimization of low-
thrust rendezvous and docking trajectories, motivated by the application of miniaturized
or high-efficiency propulsion technologies [57, 97]. When two or more spacecraft in a
formation are required to operate in close proximity, these trajectories must be safe with
respect to collisions and other possible anomalies [17]. This generally leads to complex
trajectory optimization problems, subject to both thrust magnitude and path constraints.
Due to the increasing level of autonomy of future space applications, it is critical to efficiently
compute the solution to these problems and to design a control system tracking the resulting
trajectories [135, 140]. To this purpose, efficient guidance and control algorithms have to
be devised.

Two approaches can be considered for the rendezvous and docking trajectory tracking
problem. The first method separates the vehicle guidance and control problems into an
outer guidance loop and an inner control loop. The inner loop computes the control com-
mand required to follow the trajectories generated by the outer loop. A wide variety of
optimization techniques, based on either direct or indirect methods, have been proposed in
the literature for the guidance loop, see e.g. [40, 59, 61, 112, 115], whereas robust feedback
techniques are typically used in the control loop [49, 109, 126]. The second method uses
an integrated approach wherein both the guidance and control problems are solved simul-
taneously. In this case, modern control design techniques, such as receding horizon control
[16, 33, 62, 83, 111], can be applied.

Cascade control architectures can be advantageous over integrated approaches because
much of the complexity of the tracking problem is transferred into the guidance problem,
which is usually solved at a slower sampling rate compared to that of the control loop. For
the same reason, however, cascade control may be less indicated for applications with a
high degree of autonomy, for which the guidance and control problem should ideally be
solved in real-time. In order to tackle this issue, a number of different approaches have
been investigated, see e.g. [11, 79, 83].
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In particular, model predictive control, based on computing the optimal control sequence
over a finite number of future sampling instances, under a receding horizon strategy, is be-
coming increasingly attractive, thanks to the possibility of systematically handling thrust
magnitude and path constraints in the design. An effective MPC design requires the con-
trol horizon to be comparable with the settling time of the controlled process. Therefore, a
long control horizon is needed to guarantee adequate performance in low-thrust problems.
During close proximity operations, this is coupled with the requirement to use a small dis-
cretization step, to avoid the violation of path constraints between discrete time samples. In
such cases, the main drawback of MPC is the need to solve a trajectory optimization prob-
lem with a large number of decision variables at each time sample, which may make this
method too computationally intensive to be implemented on-line on low-power spacecraft
processors [118]. A possible way to overcome this last difficulty is to parameterize the con-
trol sequence with a set of Laguerre functions, where the poles of these functions are used
to reflect the time scale of the control system, see e.g. [133]. In this setting, which belongs
to the family of direct optimization methods, the number of decision variables can be made
significantly smaller than the length of the control horizon, while path constraints can still
be enforced over a sufficiently fine discretization grid.

Another important factor, which may prevent the implementation of the MPC design
methods discussed so far, is the requirement to embed a control solver with guaranteed
runtime on board the spacecraft. This requirement can be avoided by solving the control
problem explicitly, i.e. by finding off-line a feedback control law defined on a partition of
the state space [8]. However, this is generally feasible only for low-dimensional problems,
due to the worst-case exponential growth of the number of regions in the partition with
the length of the control sequence [134]. An alternative approach, based on the explicit
solution of a quadratically constrained linear quadratic regulator (LQR) problem, has been
recently developed in [79] for a rendezvous problem with thrust constraints, which confirms
the need for computationally efficient feedback control methods specifically tailored to the
considered application area.

The contribution of the thesis in this context is twofold. First, a low-complexity MPC
scheme is developed for the low-thrust rendezvous and docking problem. In the derivation
of the control algorithm, the trajectory optimization problem is reformulated by parame-
terizing the control sequence by a set of Laguerre functions, which allows a long control
horizon to be considered without using a large number of decision variables. Then, an
explicit solution is derived by exploiting this new algorithm in combination with multi-
parametric programming techniques, to enable a trade-off between feasibility and perfor-
mance of the guidance and control system. Since the proposed approach does not require
online optimization, it is especially suitable for implementation on board small spacecraft
with limited computational capabilities. The derivation of the control scheme is discussed in
Section 3.3. A navigation scheme based on the EKF, which can be used in combination with
the proposed control law, within an autonomous GNC scheme, is presented in Section 5.3. A
detailed simulation-based assessment of the performance achievable under the considered
design is given in Section 6.2 for a cubesat mission with electric propulsion, in comparison
to standard MPC and linear quadratic regulator (LQR) techniques.
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1.2.3 Precise attitude control

Pointing accuracy is a key requirement in communication satellites and Earth observation
missions. Attitude control systems must guarantee tracking of the reference attitude, while
accounting for mission performance indexes such as fuel consumption and actuator wear.
Electric propulsion systems, with thrust levels scaled down to the millinewton range, are
particularly well suited for precise attitude control. Because these systems work by expelling
propellant mass, the minimization of the fuel consumption is the primary requirement in the
design of an EP-based attitude control system. Moreover, thrusters are commonly operated
in on/off mode, so that restrictions on the minimum duration of their firings (the so-called
minimum impulse bit) and the number of on/off cycles which can be delivered have to be
taken into account. In particular, the number of switching cycles has an impact on both
the lifetime of the thrusters, due to valve wear, and on the specific impulse performance,
which is affected by transient effects on the actuator dynamics. Thus, in order to maximize
the performance and the reliability of a thruster control system, attitude control maneuvers
should ideally be made by few long firings rather than several short firings [19, 28]. Such
considerations typically lead to oscillating behaviors of the closed-loop system [104]. Since
the amplitude of these oscillations is inversely proportional to the thruster switching fre-
quency, achieving precise attitude control while retaining an acceptable number of on/off
cycles is a challenging problem.

A wide variety of control techniques have been proposed in the literature for three-
axis attitude stabilization with on on/off actuators, including phase plane methods [35],
LQR with pulse-width pulse-frequency modulators (PWPF) [1, 76], mixed-integer linear
programming (MILP) control allocation [36], and MPC [63, 132]. While many of these
techniques do explicitly account for fuel minimization and impulse duration constraints,
they do not address the problem of minimizing the actuator switching frequency, which has
a key impact on the performance of the thrusters and hence of the mission itself.

A suitable approach consists in the formulation of an optimal control problem, in which
both the number of input transitions and the control accuracy requirements are explicitly
taken into account, so that to minimize the average switching frequency of the actuators,
while guaranteeing adequate pointing performance. For the single-axis attitude stabilization
problem, with the error dynamics approximated by a perturbed double integrator [35], the
limit cycle corresponding to the fuel/switch-optimal solution has been fully characterised
since long time [38, 60, 69]. However, for multivariable systems, the minimum switching
control problem with state constraints becomes very challenging even for simple dynamics,
such as the case of coupled double integrators. In fact, the optimization methods available
for generic switching systems [14, 113, 123, 141] turn out to be of limited help, due to
the combinatorial explosion of the number of state-space modes with the dimension of the
system, and the presence of a nonconvex objective function. This has motivated a thorough
theoretical analysis of the minimum switching problem for systems of coupled integrators
of arbitrary dimension, subject to a constant disturbance term and controlled by on/off
actuators.
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In this thesis, the minimum switching control problem is addressed from a novel per-
spective, based on the extension to the multivariable case of the classical fuel/switch-optimal
limit cycle solution [52]. The first contribution is a suboptimal solution providing an analytic
upper bound to the minimum switching frequency required to satisfy given (polytopic) state
constraints. By exploiting the further degrees of freedom provided by the relative phases of
the periodic trajectories of each state variable along the limit cycle, a less conservative upper
bound is found, through the numerical solution of a static optimization problem. Moreover,
a feedback control law is derived, in order to track the trajectories corresponding to the so-
lutions previously obtained. The last contribution is an MPC scheme based on the real-time
optimization of the number of thruster firings and the fuel consumption [81, 82], which can
be applied, to a certain extent, to a more general class of dynamical systems.

The derivation of the attitude control laws is described in Chapter 4. A relative nav-
igation EKF, which provides the attitude, angular rate, and disturbance torque estimates
required by these control laws, is presented in Section 5.2. The applicability of the MPC
scheme, in combination with a reaction control system based on electrothermal microthrust-
ers, is demonstrated through numerical simulations of an all-electric GEO mission in Sec-
tion 6.3. The performance of the proposed MPC and minimum switching control laws is
compared in Section 6.4.






Chapter 2

Spacecraft Dynamic Model

In this chapter, some fundamental astrodynamic concepts are recalled and an accurate
model describing the translational and rotational motion of the spacecraft is presented. The
material of this chapter is mainly based on [131] and [137].

2.1 Reference frames and notation

Three reference frames are used in this thesis. The first one is the Earth Centered Inertial
(ECI) frame. The other two coordinate systems are moving frames centered at the spacecraft
center of mass. The so called Local-Vertical/Local-Horizontal (IVLH) frame is oriented so
that its Z axis is aligned with the nadir vector, the Y axis is normal to the orbital plane and
the X axis completes an orthogonal right handed frame. The X, Y and Z directions of the
LVLH frame are referred to as the along-track, cross-track and radial directions respectively,
and the motion along the XY or X Z planes is referred as the horizonal-plane or in-plane
motion, respectively. The spacecraft body frame is aligned with the the principal axes of
inertia of the spacecraft. The three reference frames are illustrated in Fig. 2.1

Vector and matrices are denoted by boldface symbols, where 1 denotes a vector whose
components are all equal to 1, the identity matrix is denoted by I and the symbol 0 denotes
the null matrix or vector of compatible dimensions. Diag and blockdiag denote the diago-
nal and block-diagonal matrices, the symbol @™ A denotes a block-diagonal matrix with n
diagonal blocks, each equal to A and || x|, || x| and || x || indicate the 1-norm, 2-norm
and oo-norm of a vector x € R”, respectively. The orientation of reference frame B with
respect to a reference frame A is represented by the rotation matrix R 45 or, equivalently,
by the quaternion qap = [¢as5, q’ﬁ B ]T, where ¢4 and Gap are termed the scalar part and
the vector part of the quaternion. The cross-product operation is denoted by the symbol x,
and the quaternion multiplication operation o is defined by

T =

_ _ dBCc4AB — 4pc4AB

qac = A4BC °4AB = = _ ~ -
¢BcAdAB +qaBdBc —ABC X dAB

which corresponds to the sequence of rotations R 4c = Rpc Rap. Small rotations are rep-

resented in quaternion form as q(60) = [1, §07/2]7, where 66 is a three-dimensional ro-

tation vector, and the skew-symmetric matrix constructed from a vector w is denoted by

w*.
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Figure 2.1: Reference frames.

2.2 Orbit dynamics

In the ECI frame, the force g exerted by a spherical central body with uniform density on
a spacecraft of mass m located at position r relative to the central body is given by the
Newton’s law of universal gravitation

m
g = —% r, (2.1)

where r = [r,,r,,7.]" indicates the spacecraft position vector, r = ||r||, and s is the gravita-
tional parameter of the central body. Ideally, g is the only force acting on the spacecraft and
the point-mass dynamics are easily obtained from (2.1) as

r=-——r. (2.2)

The solution to (2.2) is the so-called Keplerian orbit, which takes the form of an ellipse or
a conic section, depending on the initial condition r(¢y), r(¢y). In this thesis, the focus is
on Earth orbiting spacecraft, i.e. spacecraft moving along elliptic orbits. The trajectory of
a spacecraft in an elliptic Keplerian orbit can be parameterized by a vector of six orbital
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elements o = [a, e,%,Q,w,v]” through the following mapping

pr /(2 = r||£]%)

a

e = el

1 = arccos (h./|hl)

Q K1 arccos (ng/| n|| +(1—ky)m 2.3)
T .

ol o)

(i
v = m;,»arccos( > (1 — k3)m,
llel|r

W = Ko arccos

where
h = [hy, hy, )]t = rxi
n = [nzvnyanzT = [anvl]TXh
€ = [em,ey,ez]T = (&xh)/p—r/r

and k1 = sgn(n,), ko = sgn(e,), k3 = sgn(r’ ) ensure that the corresponding angles are
expressed in the correct quadrant. The inverse mapping is given by

r=Ro; psin(v
0 2.4
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r=Ror | (e+cos(v))\/1u/p |
0

where p = a(1 — ¢?) and the matrix Ro; represents the orientation of the orbital plane in
the inertial frame, given by
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where ¢ and s denote the cosine and sine functions, respectively.

Orbital elements are particularly useful because they provide a clear physical insight of
the orbital motion. The semi-major axis a and eccentricity e define the shape of the orbit.
The inclination i, longitude of the ascending node €2 and argument of perigee w define the
orientation of the orbital plane with respect to the inertial frame. The true anomaly v defines
the instantaneous angle at which the spacecraft is located relative to the ascending node po-
sition, as illustrated in Fig. 2.2. Notice that the mapping (2.3) is singular for circular (e = 0)
and equatorial (¢ = 0) orbits. These singularities, however, can be avoided by adopting
an alternative parametrization. For near-circular, inclined orbits, the eccentricity and argu-

ment of perigee are commonly replaced by the eccentricity vector e = [e cos(w), e sin(w)]”.
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Figure 2.2: Classical orbital elements.

Moreover the true anomaly v is replaced by the true argument of latitude

T

v, = w + v = sgn(r,)arccos (ﬁ) + (1 —sgn(ry))m, (2.5)

resulting in the nonsingular representation o = [a,e”,i,Q,14]7. For equatorial orbits, the
globally nonsingular representation provided by the equinoctial elements o = [a, e’ i’ \;]*
is commonly used. In this parametrization, the quantity i= [tan(i/2)sin(2), tan(i/2)cos(£2)]
is termed the inclination vector, the eccentricity vector is defined as e = [e cos(w), e sin(w)]?,
where

T

w = w + = sgn(e,)arccos(e, /| €]|) + (1 — sgn(ey)),

and the true longitude )\; is given by
A =w + Q + v = sgn(ry)arccos(r, /1) + (1 — sgn(ry))r. (2.6)

Notice that v in (2.3), v; in (2.5) and \; in (2.6) are time-varying parameters (360 deg per
orbit), whereas the other elements are constants for Keplerian orbits.

Keplerian orbits represent a fairly simple approximation of the real motion of a space-
craft, due to the presence of a number of perturbations which are not modeled by (2.2).
In order to produce a more accurate description of the spacecraft motion, one possibility is
to use the so-called Cowell’s formulation, which consists of directly adding the perturbing
accelerations to (2.2). Then,

i=—Lrta, 2.7)

where a, denotes the perturbing acceleration. In this thesis, the acceleration vector a,
accounts for the most significant environmental disturbances a. and the acceleration due to
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the thrust a; produced by the spacecraft propulsion system. The enviromental disturbances
include the aspherical gravity acceleration a,, the atmospheric drag acceleration a4, the
luni-solar gravity acceleration a;, and the solar radiation pressure acceleration a,. The
perturbing term is therefore given by

a,=a.+a, =a,+ag+a +a,+a. (2.8)

It is worth remarking that the mapping (2.3) (and the ones presented thereafter) can
still be applied to the trajectories resulting from the solution of (2.7), but in this case all the
orbital elements are time-varying. More precisely, the variation of the orbital elements with
respect to their ideal counterpart is related to the type and the size of the perturbation. As
an example, the qualitative impact of the environmental disturbance on the orbital elements
is reported in Table 2.1 for spacecraft in low Earth orbits (LEO) [72]. In this table, secular
means “which progressively increases with time”, whereas periodic perturbations have pe-
riods that range from days to years. The effects of the perturbations are referred as “small”
if their magnitude is below 1-2 km per month, “moderate” if their magnitude is in the or-
der of 10 km per month and “big” if their magnitude is above few kilometers per day. The
mathematical model of the perturbing accelerations is described next.

Secular Periodic

Big  Small | Moderate Small
Aspherical Earth  Q,w - e i, Q,w
Atmosperic drag  a,e i - Q,w
Luni-solar effects - - - a, e, i, Q,w

Table 2.1: Impact of environmental disturbances on orbit elements in LEO.

2.2.1 Aspherical gravity acceleration

The gravitational field of the Earth can be decomposed into the ideal contribution (2.1) and
an additional contribution due to the asphericity of the central body, which is typically the
dominant source of perturbation in LEO. According to the joint gravity model (JGM) devel-
oped by NASA, OT, OSU, CNES [41], the disturbance acceleration due to the asphericity of
the Earth can be expressed as the gradient of the following spherical potential function

Mmax N

Ur,p, ) = K 1+ (E) P, (sin Chm cos(mA) + Spm sin(mA ) ,
w)r( > 2 (7)) Ponlointe)) (Com costim) (m)
where R is the Earth radius, ¢ and A are the spacecraft geocentric latitude and its East
longitude, nmax is the maximum degree of the expansion, C,,,,, and S,,,, are spherical har-
monic coefficients, and P,,,(sin ) indicates the associated Legendre function of degree n
and order m. The spacecraft geocentric latitude and its longitude are given by

© = atan2(r,, \Vry2 +1,2)

A =a—ay =atan2(ry,r;) — oy,

2.9)
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where « is the spacecraft right ascension and « is the right ascension of the Greenwich
meridian. The associated Legendre functions are given by

(COS((,O))m’ 871,+7r1, . .,
2rp!  O(sin(p))ntm (sin®(p) — )™

Pam (sin(p)) =

The coefficients of the harmonics are referred as zonal if m = 0, sectorial if m = n or tesseral
if n > m # 0. They are commonly disclosed in the normalized form C,,,,,, Snm, given by

Con = | G Rt .

- [ (n+m)!

Snm - (2n T 1)l<:(n — m)| :| Snm;

where k = 1if m = 0 and k = 2 otherwise.
The cartesian components of the disturbance acceleration can be expressed in the ECI
frame as

0 — (la_U_Tiza_U)r _(#8_[])7“
T \ror 2 /T%—l-rg op )" r24+r2ox )’

(18U T2 8U)ry+( 1 8U>rx (2.10)

;E_rz /r%+r§8_ga rg+r§§
10U V7R au

a: = (=5 )= —=— 5= ),
r Or r dp

S
<
|

resulting in the disturbance vector a, = [a,, ay, a.]”. The partial derivatives of the potential
U with respect to r, ¢ and A are given by

%_g - _T%Z Z (g) (n + 1) Py (sin ) (Crip cos(mA) + Sy sin(mA))
n=2m=0

n

= A () (Pumealing) - mtan(e) P sin )

)
(Crim cos(mA) + Spm sin(mA))

n=2m=0

g_g - % nz:; mz::o (g) M P (Sin @) (Spm cos(mA) — Cpp, sin(m)) .

2.2.2 Atmospheric drag acceleration

For spacecraft orbiting at low altitudes, atmospheric drag can be a significant perturbation,
causing a spiraling motion towards the Earth that shortens the orbital lifetime. Atmospheric
drag at orbital altitudes is caused by the collisions of gas molecules with the satellite. Since
energy is lost in this process due to friction, drag represents a nonconservative perturbation.
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In most space applications, it is reasonable to neglect the aerodynamic lift and consider the
cross-sectional area of the spacecraft for the calculation of the atmospheric drag disturbance.
In this case, the disturbance acceleration can be modeled as

A
ag=—=Cpp, - V(v (2.11)

where p, expresses the atmospheric density, Cp is the drag coefficient, A denotes the cross-
sectional area and v indicates the velocity of the spacecraft relative to the atmosphere. The
vector v is given by

V=TI—Wwg XT,

where wg = [0,0,ws]” is the vector constructed from the Earth’s rotation rate we, about the
Z axis of the ECI frame.

An accurate atmospheric model is essential for the calculation of the disturbance ac-
celeration due to drag. In this thesis, the atmospheric density value is obtained from the
Jacchia-71 model [67], which accounts for several factors including solar and geomagnetic
activity, seasonal variations, and orbit altitude. The model relies on a polynomial approxi-
mation of the density profile based on numeric tables obtained from empirical observations,
and complies with the ECSS standard for space environment [41]. A typical atmospheric
density profile is reported as a function of the orbit altitude in Fig. 2.3.
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Figure 2.3: Typical atmospheric density profile.
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2.2.3 Luni-solar acceleration

The perturbation effects due to the gravity of the Sun and the Moon, which are commonly
referred as third-body perturbations, become noticeable when the effect of atmospheric
drag begins to diminish (say above 800 km). Because the cause of third-body perturbations
is the gravitational attraction, the resulting forces are conservative. In order to evaluate the
luni-solar disturbance acceleration, one needs to know the position of the the Sun and the
Moon in the ECI frame. In this thesis, the Moon position vector r¢ and the Sun position
vector ry; are obtained through precise ephemerides. Modeling the Sun and the Moon as
point-masses, the luni-disturbance acceleration turns out to be [2]

I'{} I'{} I'Q@ r@
a=p e — >+u < - > (2.12)
f’(uww el T\ roe B T P

where py¢ and p¢ are the gravitational parameters of the Sun and the Moon, respectively,
and the vectors from the spacecraft to the Sun r_;; and to the Moon r,,¢ are given by

I'Q{} = I'{}—I‘

I'Q@ = r@ —r.

The geometry of the problem is illustrated in Fig. 2.4.

Moon

Figure 2.4: Geometry of third-body perturbations.

2.2.4 Solar radiation pressure acceleration

The solar radiation pressure is caused by the absorption or the reflection of photons emitted
by the Sun on the spacecraft surface. Like drag, solar radiation pressure is a nonconservative
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perturbation, but becomes pronounced at high orbit altitudes. The average value of the
pressure generated on a perfectly absorbing planar surface is approximately given by [56]

P.=456-10"%N/m?. (2.13)

As long as a point-mass model of the spacecraft is concerned, it is usually reasonable to
adopt the so-called Cannonball model, where the shape of the satellite is assumed to be a
sphere. Under this assumption, the solar radiation disturbance acceleration, which depends
on the mass and the properties of the surface exposed to the radiation, is given by

A r

a, = —s, P, Cp = —%_ (2.14)

m ezl
where C§ is the solar radiation pressure coefficient of the spacecraft and s, is the shadow
function, which accounts for the eclipse effects that occur when the Earth passes between
the spacecraft and the Sun. The shadow function is defined as follows

s =0 Satellite in umbra
s € (0,1) Satellite in penumbra (2.15)
sy =1 Satellite exposed to radiation.

For a detailed derivation of this function, see e.g. [99].

2.2.5 Thrust acceleration

The thrust generated by the spacecraft propulsion system can be considered as a perturba-
tion which may quickly produce a significant effect on the orbit. In general, this perturbation
may include disturbance accelerations a, due to firing of the attitude control thrusters and
control accelerations a; generated by the orbit control subsystem. For a spacecraft with
multiple engines ¢ =, 1...,n, the acceleration due to thrust is given by

n
a;=a, +a; = bi (2.16)
2
where p; indicates the thrust vector of the i-th engine, expressed in the ECI frame, and the
contribution a,, is in general much smaller than a;.
According to the Newton’s third law of motion, thrust is produced by expelling stored
propellant mass. The relation between the magnitude of the thrust vector and the rate of
change of the propellant mass for a single thruster is given by

where I,,, and r; denote the specific impulse and the mass flow rate of engine i, respec-
tively, and go indicates the standard gravity. Considering the contributions of all engines,
the rate of change of the spacecraft mass is obtained from (2.17) as

= Ipall (2.18)
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The control acceleration a; is sometimes approximated by the impulsive velocity change
n
Avy; = Ar = Z Ar;, (2.19)
i=1

where Ar; denotes the velocity change produced by the i-th engine. For short impulse
durations (say less than few minutes), this approach introduces a small error in the solution
to (2.8). When an impulsive maneuver occur, the orbit dynamics (2.7) are updated as
follows

vl = vV + Avy, (2.20)

where the superscripts | and 1 indicate the time instants immediately preceding and follow-
ing the maneuver, respectively, and v = r. Moreover, (2.18) is updated according to the
well-know Tsiolkovsky rocket equation

mt = mt exp <— 3 ”A“”> . (2.21)
=1

gOIspj,

2.3 Attitude dynamics

In this thesis, the orientation of the spacecraft body frame with respect to the ECI frame
is represented by the attitude quaternion q;p or, equivalently, by the rotation matrix R;p,
while the angular rate of the body frame with respect to ECI frame, expressed in the body
frame, is denoted by w.

In order to describe the evolution of the spacecraft attitude, the time derivatives of both
the quaternion and the angular velocity of the spacecraft are required. The time derivative
of the quaternion q;p is defined as

(2.22)

where At is a vanishing time interval. From the definition of the quaternion product opera-
tion, one has that
arp(At +1t) =q(60) oqrp(t), (2.23)

where 0 = 60(At) and the small rotation q(06) is given by

0
q(00) = 0 + [ 50,2 ] . (2.24)
Substituting (2.24) into (2.23), one obtains
(50) +1]0 (2.25)
[e] = — o] . .
q qrB = dIB 5| s arB

Using (2.23) and (2.25) in (2.22), and observing that

Iim — =w
At—0 At

3



2.3. Attitude dynamics 25

one gets the final expression for the quaternion kinematic equation

. . 1 /110 1({0
s = lim 5 (5 { 5 ] °qu> =3 { w ] °drn: (2.26)

The angular rate dynamics are derived under the following assumptions: (i) the space-
craft can be modeled as rigid body and (ii) the spacecraft does not contain rotating parts,
such as momentum exchange devices. Whereas the first one is rather common in the attitude
control literature, the second one follows from the electric propulsion design considered in
this thesis, in which torques are generated by using thrust. Under these assumptions, the
time derivative of the spacecraft angular momentum corresponds to the external torque
acting on the spacecraft, according to the Euler’s second law

’l'J[ =77, (227)

where v; and 7; denote the angular momentum and the external torque, respectively, in
the ECI frame. Equation (2.27) can be expressed in the spacecraft body frame as

V=T —wXw, (2.28)

where v = Ry vy, 7 = Ryp7;. The relation between the angular momentum and the
spacecraft angular rate is simply given by

v=1Iyw, (2.29)

where I, indicates the spacecraft inertia matrix, expressed in the body frame. For a rigid
body with variable mass, the time derivative of (2.29) is

=Ty w+Iyw. (2.30)

Combining (2.28)-(2.30) and rearranging terms, the angular rate dynamics can be ex-
pressed as

o=T (r-wxTyw-iyw). (2.31)

In this thesis, the external torque vector 7 accounts for the most significative environ-
mental disturbances, as well as the torque generated by the spacecraft propulsion system.
The environmental disturbances include the gravity gradient torque 74, the aerodynamic
torque T4, the solar radiation pressure torque 7, and the magnetic torque 7,,. The torque
produced by the propulsion system is denoted by 7;. Therefore, the vector 7 is given by

T=Tg+Tqg+Tr+Tm+Te, (2.32)

where all contributions are expressed in the spacecraft body frame. Some qualitative aspects
of the environmental disturbance components are reported in Table 2.2. Their mathematical
model is reported next, along with the one of the reaction torque from propulsive maneu-
vers.
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Source Dependence on orbit radius Dominant
Aerodynamic e kT Below ~ 500 km
Gravity gradient 1/r® ~ 500 — 35000 km

Magnetic 1/r® ~ 500 — 35000 km
Solar radiation Independent Above 36000 km

Table 2.2: Effects of environmental torques

2.3.1 Gravity gradient torque

Every nonsymmetric object of finite dimension orbiting the Earth is subject to a gravity
gradient torque caused by the variation of the gravitational force along the object; there
would be no gravity gradient in a uniform gravity field. A number of mathematical models
are available in the literature to describe this phenomenon, ranging from simple models
where the Earth is assumed to be spherical to more complex models taking into account the
oblateness of the planet. For most applications, it is sufficient to consider a spherical Earth
approximation.

The gravitational force d g; acting on an infinitesimal element of mass dm;, located at
position r; with respect to the Earth’s center, is given by

wdm;
dg; = ——=1i,
[ |

where p is the gravitational parameter of the Earth. The torque due to the force dg;, located
at position r;, with respect to the spacecraft center of mass, is obtained as

dr; =1} x dg;. (2.33)

By integrating (2.33) over the entire spacecraft body and expressing the resulting torque in
the body frame, after some manipulations, one obtains the total gravity gradient contribu-
tion
3
Ty = r—‘; rp x Iyrpl, (2.34)
where rz = R;pr. The gravity gradient torque has the following properties:
e The torque is always orthogonal to the the gravity force;

e The torque is inversely proportional to the cubic distance between the spacecraft and
Earth;

e The torque vanishes for spherically symmetric objects, for which the inertia matrix is
a diagonal matrix with equal entries.

To make an example, the gravity gradient torque acting on a small spacecraft at an orbit
altitude of about 400 km is in the order of 10~° Nm.
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2.3.2 Aerodynamic torque

The aerodynamic torque is often the dominant source of attitude perturbations at orbit al-
titudes below 400 km. The force producing this torque arises from the interaction of the
atmospheric particles with the spacecraft surfaces, where the interaction can be modeled
as a purely elastic collision. Under the assumption that surface the spacecraft can be de-
composed into a set of planar surfaces, the aerodynamic torque contribution 7; of a surface
element A;, with outward unit normal 1i; and a lever arm r;, is well approximated by

1
Ti=riX—g Cp pa (05 vE)vVE Aj, (2.35)

where v = R;pv indicates the velocity of the spacecraft relative to the atmosphere, ex-
pressed in the body frame, and the remaining quantities are defined in Section 2.2.2. The
lever arm r; in (2.35) corresponds to the position of the center of pressure of the i-th surface
with respect to the spacecraft center of mass, as illustrated in Fig. 2.5. For planar surfaces
with no shadowing effects, the center of pressure is located at the geometric center of the
surface.

Notice that a contribution 7; is produced only when the unit normal of the i-th surface
element satisfies ;7 vz > 0, because the second term in (2.35), denoting the aerodynamic
force, must point in the opposite direction of the velocity vector vg by definition. Hence,
the total aerodynamic torque on the spacecraft can be expressed as

ra=Y "1, (2.36)
14

where V. = {i : fifvp > 0}. Moreover, one can define the center of pressure of the
spacecraft as the vector r., satisfying

Iep X mRIBad = Td,

where a, is given by (2.11). In practice, the magnitude of the aerodynamic torque at an
altitude of about 400 km can be in the order of 10~* Nm.

2.3.3 Solar radiation pressure torque

The solar radiation pressure torque is largely independent from the orbit altitude and hence
becomes dominant in high-altitude orbits and interplanetary spaces. The Cannonball model
described in Section 2.2.4 provides a reasonable approximation of the force acting on the
spacecraft center of mass due to the solar radiation. However, it is in general not suitable
for the evaluation of the corresponding torque, because the forces from the interaction of
the solar radiation with the individual surface elements of the spacecraft are not modeled.
A more accurate model is presented next, which can be used for the evaluation of both the
solar radiation force and the resulting torque in most applications.

The force on a surface element can be adequately modeled by considering that the in-
cident radiation can be in part absorbed, in part specularly reflected and in part diffusely
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Figure 2.5: Geometric model for the calculation of the aerodynamic torque.

reflected, depending on the physical properties of the surface. Under the assumption that
the surface of the spacecraft can be decomposed into a set of planar surfaces, the force f2*
due to the portion of radiation which is absorbed on a surface element A;, with outward
unit normal 1, is given by

fiabS = —P,.C, cos(v;)SA;, (2.37)

where P, is given by (2.13), § = R;p(r ¢ /[Ir 2 ||) is the unit vector from the spacecraft to
the Sun, ~; = arccos(n; - ) is the angle between this vector and the surface unit normal 1i;,
and C,, is the absorption coefficient of the surface. Moreover, the force f[ef due to specular
reflection is given by

£7 = 2P, C, cos®(y;) i A, (2.38)
where C; is the specular reflection coefficient of the surface. Finally, the contribution f{“’f
from diffuse reflection can be expressed as

, 2
fidmf =—-P.Cy (g COS(’W) i + cos(v;) §> Ai, (2.39)

where C, is the diffuse reflection coefficient of the surface. Notice that the absorption,
specular reflection and specular diffusion coefficients must satisfy the physical constraint
C, + Cs+ C4 = 1. The graphical interpretation of these components is reported in Fig. 2.6.

When cos(v;) is negative in (2.37), (2.38) and (2.39), the surface element 4, is not il-
luminated and therefore it is not subject to solar radiation forces. Moreover, the shadow
function s,. in (2.15), modeling the solar eclipse effects, has to be taken into account. Con-
sidering these factors, the total force acting on the spacecraft can be expressed as

fr=s, ) £ £+ £ (2.40)
5
where S = {i : cos(v;) > 0}. The corresponding torque is given by

Tre=s, 3 rix (£ 4 £ 4 £ 0, (2.41)
S
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Figure 2.6: Absorption, specular reflection and diffuse reflection of solar radiation.

where the centre of pressure r; of the i-th surface element is defined in Section 2.3.2.
From (2.40)-(2.41), one can define the center of solar pressure of the spacecraft as the
vector r., satisfying

Tesp X £, = 7.

The torque generated by the solar radiation pressure on a medium-size spacecraft is typically
in the order of 10~¢ Nm.

2.3.4 Magnetic torque

The magnetic disturbance torque, arising from the interaction of the residual magnetic
dipole of the spacecraft with the Earth’s magnetic field, can be the dominant attitude per-
turbation for spacecraft in low Earth orbits. The instantaneous value of the magnetic torque
is given by

Tm =M X b; (242)

where m denotes the total magnetic dipole of the spacecraft and b indicates the geomag-
netic field. According to the international geomagnetic reference field (IGRF) model [6],
the geomagnetic field can be expressed as the gradient of the following spherical potential
function

Mmax T (?’L+1)
V(r,9,\) =R Z Z (g) (Gnm cos(mA) + Hy, Sin(m/\)) P (cos(9)) ,

n=1m=0

where G,,,, and H,,, are the normalized Gauss coefficients of the spherical harmonics,
¥ = 7/2—p, Pym(cos ¢) denotes the Schmidt semi-normalized associated Legendre function
of degree n and order m, and the remaining symbols are defined in Section 2.2.1. Because
the coefficients G,,,,, and H,,, are time varying, they are periodically updated based on data
from space observations.
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The components of the geomagnetic field in the spherical coordinate frame are given by

8‘/ Mmax 7 R (n+2) _ = . D
b= % T g w; (‘) (n+ 1) (Grm co8(mA) + Hy sin(mA)) Pa (cos(9))
1 8V NMmax N R (n+2) _ _ . 8pnm (COS(’&))
b= g = 3 () (Gomeostm) & Hupsingm) e

by = =

—1 0V -1 e R\ _ _
iy W ( ) m (Hnm sin(mA) — Gum cos(m)\)) Py, (cos(1)).
n=1

r
=1 m=0

By using simple coordinate transformations, the geomagnetic field vector can be expressed
in the ECI frame as

(by cos(p) + by sin(p)) sin(a) + by cos(a) | , (2.43)

[ (by cos(¢) + by sin(y)) cos(a) — by sin(a)
br =
(br-sin() — by cos(¢))

where « and ¢ are given by (2.9). The magnetic vector field at an altitude of 300 km is
depicted in Figure 2.7. In order to evaluate the disturbance torque (2.42), the geomagnetic
field vector (2.43) is expressed in the body frame as

b =R;pb;.

For a spacecraft in LEO with magnetic moment of 0.1 At-m?, the magnetic torque is in the
order of 10~° Nm.

North Pole

Magnetic axis

Figure 2.7: Magnetic vector field.
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2.3.5 Reaction torque

Reaction torques are produced by the spacecraft propulsion system whenever the thrust
vector of the engines is not aligned with the spacecraft center of mass. In general, reac-
tion torques may include disturbance torques 7, due to misalignment of the orbit control
thrusters and attitude control torques 7, provided by the reaction control subsystem to ori-
entate the spacecraft. For a spacecraft with multiple enginesi =, 1...,n, the reaction torque

is given by
n

TI=To+ Ty = Zr; X t;, (2.44)
i=1
where r} indicates the position of the i-th engine relative to the spacecraft center of mass
and t; is the corresponding thrust vector.

Because reaction torques are generated by mass-expulsion devices, the rate of change of
the spacecraft mass (2.18) must be taken into account. Moreover, a variable mass implies
a time-varying inertia-matrix. In general, the rate of change of the inertia matrix I, is
difficult to model and represents a minor contribution in (2.30). Therefore, it can be treated
as a small perturbation to be rejected by the attitude control system. Finally, notice that
the reaction torque (2.44) and the thrust acceleration (2.16) are coupled by the following
relationship

In most practical applications, a different set of actuators is employed for orbit and attitude
control, so that the coupling effects are weak and can’t be exploited for control purposes.
Instead, torques due to operation of the orbit control system are treated as perturbations to
be rejected by the attitude control system, and vice versa. For this reason, the attitude and
orbit control problems are addressed separately in the following chapters.






Chapter 3

Autonomous Orbit Control

In this chapter, two orbit control problems are addressed for spacecraft in near-circular
orbits. The first is that of maintaining a desired orbit in the presence of a large amount of
atmospheric drag, as required for autonomous station-keeping of LEO satellites with electric
propulsion. A Lyapunov-based control law, able to keep the spacecraft close to the reference
orbit, without the need for thrust along the radial axis of the IVLH frame, is derived for this
problem.

The second problem is that of autonomous rendezvous and docking between two space-
craft with low-thrust propulsion. In this case, an important requirement is to enforce a
given set of constraints on the input and the state, without incurring an excessive computa-
tional cost. An explicit MPC scheme, based on a polynomial parametrization of the control
sequence, is developed to this purpose.

The material in this chapter is mainly based on [50] and [83].

3.1 Problem setting

Autonomous orbit control techniques aim at controlling the spacecraft position relative to a
given reference trajectory, without ground operator intervention. The orbit control problem
can be cast in terms of relative orbital elements or relative cartesian coordinates, where the
relationship between these two parameterizations has been discussed in Section 2.2. The
former approach is advantageous because the controlled quantities have a clear physical
interpretation. The latter is particularly useful for applications in which constraints on the
relative states between two or more spacecraft are specified in a cartesian reference frame,
see e.g. [30, 144].

3.1.1 Reference trajectory

For orbit control purposes, the reference trajectory can be modeled as the evolution of the
position T and the velocity  of a reference point mass, which is denoted as the target
spacecraft. In the case of Earth orbiting spacecraft, the reference dynamics must be in the
form (2.7), hence

l=1H

0o
- K 7 3.1
e @D

where the reference acceleration a, depends on the specific application in exam. In station-
keeping problems, the reference trajectory can be modeled as the steady state motion of a
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virtual target spacecraft which is affected by the gravitational effect (2.10) only, so that
a, =a, (3.2)

in (3.1), where a, = a,(r) . In fact, for a specific set of initial conditions, the solution to
(3.1)-(3.2) defines a class of orbits which are of practical interest in several missions, includ-
ing sun-synchronous, repeating ground-track, and frozen orbits. Because (3.2) is required
to track these orbits, it is not treated as a disturbance to be rejected by the orbit control
system.

In formation flying applications, the target spacecraft is a real spacecraft and hence it is
affected by all environmental disturbances. In particular, for autonomous rendezvous and
docking, it is typically assumed that the target spacecraft is passive, so that

a,=a, (3.3)

in (3.1), where a, = a.(r). In this case, the reference trajectory is defined by the solution to
(3.1),(3.3).

The mapping (2.3), possibly combined with (2.5)-(2.6), can be used to parameterize
the reference trajectory in terms of orbital elements. Moreover, the initial condition for the
integration of (3.1) is related to the parameters defining the initial orbit by the transforma-
tion (2.4).

3.1.2 Orbit control system

The considered orbit control system can generate thrust only in the along-track and cross-
track directions of the IVLH frame, so that no thrust is available in the radial direction. This
is a desirable configuration for many space applications, because the orbit dynamics can be
controlled by using only along-track and cross-track maneuvers, whereas the use of radial
maneuvers is generally less fuel efficient. Moreover, radial thrust may not be available in
small satellite missions due to mass and power restrictions.

In station-keeping applications, the control system is required to maintain the spacecraft
sufficiently close to the desired orbit, by means of an efficient rejection of the orbital dis-
turbances. In rendezvous and docking applications, the objective of the control system is
to provide a trade-off between the propellant consumption and the maneuver time, while
guaranteeing safe proximity operations.

Hereafter, the acceleration provided by the control system is denoted by a when ex-
pressed in the IVLH frame and by a; in the ECI frame. Similarly, Av expresses an impulsive
velocity change in the IVLH frame and Av; the corresponding quantity in the ECI frame.
The matrix R which expresses the rotation from the ECI to the IVLH frame (see Fig. 2.1)
is defined in (4.1).

3.2 Station-keeping

In this section, the problem of maintaining a given orbit is addressed for a single LEO space-
craft. It is assumed that continuous thrust is available in the along-track direction and that
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the thrust in the cross-track direction can be modeled as an impulsive velocity change of the
form (2.19), resulting in a hybrid continuous/impulsive control scheme. This kind of design
allows a trade-off between the thrust efficiency and the limitations imposed by the satellite
mass and available power. In fact, one can take advantage of high specific impulse, low-
thrust technologies to reduce the propellant consumption required by drag compensation,
which is typically the dominant factor in the LEO delta-v budget, while using high-thrust,
low-power technologies to counteract smaller cross-track perturbations, at the price of a
reduced specific impulse.

Let o and o6 denote the orbital elements corresponding to the solution of (2.7) and (3.1)-
(3.2), respectively, through the mapping (2.3). Moreover, let the tracking error be expressed
as

00 = 0 — 0. (3.4)

Then, the station-keeping control problem can be formalized as follows.

Problem 3.2.1. Find a continuous/impulsive feedback control law

a=[u(do), 0,0]"

(3.5)
Av = [0, Av(do), O]T,

which guarantees that
lim do(t) = 0. (3.6)

t—o0

The control signals a and Av are related to the inputs a; and Avy in (2.16) and (2.20),
respectively, by the relationships a; = R¥, a and Av; = RY, Av.

In the following, an autonomous control law, based on the orbital element parame-
trization, is derived for Problem 3.2.1.

3.2.1 Relative orbital element dynamics

The vast majority of LEO spacecraft operate in near-circular, near-polar orbits and hence the
mapping (2.3), with e and w replaced by the eccentricity vector e = [e cos(w), esin(w)]?, and
v replaced by (2.5), provides a suitable means of expressing the trajectories of the controlled
and the (virtual) target spacecraft, given by the solution of (2.7) and (3.1)-(3.2), in terms
of orbital elements. Then, o = [a, e’ i,Q,1]", 6 = [a,e’i,Q,7]" and

5o = [da, 5e”, 5i, 59, duy) 7.

Recall from Section 2.2 that all the components of jo can be time-varying, due to the pres-
ence of the perturbation terms a,, in (2.7) and a, in (3.1)-(3.2).

Based on Gauss’ variational equations of motion, adapted for near-circular, near-polar
orbits [98], the relative orbital element dynamics can be approximated as

56 =10,0,0,0,0,6n]" +B(a+d), (3.7)
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where on is the relative mean motion, a is the control acceleration, expressed in the IVLH
frame (see Fig. 2.1), and d accounts for nonconservative perturbations acting on the system.
The relative mean motion dn can be expressed as

Sn — \/%_ \/G_E (3.8)

The input matrix B is given by

2a 0 0
2 cos(1) 0 —sin(v;)
a | 2sin(v) 0 cos()
B=,/= 3.
w0 —cos(1) 0 (3.9)
0 —sin(y;) 0
K 0 0

In the considered problem, the term d in (3.7) mainly depends on atmospheric drag, i.e d ~
Rrag, with a4 given by (2.11), while the other environmental disturbances have a minor
impact. Due to the difficulty in obtaining a reliable estimate of the atmospheric density,
drag can be treated as an unknown disturbance to be compensated. If the tracking error
is kept reasonably small, the disturbance due to drag can be approximated by a constant
acceleration in the along-track direction of the form

d=1d, 00", (3.10)

where d < 0.

Finally, note that mean orbital elements can be used in place of the classical orbital
elements in (3.4) and (3.7), so that differential oscillations (with respect to the virtual
spacecraft on the reference orbit) due to short periodic gravitational perturbations are not
perceived as tracking errors. The classical elements can be converted to the corresponding
mean elements by using the Brouwer’s analytical transformation [18]. For additional details,
the reader is referred to [120].

3.2.2 Orbital element feedback

Orbital element feedback is a well established topic in the orbit control literature see e.g. [58,
120]. Most of the proposed solutions, however, demand full actuation, while the orbit
control system considered in Section 3.1.2 can provide thrust only in the along-track and
cross-track directions. Moreover, the effect of atmospheric drag is often neglected. In the
following, an hybrid continuous/impulsive control scheme is derived, by taking into account
the structure of the matrix B and the specific features of the considered problem.

The matrix B in (3.9) can be partitioned as follows

b1 0 c
B=|0 by, 0], (3.11)
0 0 O
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and the equations of motions (3.7) are decomposed into three subsystems. The first sub-
system consists of the dynamics of the the relative orbital elements do; = [da, de’ ]|, with
along-track acceleration u, given by

The second subsystem describes the variation of the orbital elements do, = [d7, €], due to
a sequence of impulsive velocity changes Awv in the cross-track direction, as follows

002 (tr11) = d0a(ty) + ba(tr) Av(ty), (3.13)

where k € N is the index of the elements of the sequences and ¢, is the corresponding time.
The third subsystem is obtained from (3.7)-(3.9) as

din=on= /=~ | (3.14)
a a

The following proposition addresses the stabilization of system (3.12) in the absence of
disturbances (d = 0).

Proposition 3.2.1. The system

5()1 = blu, (315)
together with the control law
u(60) = —bT'K o0, (3.16)
where
1 3 1 1 T
by =2u"2 [ai, a? cos(vy), a? sin(vy)| (3.17)

a > 0, and Ky = diag(K,, Kea, Key) is a positive definite diagonal matrix, is asymptotically
stable.

Proof. The proof, reported in Appendix A, follows from conventional arguments in Lyapunov
stability theory. O

Remark 3.2.1. Notice that by in (3.11) expresses the effectiveness of the input u in controlling
the relative orbital element o1. Hence, blT in (3.16) provides a suitable means of scaling the
magnitude of the input with its effectiveness. Because the magnitude of the input is proportional
to the fuel consumption, the control law (3.16) is known to yield a good fuel efficiency.

The control law (3.16) has to be modified in order to compensate for the steady state
tracking error of the semi-major axis, arising from the disturbance d in (3.12), due to drag.
One possibility is to estimate d by using a suitable filtering scheme and then subtract the
estimate from the control input u. Another option is to introduce an integral term in the
control law, as shown by the following result.

Proposition 3.2.2. Let
u(60) = —bT'K 60, + K12

4 = — Kbl oy,

where K| is a positive gain and z(0) = 0. Then system (3.12), with the control law (3.18), is
asymptotically stable.

(3.18)
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Proof. The proof, reported in Appendix A, is similar to that of Theorem 3.2.1. O

Remark 3.2.2. Observe that the equilibrium of system (3.12),(3.18) is attained for
u = Krz = —d, i.e drag is compensated by the control acceleration, at steady state.

The benefits of this approach over the solution provided by Theorem 3.2.1 are demonstrated
in the following numerical example.

Example 3.2.1. Let a = 6.6 -10° m, d = —4 - 107° m/s? in (3.12), K, = 107% in
(3.16),(3.18), and K; = 10~ 7 in (3.18). The semi-major axis tracking errors, resulting from
the application of the two control laws to (3.12), are reported in Fig. 3.1, for an initial da
of 100 m. It can be clearly seen that the control law (3.18) drives the tracking error to zero,
whereas a steady-state error of approximately —235 m is obtained with the control law (3.16).
The evolution of the parameter z in (3.18) is reported in Fig. 3.2. As expected, this parameter
converges to the value z = —d/Kj.
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Figure 3.2: Parameter z in (3.18).

An impulsive control scheme is derived for the cross-track dynamics (3.13), by taking
advantage of the fact that these are decoupled from the along-track dynamics (3.12).
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Proposition 3.2.3. The control law

Av(do) = %52’ for vy =mn 510)
Av(do) = ﬁsii\/_rﬁt(yl)(m for v =mm+7/2,

where m € Z, drives the trajectory of system (3.13) to the origin in finite-time.

Proof. By letting v, vary in the interval (—m, 7] and applying (3.19) to (3.13), it follows that
(3.13) is steered to the origin in finite-time, by using only two impulses at v;(t;) = —n/2
and 1%} (tg) =0. [l

Remark 3.2.3. From (3.9), it is evident that the efficiency of an cross-track maneuver for di
and 69) adjustments is maximized at v, = mm and v; = mmw + 7 /2, respectively. Therefore, the
control law (3.19) guarantees a good fuel efficiency.

In some applications, small secular perturbations, which are not modeled by (3.7), may
affect the evolution of system (3.13). Moreover, the impulsive velocity changes (3.19) may
not be compatible with the thrust level generated by the propulsion system. In such cases,
an effective approach consists in applying a sequence of impulsive burns of fixed magnitude
Av, atv; = mm or v = mm+m/2, whenever the tracking errors 67 or 62 exceed a predefined
control window [119, 131]. The sequence of burns is stopped when the corresponding
tracking error reaches the opposite side of the control window. Formally, let the control
windows be defined as i, < §i < iy and Qp < dQ < Qp, where the subscripts L and
U denote predefined lower and upper bounds for the tracking errors. Moreover, let the
direction of the perturbations be such that d/dt ¢i < 0 and d/dt 62 < 0, (the reasoning is
the same for d/dt i > 0 or d/dt 62 > 0). Then, if Av, is sufficiently small, (3.19) can be
replaced by

Av,

Av(do) = — for v, =mm once di < iy, until 67 > iy

cos(1) (3.20)
Av(do) = — ,Av” for vy =mm+7/2 once 6Q < Qp, until §Q > Q.

sin(1;)

Finally, an effective method for correcting the argument of latitude error §z; is to treat a
as an input to system (3.14) [101]. In particular, the following proposition holds.

Proposition 3.2.4. Let

1 —2/3
a = (—KV 5l/l + W ) . (3.21)

1
in (3.14). Then, tlim oy =0, for0 < K, < —.
—00 5

Ta

Proof. The proof is reported in Appendix A. O
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Remark 3.2.4. In order to steer a to the to the solution prescribed by (3.21), one possibility is
to set
S0y = [dd’, se’ )T (3.22)

in (3.18), where §a’ = a — a' and

-2/3
a = (—K,, oV + =i ) . (3.23)
Notice that the time constant of system (3.12), with the control law (3.18),(3.22), can be made
much smaller than the time constant of system (3.14), by suitably choosing the gains Ky, K;
and K,,. This leads to a — o’ thanks to the application of (3.18),(3.22), and consequently to
dv; — 0 by Proposition 3.2.4. Moreover, when v, vanishes in (3.23), the parameter o’ matches
the reference value a. Consequently, one has that o’ — @ and §o; — 0, as desired.

Summing up the application of the control laws (3.18)-(3.20), together with (3.22)-
(3.23) provides a solution to Problem 3.2.1 for spacecraft in near circular orbits, for which
the error dynamics can be approximated by (3.7). The considered solution requires the
absolute position and velocity of the spacecraft to be estimated in real-time. To this aim, a
suitable EKF scheme is presented in Section 5.1. In addition, the reference trajectory must be
available on-board the spacecraft. A formal proof of the stability of the overall system goes
beyond the scope of this thesis. The effectiveness of the proposed design is demonstrated
through numerical simulations in Section 6.1.

3.3 Rendezvous and docking

The problem of performing autonomous rendezvous and docking between two spacecraft
in formation is conceptually similar to that of tracking a virtual spacecraft, treated in the
previous section. In both cases, the objective is to drive to zero the relative position and
velocity of the spacecraft. However, the control accuracies required by these applications
have different orders of magnitude. Moreover, a number of safety requirements have to
be taken into account for spacecraft operating in close proximity. Consider a target-chaser
spacecraft formation, in which the chaser is required to maintain visual contact and to safely
approach the target, based on relative position and velocity data.

Let the target trajectory tracking error be expressed in the IVLH frame centered at the
target, according to

R[L (I‘ - f‘) +ry

R]L(I"—I;')—GJZR[L(I‘—T) ’
where r, i and T, r correspond to the solution of (2.7) and (3.1),(3.3), respectively, R,
expresses the rotation between the inertial frame and the IVLH frame (the overbar denotes
that R, refers to the target trajectory), w;, denotes the target IVLH rate vector and ry =
[ra,0,0], with r4 > 0, represents the desired docking position (assuming that the docking
port is located behind the target).

Let X be an admissible subset of the state space defined by the following requirements [17].

(3.24)

X =
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e Collision avoidance: the spacecraft must not collide with each other.

e Line-of-Sight (LoS): the relative motion must be confined within a certain region of
the state space (the so-called docking cone) to maintain visual contact.

These can be represented by the path constraints x € X, where

X = {x c a1 <0, y/a3 + a2 < (zq — x1) tan(6/2) }, (3.25)

the angle 6 specifies the size of the docking cone, and z; > 0 is a predefined constant offset.
The admissible input set U is bounded by the maximum thrust u,, that can be delivered

by the propulsion system, as
U={u: |ullec <unm }. (3.26)

Since radial thrust is not available, u = [u1, u2]” in (3.26), where u; and uy denote the
along-track and cross-track thrust components provided by the orbit control system.

The control objective is to minimize a combination of the fuel consumption and the
maneuver time t,, = ty — to. Moreover, it is desired to reduce as much as possible the
magnitude and/or the amount of thruster firings directed towards the target during the
final phase of the approach. Then, a relevant cost function is [88]

ty ty tf
J(x,u) = /t lu(®)||: dt + (1 — a)/t 1dt+ B/t e(t) dt, (3.27)

where a € [0, 1] is a relative weight on the fuel consumption (first term) and the maneu-
ver time (second term), and 5 >0 is a weight on the function ¢, which accounts for plume
impingement requirements. Due to the particular form of (3.25), the thruster plume im-
pingement function can be taken as [112]

. (3.28)
0 otherwise,

(t) = {ul(t) if |1 (t)] < za
where z.; > 0 is a predefined tolerance and w; (¢) is the negative part of the along-track
thrust, defined by

_ lu(t)] if w(t) <O
uy (t) = .
0 otherwise.
Notice that (3.28) accounts for thruster firings directed towards the target (i.e. in order
to produce a force in the negative along-track direction, the thruster which points in the
positive along-track direction, towards the target, must be fired) when the two spacecraft
are close to each other.
Then, the considered control problem takes the following form.

Problem 3.3.1. Find a control law

u = [ug(x), ug(x)]” (3.29)
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which solves the optimal control problem

min J(x,u)

s.t. (2.7),(2.16)

ar = Rj [u’/m, 0]

(3.30)
(3.1),(3.3),(3.24)
xeX,uel
X(tf) =0,

where the final time ty is free and m is the mass of the spacecraft.

In order to solve Problem 3.3.1, a feedback guidance and control scheme, with the ability
to handle thrust magnitude and path constraints, can be considered. In particular, model
predictive control has been recognized as an attractive solution. Nevertheless, the capabil-
ity of spacecraft onboard processors to handle the real-time computational load that this
technique can generate still needs to be fully validated, especially for low-thrust problems,
where a long control horizon is required.

Motivated by this issue, a low-complexity MPC design is proposed in the following for the
low-thrust rendezvous and docking problem. First, the trajectory optimization problem is
reformulated by parameterizing the control sequence by a set of Laguerre functions, which
allows a long control horizon to be considered without using a large number of decision vari-
ables. Then, an explicit MPC scheme is derived by exploiting the Laguerre parametrization,
in combination with multi-parametric programming techniques. Because the proposed de-
sign does not require on-line optimization, it is especially suitable for implementation on
simple hardware.

3.3.1 Hill-Clohessy-Wiltshire equations

In order to design a low-complexity control scheme, the use of a linearized model is prefer-
able over the full nonlinear model (2.7),(3.1),(3.3). For many applications, the following
assumptions hold: (i) the orbit is nearly circular (ii) the distance between the chaser and
the target is small compared to the orbit radius and (iii) the two spacecraft have similar
physical properties.

Differentiating (3.24) and linearizing the resulting expression, under the above assump-
tions, yields the celebrated Hill-Clohessy-Wiltshire (HCW) equations [22]

T = 20 T3+ U1/m
To = —@% xro + uz/m (3.31)
T3 = 3@%%3—2@L$1,

where x = [z1, 2, xg,:'cl,:tg,:tg]T contains the along-track, cross-track and radial compo-
nents of the relative position and velocity vectors, u = [u;, uQ]T is the control thrust of the
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form (3.29), expressed in the LVLH frame (see Fig. 2.1) and w,, = [0, —wy,, 0]. Using (3.31),
the tracking error dynamics can be represented in the state space form

x=A.x+B.u, (3.32)
with ) )
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
A=l 0 0 0 2wp (3.33)
0 —@% 0 0 0 0
|0 0 3w —2w, 0 0 |
and
T
B, — 000 1/m 0 0 (3.34)

000 0 1/m 0

For the considered problem, the variation of the spacecraft mass m is negligible and there-
fore one can assume that B is constant. Finally, notice that the controllability matrix

Cu = [Be, AB, ..., AIB,] (3.35)

has full rank and therefore system (3.32) is controllable with the input u.

3.3.2 Optimal control problem

Problem 3.3.1 does not admit an analytic solution and must be solved numerically. Due
to the limited processing power of spacecraft onboard computers, the implementation of
a feedback control scheme based on the on-line solution to (3.30) may not be feasible.
Therefore, (3.30) is relaxed by making use of the linearized model (3.32) in place of the
nonlinear model (2.7),(3.1),(3.3), and approximating (3.27) with a quadratic cost function
of the form

tf
Je(x,u) = IIWfX(tf)H2+/ (IQex()* + [Reu(®)|*) dt, (3.36)

to
where Wy, Q. and R, are square weighting matrices and R, is nonsingular. In the above
equation, t is fixed and the weight W ¢ on the terminal state relaxes the terminal constraint
x(ty) = 0 in (3.30). Notice that the non-convex plume impingement function (3.28) is not
included in (3.36). Nevertheless, the choice of a quadratic performance index ensures that
[lu(t)|| is kept small close to the steady state, so that the plume impingement effect is limited.
Moreover, the set (3.25) is approximated by a polyhedral set X of the form

X={x:Cx<d}, (3.37)
where
1 0 00O 0
k1 1 0000 1
C= k?l -1 00 0O 5 d= 1 kl Td, (338)
kk 0 1 000 1
kk 0 -1 00 0 1
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and k; = tan(#/2)/v/2. The set (3.37)-(3.38) describes the interior of a pyramid inscribed
within the LoS cone, as illustrated in Fig. 3.3.

Xvin
Yivin
Z1viH
Figure 3.3: LoS cone approximation.
By using (3.36)-(3.38), Problem 3.3.1 is reformulated as follows.
Problem 3.3.2. Find a control law
u = [u(x), uz(x)]" (3.39)

which solves the optimal control problem

min  J(x,u)

s.t.  (3.31)

_ (3.40)
x e X

uel.

Model predictive control is a potential design method for Problem 3.3.2, as it allows
to derive a feedback control law under the receding horizon strategy [94]. According to
this approach, the solution to (3.40) is computed over a finite number of future sampling
instances, and the first element of the optimal control sequence is applied to the plant, at
each time step. To avoid numerically solving the optimal control problem, at each time
step, an explicit MPC law can be derived, by solving off-line a suitable multi-parametric
quadratic program. However, it is known that the complexity of an explicit solution can
grow exponentially with length of the control sequence [134]. This problem could well
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arise in the considered application, because the control problem must be defined over a
long horizon, to account for the limited control authority, and discretized with a relatively
small step, to avoid the violation of path constraints between discrete time samples. A
possible workaround consist in parameterizing the input sequence with a set of Laguerre
functions (see e.g. [130, 133]), as described next.

Remark 3.3.1. Notice that a control law solving Problem 3.3.1 ensures finite-time convergence
to the desired docking position, whereas one solving Problem 3.3.2, under the receding horizon
principle, can only guarantee asymptotic tracking. In the considered application, this is a
minor issue, because a dedicated docking mechanism is activated as soon as the two spacecraft
get sufficiently close.

3.3.3 Laguerre MPC

For digital implementation of the control law, system (3.32) is discretized with a sampling
period T using a zero-order hold, resulting in the discrete state space model

x(k+1) = Ax(k) + Bu(k), (3.41)

where

Ts
A=e*T B= (/ efeT dT> B.. (3.42)
0

The MPC design requires the predicted future states generated from the state space
model (3.41) at the current sampling instant, based on the current state and the computed
input sequence. Let u(k + ¢) denote the input to be computed ¢ sampling steps ahead from
the current sampling instant k. The basic idea underpinning Laguerre MPC (LMPC) is to
parameterize u(k + i) using a set of discrete Laguerre polynomials, according to

S e M VA | I SR

where 1;(7) is the Laguerre function vector and 7, which represents the new decision vec-
tor, is termed the coefficient vector. The Laguerre function vector satisfies the difference
equation

aj 0 0
b; a; 0
Li+1) = | —a;b, b; o0 0 |LO) (3.44)
: 0
I —a;-v"_Q —aévj_ bj ... bj aj |
with
1 (0) = \/b—j[1 —aj @} —d} ... (-1)N e} " (3.45)

where b; = (1— a?), Nj is the number of terms in the expansion and a; € [0, 1] is the scaling
factor of the Laguerre network for input u;. Both a; and N, are fixed design parameters.
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For a; = 0 in (3.44)-(3.45), the input sequence (3.43) takes the form

[Uj(k), . ,’U,j(k? + Nj)]T =,
T (3.46)

Notice from (3.46) that, when a; = 0, optimizing with respect to n; corresponds to opti-
mize with respect to the input sequence u;(k), ..., u;(k + Nj), as it is done in the standard
MPC design with control horizon N;. Choosing a; > 0 allows a trade-off between the time
scale of the input sequence, i.e. le(i) n; exponentially decays to zero instead of being iden-
tically zero for ¢ > N;, and the accuracy of its pointwise approximation. This is particularly
relevant when the number of decision variables N; is selected to be small to keep the com-
putation feasible and then the truncated parametrization given by (3.46) cannot adequately
describe the future input trajectory.

By substituting (3.43) into (3.41), the state dynamics N, sampling instants ahead of &
can be expressed as

x(k+1]k)=Ax(k)+BL(0)n

x(k+2[k)=A?x(k)+(ABL(0)+BL(1))n
: (3.47)

x(k+Np|k)=Apr(k)+(ANP—lBL(0)+- ~++BL(N,—1))n.

where the prediction horizon N, is unrelated to the number of entries in ), which is equal
to (N1 + Ns). The prediction model can be written in the compact form

x=Fx(k)+®n, (3.48)
where
x = [ xT(k+10k) xT(k+2lk) ... x"(k+N,Jk) ]
F=[@A)7 A)T .. A7 ]’ (3.49)
BL(0) 0 0
ABL(0) BL(1) - 0
P = ) )
. . . 0
ANTIBL(0) AMT?BL(1) --- BL(N, —1)

Moreover, the cost function (3.36) is discretized to give
Ja=x"Qx+n"Rn, (3.50)

where Q= blockdiag(&™*'T,Q! Q., Qy) is a 6N, x 6N, matrix, Q; = T,W; W/ and
R =T, MZ (@M RIR.)M, is a (N;+ Ny) x (N;+ N,) matrix, with

M, = [L7(0) L7(1) ... LT(N,—1)]". (3.51)
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Hence, by substituting (3.48) into (3.50), the MPC problem can be equivalently rewritten
as
min nTQn +2x7(k)® 'y + xT(k)FTQFx(k), (3.52)
n

where Q = (87 Q ®+R) and ¥ = & Q F. In the absence of constraints, the global minimum
of problem (3.52) is attained (assuming the required matrix inverse exists) at

n (k) = -Q ' Ux(k). (3.53)

Under the receding horizon principle, only the first element of the optimal input sequence
is applied to the plant and hence

u(k) = L(0) n* (k). (3.54)

Proposition 3.3.1. System (3.41), with the control law (3.53)-(3.54), is asymptotically stable
provided that the eigenvalues of

A -BL0)Q ')
lie inside the unit circle.

Input and state constraints are included in the MPC design to account for the operating
range of the actuators and to ensure safe proximity operations. Unlike the unconstrained
case, the constrained MPC problem does not admit an analytic solution and must be solved
numerically. The input amplitude constraints u € U in (3.26) can be rewritten as

—’u,]w]l S L(z)n S ]l’u,]w 1= 1,...,Np. (355)

To reduce the sensitivity of the control system to output noise, one possibility is to introduce
a slack variable s; > 0, which bounds the variation of u(k) with respect to u(k — 1), and
penalize it in the cost function. The value of s; is obtained from the linear inequality

—511< LO)p—u(k—1) <1sq, (3.56)

where u(k — 1) is treated as an additional input to the optimization problem.
The path constraints x € X, with X given by (3.37), are softened according to

Cx(k+ilk) <lss+d  i=1,...,Np, (3.57)

where s > 0 is a slack variable which relaxes (3.37) in the co-norm sense, to ensure fea-
sibility in the presence of observation noise. Notice that (3.55) and (3.57) can be enforced
on predefined subsets of samples M, € {1, ... ,N, — 1} and M, C {1,...,N,}, respec-
tively, rather than on all samples, in order to trade-off the performance and the complexity
of control algorithm.

Let ne = [n? s1 s9]” = [n T be the augmented decision vector and x¢ (k) =
[x”(k) u”(k —1)]" the augmented initial condition for the constrained optimization prob-
lem. Then, the constraints (3.55)-(3.57) can be written in the compact form

]T T ST]

M, 0 O Tuns 0 0
“M, 0 0| [q Tuny 0 0 (h)

LO) -1 0 | |si|<| o |—-| o —I w(k—1)] (3.58)
~L(0) =1 0 | |ss 0 0 I

CN(P 0-—1 dN CNF 0
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where F and @ are given by (3.49), Cy = ®"*C, and dy = [d”...d”]". The constrained
LMPC problem of the form (3.52) to be solved is

¥ 0

. Q 0

Nc

s.t. (3.58),

where R, = diag(R1, R2), with Ry, Ry > 0, is a 2 x 2 matrix which penalizes the slack
vector s, and the term x’(k)F’QFx(k) in (3.52), which is constant, has been dropped.
Problem (3.59) is a quadratic program (QP) with linear constraints, which can be efficiently
solved using convex optimization algorithms. By applying the solution to (3.59) to the plant
via (3.54), at each sampling instant, a feedback control scheme is obtained. The following
proposition provides a condition that guarantees the stability of the design.

Proposition 3.3.2. Let x(k + Np|k) = 0 be an additional constraint, R, = diag(0,0) and
s9 = 0in (3.58)-(3.59). Moreover, assume that problem (3.59) is feasible at each time sample.
Then, the control law (3.54),(3.59) guarantees that, for system (3.41),

lim x(k) = 0. (3.60)
k—o0
Proof. The proof is reported in Appendix A. O

Remark 3.3.2. The stabilizing terminal constraint x(k + N,|k) = 0 is rarely used in practice,
as it limits the domain of attraction of the controller. Instead, the combination of a suitable
terminal weight Q and a terminal set Xy, such that x(k+ Np|k) € Xy, can be considered [96].
For sufficiently long prediction and control horizons, the constraint x(k 4+ N,|k) € X does not
need to be included explicitly in the optimal control problem, being automatically satisfied for
every initial state x(k) in a given compact set. In addition, state constraints are often softened
(s2 > 0, Ry > 0) in practical implementations, to guarantee global feasibility.

Finally, observe that the proposed MPC design can be readily extended to satellites in
elliptic orbits and formations with large inter-spacecraft separations, by simply adopting a
different set of linearized equations in place of the HCW equations (3.31). For elliptic orbits,
the Tschauner-Hempel equations can be used [129]. For spacecraft which are far from each
other, and therefore subject to differential gravitational perturbations, a suitable model is
provided by the Schweighart-Sedwick equations [122].

3.3.4 Explicit LMPC

Even if the optimization problem (3.59) can be solved efficiently using existing QP algo-
rithms, the required computations may not be feasible onboard small spacecraft. Moreover,
the running time of QP solvers is in general not guaranteed, whereas the reliability of the
control system is a primary concern for space applications. In this respect, one possibility is
to use explicit MPC.
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Before proceeding, it is useful to rewrite the constrained LMPC problem in terms of the
simplified notation
min  ntHne +2x5 Gne
e (3.61)
s.t. Mn, <D+ Exc,

where the matrices H, G, M, D and E are obtained from (3.58) and (3.59). By defining
the new variable

z=nc+H G x¢, (3.62)

(3.61) can be transformed by completing squares into the equivalent multi-parametric qua-
dratic program

min zHz
z (3.63)
st. Mz<D+ (E+MH'GT)xc,

where x¢, which appears only in the right hand side of this equation, is treated as a param-
eter vector.

Problem (3.63) can be solved explicitly for all the parameters x¢ inside a given poly-
hedral set X, as described, for example, in [8]. Hence, the explicit LMPC problem to be
solved is

Problem 3.3.3.

min zHz
z

st. Mz<D+(E+MH 'G")xc (3.64)

Xc EXC.

For the proposed MPC design, it is beneficial to consider a region of additional size
d; > 0 with respect to the set defined by (3.37), together with the maximum excursion of
the control. The resulting set P is given by

P={xc: Cx<d+d,, veU}, (3.65)

where xc = [x?, 47]*. Since the set P is not closed, auxiliary bounds are specified for the

along-track position and the velocity parameters using

|xa] < —kowq 4+ e, |ws| < —kox1 +e, |xg] < —kowq + ¢, (3.67)

where x ), is the maximum feasible along-track separation between the two spacecraft, ¢ > 0
is a specified tolerance and k- is a positive slope. The linear dependence of the velocity
bounds (3.67) on z; is justified by collision avoidance requirements and by the linear de-
pendence of the LoS constraints on x;. The inequalities (3.66)-(3.67) define the set

P, ={x: Cux<d,}, (3.68)
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where ) ) ) )
-1 000 00 T
ke 00 1 0 O €
ke 0 0—-1 0 O €
Co=|k 0001 0|, d,= € (3.69)
ko 0 0 0-1 0 €
ko 00 0 0 1 €
| k2 00 0 0—1 | e
Combining (3.65)-(3.68), the parameter space takes the final form
XC = {XC :xc €PN Pa}. (3.70)

The solution z*(x¢) to Problem 3.3.3 is a piece-wise affine linear function defined over
a polyhedral partition of X.. Hence, the control law

u(xc) = [L(O) O} (z*(xc) — H_lGTxc) , (3.71)

which is obtained from (3.54) and (3.62), observing that n = [n” s]%, is piece-wise affine
and can be stored in the following look-up table form

uxe) =Knxc+gn if H,oxc <b, m=1,..., Nmp, (3.72)

where the polyhedral sets {H,,xc < b,,}, m = 1,..., Nppc are the partition of Xc, Nmpe
indicates the number of regions in the partition, and K,,, H,,, g, b, are found from the
solution to (3.64). In this thesis, the Multi-Parametric Toolbox [64] is employed to solve
Problem 3.3.3.

The on-line evaluation of u(xc(k)) consist of locating the state space region and hence
the look-up table entry that contains the pre-computed control law for a given x¢ (k) =
[x”(k), u”'(k —1)]7, through the solution of a set-membership problem. Hence, the on-line
computational load is limited to a piece-wise affine function evaluation.

Remark 3.3.3. The asymptotic stability of an explicit control law can be checked a posteriori,
see e.g. [117], for cases in which the a priori stability of the design is not guaranteed.

It can be concluded that the control law (3.72) provides an approximate solution to Prob-
lem 3.3.2 (and hence to Problem 3.3.1) for a suitable tuning of the parameters Q., Qy, R.
in (3.36), a;, N; in (3.44)-(3.45) and R, in (3.59). To enable the implementation of the
control law, within an autonomous GNC scheme, the position and velocity of the chaser with
respect to the target must be known. To this aim, a relative navigation EKF is presented in
Section 5.3, which provides an estimate of the vector x(k). A detailed simulation-based
assessment of the performance achievable under this design is given in Section 6.2, in com-
parison to standard MPC (i.e., without Laguerre parametrization of the input signal, see
(3.46)) and LQR techniques.



Chapter 4

Precise Attitude Control

Motivated by the potential application of EP-based reaction control systems to Earth obser-
vation and communication satellites, this chapter studies the problem of maintaining the
attitude of a spacecraft precisely aligned to a given orientation, using on/off actuators. Due
to the presence of on/off restrictions and of persisting disturbances, affecting the attitude
dynamics, the problem does not admit a constant steady state solution. Instead, an oscillat-
ing motion about the set-point must be accepted. In establishing such type of motion, the
minimization of both the propellant consumption and the on/off switching frequency of the
actuators is a key requirement.

The first contribution of this chapter is an analytical upper bound on the minimum
switching frequency required to guarantee fuel-optimal oscillations with prescribed ampli-
tude about the set-point, based on the extension to the coupled multivariable case of the
classical single-axis solution. The provided upper bound does not depend on the relative
phases of the oscillations of each state variable. On the basis of this observation, a less
conservative solution is found, by exploiting phase synchronization. In order to track the
periodic trajectories corresponding to the provided solutions, a minimum switching control
law is derived. Finally, an MPC scheme, based on the real-time optimization of the fuel
consumption, as well as the number of actuator switching cycles, is proposed. This last
approach is general enough to be applied for spacecraft with nonsymmetric thruster config-
urations (e.g. overactuated ACS), and in the presence of angular rate constraints.

The material in this chapter is mainly based on [52] and [81].

4.1 Problem setting

In this section, the model describing the attitude error dynamics is introduced, and the main
features of the attitude control problem are presented.

4.1.1 Reference attitude

It is fairly common in the attitude control literature to describe the orientation of a spacecraft
in terms of the tracking error of a reference IVLH attitude. This is typically the attitude
regime the vehicle is designed for (e.g. to keep the observation window towards Earth,
radiators out of the sun, and solar arrays exposed to the sun). Moreover, the accelerations
required for orbit control are best expressed in the LVLH frame, as seen in Chapter 3.
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The matrix R;; which describes the orientation of the IVLH frame with respect to the
ECI frame (see Fig. 2.1), for a spacecraft at position r with respect to the Earth’s center of
mass, is given by

h r h r]”
Rip=|—%x—, ——, ——| . 1
IL S TR T (4.1)
where h = r xr denotes the spacecraft specific angular momentum and h = ||h||. For control
design purposes, the rotation (4.1) is parameterized by the quaternion q;,. From (2.2) and
(4.1), it follows that the IVLH frame rotates 360 deg per orbital period about its Yy g axis,
with an instantaneous angular velocity given by

wr =0, —wy, 0]". (4.2)

where wy, = h/r?. For circular orbits, wy, = n = \/pu/r3 is constant.

4.1.2 Attitude error dynamics

Let q;; denote the inverse rotation of (4.1) in quaternion form. Using quaternion algebra,
the attitude error q g, corresponding to the orientation of the spacecraft body frame relative
to the LVLH frame, can be expressed as

qrLB = d4rB °4qLr,

where q; p is the solution to (2.26). If the attitude error is small, it can be approximated by
the three-dimensional rotation vector 60, which is obtained from the vector part ¢, of the
attitude error quaternion as

00 = 2q.B. (4.3)

The angular rate error is given by the difference between the body frame rotation rate w
and the IVLH frame rotation rate, expressed in the body frame

dw=w—w, 4.4

where w is the solution to (2.31) and w = RIBR?L wr,.

For small deviations about the setpoint, the tracking error dynamics can be linearized
with negligible loss in accuracy. Because the setpoint is given by the IVLH frame orientation
and angular rate, the attitude error dynamics are obtained by differentiating (4.3)-(4.4) and
linearizing the resulting expression. The time derivative of 66 is simply"

50 = Sw. (4.5)

For linearization purposes, one can assume that the inertia matrix I, = diag(l,, I,, I.) is
constant in (4.4) [84]. In this case, substituting (2.31) into (4.4) and differentiating (4.4)
with respect to time yields

8 = It — I3 H(@ 4 6w) Iy (@ + 6w) — @. (4.6)

! Alternatively, one can set w = w — wy, in (4.4). Then 6 = dw — w;36.
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Observing that @ ~ (I — 06”)wy, and @ ~ —dw” (I — 60> )w,, for small rotations, and
linearizing (4.6) about (66, éw) = (0, 0) gives

6w = A100 + Axdw + I/ T, 4.7)

where the torque T is treated as an exogenous input and the matrices A, A, turn out to be

L1 I —I,+1
“wi 0 0 0 xl_izﬁz%
A= 0 0 0 . Ay = 0 0 0
I -1 I,—I,—1
“”172%% %M 0 0
(4.8)

Notice the cross coupling terms in (4.8) due to the rotation of the IVLH frame.

As long as precise attitude control on nearly circular orbits (e.g. GEO) is concerned, the
dynamic coupling in (4.7)-(4.8) is tipically negligible because |A ;50 4+ Asdw| < |I;/ 7], see
e.g. [34]. In this case, the error dynamics can be approximated by the double integrator
system

60 =1}, (4.9

where 7 is given by
T =T+ Ty, (4.10)

and 7. = T4 + T4+ T, + T + T, denotes the disturbance torque vector (see (2.32) and
(2.44)).

4.1.3 Attitude control system

A typical design for attitude control systems based on electric propulsion consists of on-off
reaction thrusters mounted at a fixed orientation with respect to the spacecraft body frame.
For this design, the control torque 7, in (4.10) can be expressed as

where p € {0,1}™ indicates the on-off activation commands of the m thrusters (or thruster
pairs) and the matrix G expresses the linear mapping from this command to the control
torque. Notice that, for the common case of symmetric thruster configurations G = [é, —(:1],
equation (4.11) can be rewritten as

7. = Gn, (4.12)

where 1 € {—1,0,1}%.

Attitude control torques are produced by expelling propellant mass. Because spacecraft
only contain a finite amount of propellant and refill operations are costly and impractical,
the amount of propellant mass being expended ultimately dictates the lifetime of a space
mission. Consequently, the minimization of the fuel consumption is the primary requirement
for the considered problem. Besides the fuel consumption, restrictions on the duration and
number of thruster firings have to be accounted for. In particular, the number of firing cycles
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has an impact on both the lifetime and the specific impulse of the thrusters, due to valve
wear and transient effects on the actuator dynamics.

An efficient attitude control scheme must then focus on simultaneously minimizing the
fuel consumption and the thruster switching frequency, while at the same time enforcing the
attitude control accuracy requirements. The minimum fuel and minimum switching control
problems are addressed next.

4.2 Minimum fuel control

This section tackles the problem of minimizing the fuel consumption of the attitude control
system, under the assumptions that the attitude dynamics can be approximated by the sys-
tem (4.9), and that the thruster configuration is symmetric. Combining (4.9)-(4.10) and
(4.12), the tracking error dynamics can be expressed as

50(t) = Bi(t) + d, (4.13)

where 6(t) € R”, B = I,/G and d = I;}7.. Notice that, although in the considered
application n = 3, in the following the minimum fuel and minimum switching problems will
be studied for the more general case in which n is arbitrary. The assumption is made that
B is square and nonsingular, and that |[B~'d||., < 1, to ensure the controllability of the
system. In this case, (4.13) describe a system of n double integrators, controlled by & = n
switching inputs @, which are coupled through the n x n matrix B.

The control accuracy requirements are typically dictated by the spacecraft payload, and
specified as the maximum allowed deviation from the set-point. Hence, the objective of the
control system is to guarantee that

[Wodb(t)|oo <1, VEt>1 (4.14)

for some ¢ > 0, where Wy can be taken as a diagonal weighting matrix. By applying the
fuel consumption expression (2.18) to the thruster configuration specified by (4.12), under
the assumption that the thruster specific impulse is fixed and equal for all thrusters, a cost
function proportional to the average amount of expended fuel is defined as

I N A
Jr(p) = lim — / [l (t)]]1 dt. (4.15)
o0 T 0
Let us now introduce the new state variables x(t) = T~'66(t), where
T = BD, (4.16)

D= diag(sgn(gl)a s asgn(gn))v (417)

with sgn(0) = 1, and g = B~ 'd. Then, system (4.13) can be rewritten as

%(t) = u(t) + k, (4.18)



4.2. Minimum fuel control 55

Figure 4.1: Feasible set defined by (4.14). Figure 4.2: Feasible set defined by (4.20).

where k = T~ 'd and u = Dz, with
we{-1,0,1}". (4.19)

In the following, the j—th entries of the vectors x and u are denoted by «; and u;, respec-
tively. By definition of T and D, it turns out that k > 0 in (4.18). Moreover, the constraint
(4.14) takes the form

[Cx(t)]l, <1, Vt>t, (4.20)

where C = Wy'T. Notice that, for ¢t > ¢, (4.20) is equivalent to

max max |w; ()] <1, (4.21)

where .
wit) = eijx;(t), (4.22)

j=1

and the coefficients ¢;; are the entries of C.

In the formulation (4.18)-(4.20), the n double integrators have been decoupled, but the
state constraints (4.20) are now coupled. In fact, while the feasible set for 66(¢) in (4.13)
is a box, that of x(¢) in (4.18) is a parallelotope, as illustrated in Figs. 4.1-4.2. Moreover,
observe that

Jy(p) = Jp(p) = Jyp(u). (4.23)
Then, the minimum fuel control problem can be formulated as follows.
Problem 4.2.1. Find a feedback control law u(x, X), which solves the optimal control problem
min  Jy(u)
u (4.24)
st (4.18), (4.19), (4.20).

The solution to Problem 4.2.1, for the ideal case in which k = 0 and the more realistic
case in which k > 0 in (4.18), is presented hereafter.
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4.2.1 Unperturbed dynamics

Consider the system (4.18) in the absence of perturbations, so that k = 0. Moreover, replace
(4.20) by
x(t) =0, Vt>t. (4.25)

In this case, both the system (4.18) and the state constraints (4.25) are decoupled, and
problem (4.24) reduces to a set of n scalar problems of the form

min  Jy(u)

st. T=u i (4.26)
2(t) =0 Vt>1
we{-1,0,1}.

Observe that any control law able to steer the system i = u to the origin in finite time, from
any initial condition, solves problem (4.26) with the optimal cost J}(u) = 0, because for
such control law the steady state fuel consumption is zero. One example is represented by
the well-know time-optimal control law (see e.g. [4])

—1 if s(z,2) >0 or si(z,z)=0andz >0

u(@, ) = { 1 if sy(2,4) <0 or sy(x,#)=0and i <0, (4.27)
where switching function s,(x, &) is given by
. 1.,
si(z, &) = x + - T|E|. (4.28)

2

Two state trajectories resulting from the application of this control law to the system & = u
are reported in the phase plane shown in Fig. 4.3.

T

Figure 4.3: Time-optimal trajectories (dashed) from the application of (4.27)-(4.28).
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Hence, it is straightforward to verify that the control law (4.27)-(4.28), or equivalently
any control law satisfying (4.25), provides a solution to Problem 4.2.1 when applied for
every input channel of the unperturbed system (4.18), independently from the choice of the
constraint matrix C in (4.20).

Unfortunately, such a trivial result holds only if the duration of the thruster firings can
be made arbitrarily small, which is often not the case in practical applications. When the
impulse provided by the control system has a fixed lower bound, the so-called minimum
impulse bit, the attitude control accuracy requirements can have a significant impact on the
fuel consumption, as explained next.

4.2.2 Minimum impulse bit dynamics

In the absence of disturbance torques, it would theoretically be possible place the satellite
into a perfect IVLH attitude, rotating about the Yiy1y axis 360 deg per orbit to remain pointed
towards the Earth’s surface. In practical applications, however, constraints on the minimum
duration of thruster firings and hence on the minimum impulse bit provided by the attitude
control system usually prevent the angular rate of the spacecraft from being driven exactly
to zero. In such cases, the solution to the minimum fuel control problem generally takes the
form of a limit-cycle oscillation.

An example of a limit cycle due to the minimum impulse bit and hence the minimum
rate change Awv,,;, provided by the control system is reported in the phase plane shown in
Fig. 4.4, for the single-input system & = w. In this figure, v = —1 and «w = 1 are applied for
the minimum possible firing time to reverse the sign of the angular velocity before exceeding
the bound defined by |x(¢)| < b. Notice that b also represents the amplitude of the resulting
limit cycle. Because pulses of minimum duration are considered, the angular rate dynamics

T

fffff

=
Y
|-

_7
A
.
>
<
3
3
2

Figure 4.4: Minimum impulse bit limit cycle.

can be approximated by a sequence of impulsive velocity changes, from which it follows that
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the average fuel consumption is inversely proportional to the time between two consecutive
pulses and hence to b, according to
- Avmin

Jy(u) = P (4.29)

This explains why the desire of a high pointing accuracy (i.e. a small b) can be in conflict
with the requirement to minimize the fuel consumption of a reaction control system.

Let us assume that the desired long-term behaviour for the multi-input system (4.18),
with k = 0, consists in limit cycles of the form depicted in Fig. 4.4 with amplitudes b;, for
all axes j = 1,...,n, and that the minimum impulse bit is fixed and equal for all thrusters.
Then, a cost function that accounts for the fuel consumption of system (4.18) is obtained
from (4.29) as

n

A min
IOESY 1; . (4.30)
J

j=1

By using (4.21)-(4.22), under the assumption that |z;(¢)| < b;, one has that
n n
max | w;(t) | < mtaXZ; |eij| |z ()] < Z; |cig| by, (4.31)
7= J=

and hence (4.20) can be enforced by imposing
ICbllw <1, (4.32)

where C is the matrix whose entries are |cij| and b = [b1,...,b,]. By replacing (4.20) with
(4.32) and enforcing (4.30), problem (4.24) boils down to

n 1
£ b,
o= (4.33)
st. ||Chlls <1
b >0, j=1,...,n

min  Avnn
b
J

Problem (4.33) can be solved numerically for a given constraint matrix C, yielding a vector
b* of optimal limit cycle amplitudes. In order to steer the state of the system (4.18) to the
periodic trajectories corresponding to the solution to (4.33), the control law (4.27) can be
modified by adding a symmetric deadband of amplitude b} for all axes, as follows

-1 if St(.l?j,j)j) > b;k
0 else,

where j = 1,...,n.

Proposition 4.2.1. The control law (4.34) provides a suboptimal solution to Problem 4.2.1
for the case k = 0, in the presence of minimum impulse bit restrictions.
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Proof. Considering input quantization, the control law (4.34) drives the solution of (4.18) to
limit cycles of amplitudes b7, j = 1,...,n, in finite time, from any initial condition. The sub-
optimality follows from the fact that the optimal cost of problem (4.33) is an upper bound
on the optimal cost of problem (4.24), due to the particular class of periodic trajectories
considered in (4.33). O

4.2.3 Perturbed dynamics

In many practical applications, the attitude error dynamics (4.18) are perturbed by a dis-
turbance term k > O that is approximately constant with respect to the error dynamics
timescale. Examples include disturbance torques arising from atmospheric drag at low or-
bital altitudes and torques generated during station-keeping operations, due to misalign-
ment of the orbit control system (see Section 2.3). A disturbance estimator is often capable
of identifying such contributions. Therefore, in the following it is assumed that k is constant
and known.
Let us analyze first the fuel-optimal control problem for the single-input system

i(t) =u(t)+k, (4.35)
where k > 0 is a fixed scalar parameter and

u(t) € {1, 0, 1}. (4.36)
In this case, the constraint (4.20) takes the form

lz(t)| <b, Vt>t, (4.37)

where b is a scalar bound, and problem (4.24) becomes

min  Jy(u)
v (4.38)
s.t.  (4.35),(4.36), (4.37).
The following proposition is a standard result from optimal control theory.
Proposition 4.2.2. A minimizer of problem (4.38) satisfies
u(t) € {-1, 0}. (4.39)
Moreover,
J(u) = k. (4.40)

Proof. Let u(t) be an input signal guaranteeing that (4.37) holds. Then, #(t) is bounded and

therefore
1 r
TlgI(l}O T <x(0) —1-/0 (u(t) + k) dt) =0,

which gives

1 T
lim — / u(t) dt = —k. (4.41)
T Jo
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Hence, the solution to (4.38) is also a minimizer of problem
min  Jy(u)
v (4.42)
s.t. (4.36),(4.41).

It is straightforward to check that a minimizer of (4.42) satisfies u(t) € {—1, 0}. By enforc-
ing this condition in (4.41), it follows that J;(u) = k. O

Remark 4.2.1. Notice that any input sequence satisfying (4.39) and guaranteeing that (4.37)
holds, satisfies also (4.40) and therefore it is a fuel-optimal solution.

It is well-known (see e.g. [4]) that a fuel-optimal control law for system (4.35) is

[ -1 if s(xz,2)>0 or s(z,&)=0andz >0
u(t) = { 0 if s(z,#) <0 or s(z,i)—0and i <0, (4.43)
where the switching function s(z, 4) is given by
re e i? 0§ >0
s(x, &) = 2(k—1) - (4.44)
o -2 . .
&= o if ©<0.

Such a control law guarantees that the trajectory of the closed-loop system converges to
the origin in finite time, from any initial condition, as illustrated in Fig. 4.5. Hence, it also
enforces (4.37) indefinitely and therefore it solves problem (4.38).

z

s(z,2) =0

Figure 4.5: Fuel-optimal trajectories (dashed) from the application of (4.43)-(4.44).

For the multivariable system (4.18), the minimum-fuel problem amounts to minimising
(4.23). In this case, the following proposition holds.
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Proposition 4.2.3. A minimizer of problem (4.24) satisfies
ue{-1,0}" (4.45)

Moreover
Ji(u) = [kl (4.46)

Proof. Thanks to the decoupling provided by (4.16), the optimality condition (4.39) can be
applied for each input channel of (4.18), leading to (4.45)-(4.46). O

Consequently, it can be easily verified that the application of the control law (4.43)-
(4.44) to each input channel of (4.18) provides a solution to Problem 4.2.1, for k > 0.
However, notice that an infinite switching frequency is required to keep the trajectory of
system (4.13) exactly at the origin with an input of the form (4.45), which translates into
undesirable chattering of the actuators in practical implementations. This motivates the
problem of minimizing both the fuel consumption and the switching frequency of the control
system, while keeping the attitude error within the bound specified by (4.20), as described
in the next section.

4.3 Minimum switching oscillations

A well-established application of attitude control systems based on electric propulsion is rep-
resented by the compensation of persisting disturbance torques [70]. In this case, problem
(4.24) admits multiple fuel-optimal solutions, as discussed in Section 4.2.3. The aim of this
section is to find, among all these solutions, the one which minimises the actuator switching
frequency, in order to maximise the lifetime and the performance of the ACS.

Notice that the switching frequency of a single actuator corresponds to the average num-
ber of input transitions per time unit commanded by the control system. Therefore, a cost
function that accounts for the average number of input transitions of system (4.18) (and
hence of system (4.13)) is given by

N A
Ji(w) = Jim /0 a(t)|l d. (4.47)
Another possibility is represented by the upper bound of the switching frequency per actua-
tor
1 T
Js(u) = max lim T / i (t)] dt. (4.48)
0

J T—o0

Because (4.48) is an useful indicator of the propulsion system lifetime, it will be adopted
throughout this section. Hence, the minimum switching problem can be formulated as

Problem 4.3.1.
min  J(u)
u (4.49)
s.t. (4.18), (4.20), (4.45),

with k > 0 in (4.18).
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Figure 4.6: Trajectories of system (4.35) for uw = 0 (solid) and u = —1 (dashed).

In the following, the minimum switching problem is reviewed for a single-input double
integrator, and the trajectory parameterizations necessary to solve problem (4.49) is intro-
duced. Then, two different suboptimal solutions to Problem 4.3.1 are derived.

4.3.1 Single-input problem

For the perturbed double integrator system (4.35), the minimum switching problem (4.49)

takes the form
T

: .1 :
min Js(u):TlgréoT | |a(t)| dt (4.50)

s.t. (4.35),(4.37), (4.39).

The solution to (4.50) can be found by using phase plane arguments. The trajectories ob-
tained for u(¢) = 0 and u(¢t) = —1 in (4.35) are reported in the phase plane in Fig. 4.6. From
(4.37) and (4.39), it follows that fuel-optimal state trajectories are bounded paths switching
between the curves in Fig. 4.6.

Let
Yt = {(z, ) : x—QLj:QZ—b, -b <z <z},
; L 4.51)
— y R = pf = r < <
) {(z,2): x Q(k—l)x b, = <a <b},

where Z = b(1 — 2k). Then, the following result characterizes the solution to problem (4.50)
[60, 69].

Proposition 4.3.1. Every optimal solution u*(t) of problem (4.50) is such that the resulting
trajectory satisfies (x,4) € Y Uy and

(0 = {—1 i (x(t). &(1) €Y 4.5

0 i (=), #(b) € vt
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for allt > t, for some t > 0. Moreover, the resulting minimum switching frequency is

J3 (w) = 24/7/0, (4.53)
where
v =k(1-k)/16. (4.54)

Proof. By integrating system (4.35) with either u = 0 or u = —1, one gets the trajectories

T— md? =y and z— ﬁj:Q = f35, respectively, with 31, 32 € R (see Fig. 4.6). Problem

(4.50) requires to maximize the average time between consecutive input transitions, while
satisfying constraint (4.37). This can be done by choosing the trajectory 1)V when u = —1
(61 = b) and X when u = 0 (82 = —b) i.e. (4.52). By intersecting ¢V and ¢*, straightfor-
ward calculations allow one to compute the times spent over each trajectory, which amount
to

b(l—k)
k
Hence, the period of the resulting trajectory is p = tV + t* = \/b/~, with ~ given by (4.54).
Since two input switchings per period are required, J*(u) = 2/p = 2+/~/b. Finally, it can be
observed that the limit cycle defined by /¥ and ¥’ can be reached in finite time from any
initial condition z(0), #(0), with only one input switching, which clearly does not affect the
optimal cost J; (u) O

th =4 if uw=0.

Proposition 4.3.1 provides a minimum switching and fuel-optimal solution for system
(4.35), under the constraint (4.36) and (4.37), in terms of a limit cycle in the phase plane.
Fig. 4.7 shows the resulting trajectory. Through straightforward manipulations, the periodic
trajectory of system (4.35) along the limit cycle ¥V U ¢* can be expressed as

z(t) = af()),
a = p’r, (4.55)
A = mod(t/p+¢,1),

where a = b is the amplitude, p is the period, ¢ € [0, 1] is the phase, v is given by (4.54),
and f(X) € [-1, 1] is defined as
1—§Q—EV ifo<A<k
O N T
— _— _— 2 i
1 k—l( 5 )>*if k<A<,

Then, the optimal input signal «*(¢) in (4.52) can be rewritten as

(4.56)

-1 if 0 <A<k
u*(t) = ] (4.57)
0 if k<A< L
From (4.55)-(4.57), it follows that the optimal input signal «*(¢) is pulse-width modulated
with period p* = /b/~ and duty cycle k. The periodic solution (4.55)-(4.56) will be ex-
ploited in the next section, to parameterize the solutions of Problem 4.3.1.
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Figure 4.7: Fuel/switch-optimal solution to problem (4.50).

4.3.2 Multi-input problem

Problem 4.3.1 is hard to solve if all feasible solutions to (4.18) are considered. Therefore,
taking inspiration from the optimal solution (4.55)-(4.57) of the single-input problem, we
restrict our attention to solutions of the form

(I,'j(t) = aj f(AJ)v
N = mod(t/p; + ¢;,1), (4.58)
aj = DPjVjs

Vo= ki (1= k;)/16,

where a; and ¢, are free parameters, f();) € [—1, 1] is given by (4.56), and the input signals

turn out to be
—1 if 0 <\, <k
ug'(t)={ Pl eAen (4.59)

0 ifkﬁj</\j< 1,

for j = 1,...,n. The input signals u(t) = [ui(t),...,u,(t)]" in (4.59) satisfy (4.45) and
Jr(u) = | k||1. Hence, according to Proposition 4.2.3, they are fuel-optimal. Being these
signals double-switch periodic, one has

Jo(uy) = ]%. (4.60)
J

By enforcing (4.58) (which satisfies (4.18),(4.45), by definition), problem (4.49) becomes

min max —

p, ¢ J Dy
s.t.  (4.20),(4.58) (4.61)
0< d)j <1

p; >0, j=1,...,n.
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where p = [p1,...,pn]" and ¢ = [¢1, ..., $,]T. Notice that the solution of problem (4.61)
does not change if all phases ¢; are shifted by the same quantity. Hence, without loss of
generality, in the sequel we will enforce ¢; = 0.

So far, the dynamic optimization problem (4.49) has been converted into a static op-
timization problem, where the decision variables are p and ¢. Note, however, that the
problem is still difficult, being non-convex in these decision variables. Consequently, some
simplifying assumptions will be made in order to derive an upper bound to the solution of
problem (4.61). Let us observe that by (4.21)-(4.22) and (4.58)

) < . < |
mex ui(t)| < max Y- el a3 0] < 3 sl a5 (4.62)
Jj= Jj=

and hence (4.20) can be enforced by imposing (similarly to the derivation in (4.32))

[Callo <1, (4.63)
where a = [aq, ..., an]T. From (4.58), it follows that
pj =1/a;/7- (4.64)

By replacing (4.20) with (4.63) and substituting (4.64) in (4.60), problem (4.61) boils down
to

min max 2 il
a J aj

st. |Calle <1
a; >0, j=1,....n.

(4.65)

By (4.62), the solution of (4.65) is an upper bound to that of (4.61). It turns out that
problem (4.65) can be solved analytically, as stated by the following theorem.

Theorem 4.3.1. A global minimum of problem (4.65) is attained at

1
at = T1, (4.66)
1Qll

where T' = diag(y1,...,7), Q = CT, | - || denotes the matrix infinity norm and 1 =
[,..., 1%

Proof. Letr = I la. Then, problem (4.65) can be rewritten as

in 6
£ 2 <p
st N (4.67)
[Qrlle <1

r; >0, j=1,...,n
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1
The statement of the theorem is proven if r* = ——1, 8" = 2,/||Q|| is a global minimum

1Qllo
for problem (4.67). Let 1, B be a feasible solution of (4.67). From feasibility, we get

. 4
Ty Z 325

and, being ¢;; > 0, Vi, j, where ¢;; denotes the entries of Q, one has

Vi=1,...,n,

Hence,

which concludes the proof. O

Remark 4.3.1. Since by (4.66) all the entries of T'"'a* are equal, it follows from (4.64) that
the periods of the closed trajectories resulting from the solution of problem (4.65) are

1
pPl=ps=...=p, = —F—— (4.68)

VIQlle

Remark 4.3.2. A geometric interpretation of the relaxation (4.65) of problem (4.61) is as
follows. Consider the box B = {x € R" : |z;| < a;, i« = 1,.....n} and the parallelotope
P={xe€R": ||Cx|s < 1}. Then, a necessary and sufficient condition for B C P is given by
(4.63). In other words, condition (4.63) forces the trajectory of the system to lie within a box
inscribed in the parallelotope describing the state constraints; then, problem (4.65) optimizes
the sides of the box, in order to maximize the period of the trajectories, thus minimizing the
switching frequency.

In the relaxation (4.65) of problem (4.61), the additional degrees of freedom provided
by the phases ¢; have not been exploited. In order to find a less conservative relaxation, we
enforce directly the property (4.68) into the original problem (4.61). This leads to the new
relaxed problem

max b

p.¢ 2

s.t.  (4.20), (4.58) (4.69)
0<¢j<1, j=1,....n
pPL=p2=...=pp >0,

where ¢; = 0. The following theorem provides the solution to problem (4.69).

Theorem 4.3.2. The global maximum of problem (4.69) is attained at

* = , (4.70)
@




4.3. Minimum switching oscillations 67

where
o(¢*) = m(gn o(e), (4.71)
and .
o(¢) = max max | ; cij if (t/p1 + 65)- (4.72)

Proof. By exploiting (4.58), in combination with (4.21)-(4.22), one can rewrite the con-
straints (4.20),(4.58) as

pio(e) <1
Then, problem (4.69) boils down to
1
max —
p.¢ 2
st. pio(e) <1 (4.73)
0<¢; <1, j=1,...,n
pPL=p2=...=pp >0,

where ¢; = 0. Notice that o(¢) in (4.72) does not depend on the actual value of the period
p1, because the peak values of the sums of the p;-periodic functions f(t/p1 + ¢;), evaluated
over the period, are independent from the period itself. Consequently, the solution to (4.73)
is that specified by (4.70)-(4.71), which concludes the proof. O

Remark 4.3.3. Due to (4.68) and the fact that (4.20) is less restrictive than (4.63), the
solution of problem (4.69) is a lower bound to that of (4.65), while still being an upper bound
to that of (4.61).

Remark 4.3.4. According to (4.59), the input signals u} corresponding to the solution provided
by Theorem 4.3.2 are pulse-width modulated with period p; = p] and phases ¢7 = 0 and ¢;
forj=2,...,n.

The unconstrained problem (4.71) is essentially a crest factor minimization problem,
which is known to be a hard optimization problem, being o(¢) a non convex function (see
[15] for a study of the crest factor problem in the sinusoidal case). Nevertheless, for low di-
mensional cases, such as n = 3, which are of practical interest in the considered application,
a global minimizer of (4.71) can be found by numeric search over the free phases ¢;. The
benefits of this approach over the solution provided by Theorem 4.3.1 are demonstrated on
two numerical examples, in the following.

4.3.3 Numerical examples

Example 4.3.1. Let n = 2, k = [0.7, 0.1]7 in (4.18), and

cos(m/3) sin(w/3)

C=| “sin(x/3) cos(n/3) |’

in (4.20). The solutions provided by Theorem 4.3.1 and Theorem 4.3.2 are compared next.
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Time (s)

Figure 4.8: Trajectories x1(t) (solid) and x2(t) (dash-dotted) from the solution to (4.65) (top) and
(4.69) (bottom).
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1
Figure 4.9: Trajectories in the x1, x2 plane from the solutions to (4.65) (dashed) and (4.69) (solid),
with constraints (4.20) (outer parallelogram) and |z;| < a; (inner box).

According to Theorem 4.3.1, the solution to (4.65) is given by a* = [0.9257, 0.3967]"".
From (4.68), it follows that pj = p5 = 8.4 and hence the resulting average switching fre-
quency is J; = 2/p] = 0.238. In order to exploit the additional degrees of freedom provided
by ¢, problem (4.69) is solved using Theorem 4.3.2. The solution of (4.71) is found nu-
merically through a one-dimensional search over ¢», with ¢; = 0. One gets ¢5 = 0.59 and
p = p5 = 9.53, which give J; = 2/p] = 0.21. Hence, the optimal cost of (4.69) is lower
than the optimal cost of (4.65) by approximately 12%.

The trajectories x4 (t), x2(t) of system (4.18) are obtained by substituting the solutions



4.3. Minimum switching oscillations 69

p* and ¢* in (4.58), for both approaches. Since the solution of (4.65) holds for any ¢,
without loss of generality one can set ¢] = ¢5 = 0 in the first approach. The resulting
trajectories are shown in Fig. 4.8 over a single period. The same trajectories are reported in
the x1 z2 plane in Fig. 4.9, together with the set defined by (4.20) and the box |z;| < a}. It
can be clearly seen that the control requirements (4.20) are met in both cases. However, the
trajectories satisfying (4.66) are constrained to lie inside a smaller region. Being the period
proportional to the square root of the oscillation amplitude, this yields a higher switching
frequency of the actuators.

Example 4.3.2. Let n = 3,
0.05 025 1
T=|( -1 1 -02],
065 1.2 —-1.2

and k = [0.4, 0.1, 0.7]T in the transformed system (4.18). Moreover, let Wy = 1 in (4.14)
and hence C = T in (4.20). The solutions provided by Theorem 4.3.1 and Theorem 4.3.2 are
compared next.

The solution provided by Theorem 4.3.1 is a* = [0.465,0.174, 0.407]", which corre-
sponds to the period pj = p5 = pi = 5.57 and the optimal cost J; = 0.36. In order
to apply Theorem 4.3.2, one has to search the 2-dimensional parameter space ¢o, ¢3 for
a global minimizer of (4.71). Notice that o(¢) in (4.70) is a non-convex function of the
decision variables ¢ with multiple local minima, as shown in Fig. 4.10.
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Figure 4.10: Plot of function o(¢) for the three-dimensional example.

The solution to (4.69) is ¢5 = 0.91, ¢5 = 0.1 and p] = p5 = p; = 8.14, corresponding
to the optimal cost J = 0.246. As expected, when ¢ is optimized, the on-off control law
requires a lower switching frequency, while the average fuel consumption J; = [|k[|; = 1.2
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is the same for both solutions, by construction. The optimal cost resulting from the ap-
plication of Theorem 4.3.2 is lower than that corresponding to the solution provided by
Theorem 4.3.1 by approximately 32%, which translates into a significant reduction of the
actuator switching cycles. The three-dimensional plot of the trajectories x4 (t), x2(t) and
x3(t) is reported in Fig. 4.11, where it can be seen that the control accuracy requirements
(represented by the 3-dimensional parallelotope) are satisfied.

0.5 1

Figure 4.11: Trajectories resulting from the solution to (4.65) (dashed) and (4.69) (solid), together
with state constraints (4.20) (outer parallelotope) and |z;| < a; (inner box).

It can be concluded that Theorem 4.3.1 and Theorem 4.3.2 provide two suboptimal
solutions to Problem 4.3.1. A control law tracking the periodic trajectories corresponding to
these solutions is presented next.

4.4 Minimum switching control

In the previous section, the problem of finding the fuel/switch-optimal periodic trajectories
satisfying given state constraints has been addressed for the multivariable double integra-
tor system (4.18), and two suboptimal (in terms of switching frequency) solutions have
been provided. In this section, it is shown how to steer the system to these solutions from
any given initial condition. Since in (4.18) the n double integrators have been decoupled,
this problem can be tackled by using n single-input feedback control laws based on system
(4.35). For the solution provided by Theorem 4.3.1, this amounts to design a control law
tracking a limit cycle with prescribed period. For the solution specified by Theorem 4.3.2,
the control law must also track a given phase along the limit cycle.
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4.4.1 Tracking of limit cycle solutions with prescribed period

In order to steer the state of the system (4.35) to a limit cycle with prescribed period p from
any initial condition, the fuel-optimal control law (4.43) is modified as follows

=1 if s(z,2)>a
u(t) = 0 if s(z,2) <—a 4.74)
u, otherwise,

where u, = —1 if s(z,4) > a occurred more recently than s(z,4) < —a, and u, = 0
otherwise. The resulting closed-loop system consists of the nonlinear system (4.35), (4.44)
under the relay feedback (4.74), with hysteresis defined by a.

s

s(z, @) =a

Figure 4.12: Switching curves (solid) and example of a state trajectory (dotted).

The switching curves s(z,%) = a and s(x,4) = —a are reported in the phase plane
in Fig. 4.12, together with an example of a state trajectory (dotted). By analysing the
phase portrait in Fig. 4.12, it is evident that, by switching the control input at most once,
a limit cycle is reached from any initial condition. Combining this observation with the
parametrization (4.55), one has the following result.

Proposition 4.4.1. The perturbed double integrator (4.35) with the control law (4.74) con-
verges in finite time to a periodic trajectory of the form (4.55)-(4.56), with period

p=+/a/y. (4.75)

Moreover, only one switching of the control input is required to reach this trajectory from any
initial condition.

Corollary 4.4.1. By applying for each input signal w;(t) of system (4.18) the control law
(4.74) with a = a} given by (4.66), the periodic trajectories (4.58) with period p; in (4.68)
are reached in finite time with one switching per input, from any initial condition.
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4.4.2 Tracking of limit cycle solutions with prescribed period and phase

Assume now that the aim is to design a control law tracking a periodic solution in the
form (4.55)-(4.56), with prescribed period and phase. Besides the relation between the
hysteresis of the relay element and the period of the limit cycle provided by (4.75), a relation
between a variation of the hysteresis width and a corresponding phase shift does indeed
exist. Therefore, the approach proposed hereafter is to steer both the period and the phase
of the closed-loop trajectory to the prescribed values, by using a time-varying hysteresis
defined by two parameters a" () and a”(t). More specifically, the following procedure is
proposed: upon reaching of a switching curve, the parameter defining the offset of the
opposite switching curve is updated, to enforce a cycle whose duration is designed to steer
both the phase and the period to the prescribed values. To this purpose, the control law
(4.74) is modified as

—1 if sz, i) > a ()

wt)=< 0 if s(z,2)< L(t) (4.76)
u, otherwise,

where u, = —1if s(x,#) > a"(t) occurred more recently than s(z,4) < —a”(t), and u, = 0
otherwise, with a”(t) + aY(t) > 0. The time-varying parameters are designed as explained
next.

Let {21}, {2V} denote two sequences of increasing time instants at which the state tra-
jectory reaches the switching curves of the control law (4.76). Formally

L { s(a(zh), #(2F) =—a*(:F)
CUU Tt (F —b,2E) s(a(t),(t) #£—a (1),

(4.77)
v, sl = VG
CEL3bevee (2F —b,2Y) s(alt) @) # U (1),
Without loss of generality, let us consider u(ty) = 0 (the case u(ty) = —1 being analogous)
and construct a sequence {z;} of increasing time instants as follows
{2y = {2V, 25 20 2 ). (4.78)

The proposed approach is to update a" () and a”(t) in (4.76) at times 2" and 2", respec-
tively. To this aim, we define a sequence {a;} such that

L(t) = G2m—1 for ¢ S [22m—17 22m,+1)7

Y(t) = agm  for t € [zom, zomi2). (4.79)

a

a
Notice that the offset of a switching curve is updated when the trajectory is not lying on the
same curve.

The sequence {z;} in (4.78) depends on the application of the control law (4.76) to
system (4.35) and hence on the particular choice of the update sequence {q;} in (4.79).
The controlled evolution of the system is illustrated in Fig. 4.13, where the state trajectory
(dotted) reaches the time-varying switching curves (solid) at times z;, z;41 and z;+2. The
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Figure 4.13: Scheme for the computation of the event times: switching curves (solid) and example of
a closed-loop trajectory (dotted).

event times can be computed iteratively according to

|2 (z141)| + |2(21)]
q(z1)

241 = 2 + , (480)

where ¢(z;) = |k + u(z;)| and the velocity |i(z;41)] is given by

l£(2141)] = 4v/27(ar + ai—1). (4.81)

From the previous observations, it follows that the objective of driving the system to a
steady state periodic solution in the form (4.55)-(4.56), with prescribed period p and phase
¢, can be recast in terms of the design of the sequence {a;}.

Theorem 4.4.1. Let a = p*v and define

ap = a, (4.82)
alza(1+4$l+2$%)7 I=1,...,n, (4.83)
where
~ Ziy2 — Zi42 1 1
¢op=mod| —— 4+ -, 1) — =, (4.84)
P 2 2
! 2 _
PP i )] S (G NSNS EJy STy (4.85)
q(z1) 2 4 o

and the sequence {z;} is defined according to

Zom-1 = _d)pv
4.86
Zam = (k - ¢) b, ( )
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for m € N. Then, the solution of system (4.35) with the control law (4.76)-(4.79) converges
in finite time to the periodic trajectory (4.55)-(4.56) with period p and phase ¢. Moreover,
only three switchings of the control input are required to reach this trajectory from any initial
condition.

Proof. Under the assumption that u(%y) = 0 (the reasoning is the same if u(ty) = —1), the
closed-loop system trajectory will reach the curve s(z,%) = a9 = a at a certain time zq,
at which the input switches to u(z1) = —1. Without loss of generality, let z; = 0. Since

q(z1) =1—k, (4.82) and (4.85) give

s x(zl) ]f
23 = T—k + (1 2> P
By using (4.80)-(4.81), it is possible to check that Z3 represents the time at which the tra-
jectory of the closed-loop system would reach again the curve s(x,4) = a if one enforced
a1 = az = ain (4.76)-(4.79). Being z3 = —¢p,
- |2(z1)] |k

¢1:h_¢_p(1—k‘)+§’ (4.87)

for some h € Z. By using a; from (4.83), with ¢; given by (4.87), the procedure is repeated
at time z». After simple manipulations, one obtains

and hence as = a. By induction, it can be easily verified that ¢~Sl =0and q; =a Vil > 2, for
any i(z1). Hence, by (4.79), aV(t) = a”(t) = a, for all t > z3. From Proposition 4.4.1, one
has that the closed-loop trajectory converges to a solution of the form (4.55)-(4.56) with
period p. Moreover, from (4.80)-(4.81) it follows that the sequence of switching times z;
satisfies

Zl — 1 1
mod <Zl 2y 5 1> — -0, VI>4 (4.88)
p

On the other hand, the switching times of the periodic solution (4.55)-(4.56) with given
phase ¢ occur at time instants ¢ such that either mod(¢/p+ ¢, 1) = 0 or mod(#/p+ ¢, 1) = k.
These equations lead to to ¢ = 25,1 and t = z3,, in (4.86), respectively. Therefore, (4.88)
guarantees that, for all ¢ > z4, the switching times of the closed-loop trajectory coincide
with those of the periodic solution (4.55)-(4.56), with desired period p and phase ¢. Finally,
since by (4.84) —1/2 < ¢, < 1/2, which implies a; > —1/2a by (4.83), one has that
aL(t) + aU(t) > 0 Vt, as it is required for the control law (4.76) to be well defined. This
concludes the proof. O
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Set a®(t) by (4.79),(4.82)-(4.86)

Set aY (t) by (4.79),(4.82)-(4.86)

Figure 4.14: Event-based switching logic.

Corollary 4.4.2. By applying for each input signal w;(t) of system (4.18) the control law
(4.76)-(4.79), with the input sequence {a;} chosen as in (4.82)-(4.86) and p = p;, ¢ = qb;'f
given by (4.70)-(4.71), the periodic trajectories (4.58) with period p; and phase ¢ are reached
in finite time with three switchings per input, from any initial condition.

Notice that ap = a is not strictly necessary to prove Theorem 4.4.1. The same conclu-
sions can be drawn for any ag such that ag + a; > 0. Also notice that one has just to shift by
1 the indices of the sequences {z;}, {a;} and {z;} when u(ty) = —1. For practical implemen-
tation of the control law, the event-based switching logic depicted in Fig. 4.14 can be used.
Finally, observe that the thruster on/off command p € {0,1}™=2" in (4.11) is obtained from
o = Du, where D is given by (4.17), as follows

{ Hi = Hgy pyn =0 i1 20 (4.89)
pi =0, pjin =—p; if Ji; <0,

forj=1,...,n.

Example 4.4.1. Consider the problem defined by Example 4.3.2. For any given initial condi-
tion, the periodic trajectories corresponding to the solution specified by Theorem 4.3.2 can be
tracked by applying the control law (4.76) for each input channel. For simulation purpose,
system (4.18) is discretized with sampling time Aty = 0.005 s. The control law is implemented
using the switching logic depicted in Fig. 4.14, for each input channel, and the initial conditions
for the simulation are set to x(to) = [~3, 1, —2]" and x(to) = [0.2, 0.4, —0.3]".

The trajectory of the closed-loop system is reported in Fig. 4.15. It can be clearly seen
that, after a finite transient, the system trajectory converges to the reference limit cycle
(marked). The control inputs are reported in Fig. 4.16. Notice that, as stated by Corollary
4.4.2, the desired duty cycle is attained from the fourth input transition onwards, for each
input channel.
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Figure 4.16: Control inputs.

4.4.3 Feasibility with respect to minimum impulse bit

There are particular cases in which one or more elements of the the disturbance vector k in
(4.18) can be very small. In such cases, the thruster firing time required by the minimum
switching control law may not be compatible with the minimum impulse bit of the thrusters.
Because the minimum impulse bit of attitude control systems based on electric propulsion
is typically very small, this is a rare scenario. Nonetheless, it must be taken into account for
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a reliable implementation of the control scheme. The thruster firing duration required to
track a limit cycle of period given by (4.68), or equivalently the trajectory from the solution
to (4.70)-(4.71), on channel j, is simply k;p;, because the j-th input is modulated with duty
cycle k; and period p;. Then, an effective way to detect if the commanded impulse is below
the minimum firing time At,,;, to check whether

kit < Atpin. (4.90)

If (4.90) holds at least for one j, a suboptimal approach, which guarantees that (4.20) is
satisfied, is to fix a = b*, where b* is the minimizer to (4.33). Then, the control law (4.34)
can be used for all axes for which

kj b;/')/j < Atmivu

while the control law (4.74), with a = b7, can be employed for the remaining axes.

4.5 WMPC-based control scheme

So far, the minimum switching control problem has been tackled under the assumptions that
the attitude dynamic model can be approximated by a system of coupled double integrators
and that the thruster configuration is symmetric. These assumptions, however, may not
apply to certain scenarios. In such cases, the solution to the minimum switching problem
can be approached via numerical optimization techniques.

In this section, a model predictive control scheme based on the linearized model (4.5)-
(4.7) is derived, as an alternative to the minimum switching control law previously devel-
oped. A finite horizon cost functional including both the fuel consumption and the number
of firing cycles of the control system is minimized at each time step within a receding hori-
zon scheme, yielding a closed-loop control law. Due to the presence of linear performance
indexes and on/off actuators, the problem requires the solution of a mixed integer linear
program.

4.5.1 Problem formulation

A discrete-time linear approximation of the attitude error dynamics is derived for control
purposes. Using the linearized equations (4.5)-(4.7), together with (4.10)-(4.11), the track-
ing error dynamics are represented by the state space model

}" - Am Yy + Bm M + Be Te, (491)

wherey = [607, 5wT}T€ R?" and p € {0,1}™. Notice that, in this formulation, (4.12)
does not have to be satisfied with m = 2n, as in the previous derivations. Instead, it is
sufficient that (4.11) is such that system (4.91) is controllable. The state matrix in (4.91) is
obtained from (4.5)-(4.7) as

0 I
A, = { A A, } (4.92)



78 4. Precise Attitude Control

where the A; and A, are given by (4.8). The input matrices are given by

0 0
B’”[I;;G]’ Be[lxj]’ (493)

where the matrix G does not need to be invertible. The continuous time model is discretized
with a sampling time At compatible with the minimum firing time of the attitude control
thrusters, thus obtaining

yt+1)=Fy(t)+Hu(t) + Ho m.(t), (4.94)

Aty Aty
with F = eAnAts H = ( / e Amp dp> B,, and H, = ( / e Amp dp> B..
0 0

The attitude control system developed in this section is based on an MPC approach,
which explicitly incorporates the limitations on pointing and pointing rate accuracy, as well
as a performance criterion accounting for the fuel consumption and the number of firing
cycles of the control system. The control accuracy requirements can be formulated in terms
of the following constraint

Wyl < 1, (4.95)

where W = blockdiag(Wy, W,,) and the weighting matrices Wy and W, account for
proper scaling of the attitude and angular rate errors. Notice that angular rate constraints
are included in the formulation (4.95), in addition to the attitude error constraints in (4.14).
These may be required for applications demanding a high pointing stability, e.g. high-
accuracy Earth observation missions.

In order to obtain a tractable MPC design problem, the minimum fuel and minimum
switching cost functions have to be reformulated over a finite horizon. According to (4.15),
a cost function proportional to the amount of expended fuel from time ¢ to time ¢ + N, is
given by

N'll,
J(U) =" plt +) |1, (4.96)
i=0
where U={pu(t),..., u(t+ N,)} is the input sequence on the considered control horizon, of

length N,,. Moreover, being p € {0,1}™, the number of input transitions is obtained from
(4.47) as

Ny
To(U) = |t +i) —p(t+i—1) 1. (4.97)
=0

The cost function for the control problem is defined as a trade-off between the fuel consump-
tion and the number of actuator switching cycles, by introducing a relative weight o € [0, 1]
of the terms J; and J, from (4.96) and (4.97), respectively. Given a state vector y(¢), the
computation of the control input sequence U at time ¢ can be formulated as an optimization
problem of the following form.
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Problem 4.5.1.
Hgn (1— 0&) Jl(U) + « JQ(U)

st y(t+i+1)=Fy(t+i)+Hpu(t+i)+H, 1o (t +1)
Wyt +i)]o <1 (4.98)
Mu(t+i) <1
p(t +i) € {0,1}™ Vi=0,..., N

The matrix M in (4.98) is defined to account for control allocation constraints, such
as preventing firing of opposite thrusters. In a receding horizon control strategy (see, e.g.,
[89]), one has to solve problem (4.98) at each time ¢ and then apply the first element of the
computed input sequence, which hereafter will be denoted by Uy n, s = {u(t]t), ..., p(t +
N,|t)}. Hence, the instantaneous thruster activation command is given by p(t) = p(t[t).

In order to ensure feasibility in the presence of estimation errors and model uncer-
tainties, the state constraints in problem (4.98) are relaxed by introducing slack variables
S = {s(t+1),..,s(t + N)} and penalizing them in the cost function. Such relaxation
is motivated by the fact that small violations of the constraints can be tolerated for short
time periods, provided that slightly conservative bounds on the pointing and pointing rate
accuracy are used. Hence, problem (4.98) can be reformulated as

N

fin (1= 0) Ji(Uten, ) + 2 (Uren, o) + > lst+d)

st y(tl) = y(t)
yit+i+1t) =Fyt+ilt) + Hu(t +ijt) + He e (t +19)
—s(t+1i) — KL <KWyt +it) <KL +s(t+1)
—s(t+N) <K,y({t+N|t) < s(t+N)
s(t+14)>0
M p(t +ift) <1
wu(t+ilt) € {0,1}™  Vi=0,...,N—1
p(t+ N, +1t)=...=pu(t+ N —1|t) = 0.

i=1

(4.99)

The weight on the terminal state K, is a standard tool in MPC, which favours stability
of the receding horizon control strategy [96], while matrix K, is introduced to penalize
the weighted 1-norm of the the slack variables on constraint violations. In order to solve
problem (4.99), the initial state y(¢|¢) and of the disturbance term 7.(t+i),7 =0,..., N, —1
should be available. Since these quantities are not known in advance, one has to resort to a
navigation algorithm to estimate them. To this aim, a suitable EKF algorithm can be adopted
(see Chapter 5).

It is worth noticing that in problem (4.99), the control horizon N, is different from the
prediction horizon N, on which the state constraints are enforced (N, < N — 1). After
the first V,, samples, the control variables are set to zero while the state constraints must
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be satisfied also in the subsequent N — N, — 1 samples. This allows one to trade-off the
number of optimization variables and the performance of the attitude control system. In
fact, problem (4.99) is a MILP problem, which is known to be computationally intractable
in the general case. Nevertheless, if the control horizon is kept short enough, state-of-the-art
MILP algorithms can provide an approximate solution in a reasonable amount of time. The
effectiveness of this approach is demonstrated through numerical simulations in Section 6.3.

4.5.2 Mixed integer linear program

For practical implementation, the MPC problem can be rewritten as a mixed-integer linear
program. The derivation of the MPC matrices is similar to the one described in Section 3.3.3.
In the present design, however, the optimization variables are simply the elements of the
control sequence, which allows for integer input values. The mixed-integer linear program
corresponding to (4.99) takes the following form

[(1— )1 g z,
min N al ZA
z,€{0,1}mNu 1 z.
[ & o0 -I m-—f—29 (4.100)
-® 0 -I Z, m+f+9
s.t. U I 0 | |zal <|[pet—17 07,
- -1 0 Zs —[pu -7, 0"
| M 0 o0 1
where
T
z, = [MT(t), . ,uT(t + Nu)]

za = [0 —pT (=D 6T+ Ny — pT (4 N = 1))

[sT(t+1), .., sT(t+ N)]"

Zs

M = ¢™V«M, and ®, 9, f, ¥, m are given by

K.WH ... 0
®=| K,WFVH ... K,WH ,
KyF(A}“‘l)H KyF(N;‘N“)H
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I 0 ...0 K,WF K,
| 0 : :
v = , = y(t), m=] - |1
. . . . : KS
o ... -I1 KyFNw 0

In this thesis, the IBM ILOG CPLEX mixed-integer programming solver [66], based on a
branch and bound algorithm, is employed to solve problem (4.100).






Chapter 5

Autonomous Navigation

One critical aspect for the successful implementation of the feedback control techniques
developed so far is the capability of autonomously estimating the position, velocity and
orientation of the spacecraft, as well as a number of additional parameters, such as the
disturbance torque acting on the spacecraft. Therefore, nonlinear estimation techniques play
a key role in the development of an autonomous GNC system. Among these techniques, the
extended Kalman filter (EKF) is widely used, and found to provide adequate performance,
in most space applications.

In this chapter, three different navigation schemes based on the continuous-discrete EKF
design [27] are developed for application within a closed-loop control system. First, an
orbit determination filter is presented, which can be used in combination with the control
scheme developed in Section 3.2, for autonomous station-keeping of LEO spacecraft. Then,
an attitude determination filter is derived, to enable the implementation of the control laws
presented in Chapter 4. The last contribution is a navigation filter estimating the relative
state between two spacecraft, as required for the application of the rendezvous and docking
control scheme developed in Section 3.3. The important topic of accurate sensor modeling
is not addressed in this chapter. Instead, a number of simplifying assumptions about the
measurement process are made in order to asses the performance of the proposed control
techniques, within a closed-loop GNC system.

5.1 Orbit determination

In this section, an orbit determination filter is presented, which can be used in combination
with the control scheme developed in Section 3.2. The filter processes GPS measurements
to estimate the absolute position and velocity of the spacecraft. The output of the GPS
is modeled as the true absolute position from the solution to (2.7) plus sensor noise w,,
according to

F=r-+w,. (5.1)

5.1.1 Propagation

The navigation state is a six-dimensional vector y = [#/, ¥*]?, including the inertial position

# and the inertial velocity v = r of the spacecraft. The dynamic model used to propagate
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the navigation state is derived from (2.7) as

Fo= v (5.2)

= H ||3r+aJ2( ) (5.3)

where aj,(r) is the estimate of the gravitational disturbance a4 in (2.10), based on the J2
harmonic of the gravity field. The expression for a ;2 (r) is given by [131]

<

572)F
3 /,LCQQRQ EAQ _5 A2§

ajp(f)=—=< s | (5.4)
(372 — 572)7,

2 77

where Cy denote the second harmonic coefficient,t = [#,,7,,7,]” and 7 = |||

It should be noticed that no thrust and drag accelerations are considered in equation (5.3),
because for the considered application a; ~ —ay in (2.8). The effects of minor orbital per-
turbations is also neglected. The uncertainty introduced by these assumptions is modeled
as white process noise w,, with covariance given by

Ewa(t) wa(t')"] = Qad(t =), (5.5)

where Q, is the noise spectral density and 6(¢ — t') denote the Dirac delta function. The
covariance matrix P=F [y y” | of the filter is propagated according to

P=FP+PF ' +Q. (5.6)

Making use of the model equations (5.2)-(5.3), the Jacobian matrix of the system, computed
at the current estimate, can be expressed as

0 I
F= [8\5'/8? 0} : (5.7)

The process noise covariance is a block diagonal matrix Q defined by
Q = blockdiag (05«3, Qa) , (5.8)

where Q, is given by (5.5). When an impulsive maneuver occurs, the filter state vector and
covariance matrix must be updated according to

vl = v+ Avy (5.9)
P' = P +Qp. (5.10)

The correction term Qp is given by
Qp = blOdelag (Oa Qv) ) (5.11)

where Q, is the covariance associated to the impulsive maneuver uncertainty.
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5.1.2 Measurement update

When measurements are available, the state of the filter is updated by using the classical
update equations

] [# 461

)= [1%)
where

ot o

[5;] —K(FE—1). (5.13)

and the superscripts — and + denote the state before and after the update, respectively. The
Kalman filter gain is given by

K=P ST(SP ST +N) !, (5.14)

where the S is the Jacobian of the observation model and N indicates the measurement
noise covariance matrix. The matrices S and N for the considered problem are obtained
from (5.1) as S = [I 0] and

FE [Wr(tk) Wr(tk/)T ] = N(Skk/, (515)
where §, is the Kronecker delta function. The filter covariance is updated according to

Pt=(I-KS)P . (5.16)

5.2 Attitude determination

In this section, an attitude determination filter is presented which can be used in combina-
tion with the control laws presented in Chapter 4. The attitude determination filter processes
data from a star tracker and a set of three orthogonal gyros to estimate the attitude and an-
gular rate of the spacecraft, and the resultant of the disturbance torques. The output of the
star-tracker is a quaternion of the form

are = a(0we) o ars, (5.17)
where wy indicates the measurement noise. Gyro measurements are modeled as
w=w+b,+w,, (5.18)

where w is the true angular rate, w,, is the measurement noise and by, is the gyro bias. The
gyro bias can be modeled as a random walk process, as

b, = ws, (5.19)

where wy, is the rate random walk noise.
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5.2.1 Propagation

The dynamic model of attitude determination filters typically include the quaternion q; g,
defining the orientation of the spacecraft with respect to the inertial frame, and the gyro
bias b,,, while the angular rate dynamics can either be included or replaced by the estimate
provided by the difference between the gyro output and the estimated gyro bias [107]

&= —b,. (5.20)
In the following derivation, the filter state does include the angular rate dynamics, to pro-
vide an estimate 7. of the disturbance torques acting on the spacecraft. In fact, the most
significant disturbance torques 7. are slowly varying, and can be treated as constant param-
eters to be estimated by the EKF. A design based on (5.20) is presented in Section 5.3.
Using a constant approximation of the inertia matrix of the form I, = diag(Z,, I, I.),
the filter state propagation model is obtained from egs. (2.26), (2.31) and (5.19) as

: 1701"

arp = 3 { o ] °oqrB (5.21)
O = I (FetTu—@0x Iy) (5.22)
b, = 0 (5.23)
7*.6 = 0, (5.24)

where 7, is the commanded control torque from (4.11). To avoid covariance singulari-
ties, due to the quaternion unit-norm constraint, a modified estimation error vector ém is
adopted to propagate the covariance matrix and to update both the state and the covariance
matrix of the filter. In the modified error vector, the attitude error is parameterized by using
the three-dimensional rotation vector 460, instead of being expressed in quaternion form.
Hence,
om = [667 sw? b7 or7]". (5.25)
Making use of the model equations (5.22)-(5.24), and the linearized Bortz equation
[107]
60 = —&* 30 + dw, (5.26)

the Jacobian matrix of the system, computed at the current estimate, can be expressed as

—o* I 0 0
o J o1}
J= M 5.2
0 00 0 |’ (5.27)
0 00 O
where I I
= | 22—, 0 2T (5.28)
IZI IZI
I —1, L —1, . 0
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and @ = [@,, &y, ©.]7. The covariance matrix P = E[ra m’] of the filter is propagated

according to (5.6), where the process noise covariance is given by the block diagonal matrix

Q= blOdelag (035 Qu; Qu, QT) : (5.29)

In (5.29), Q,, accounts for inertia, thruster noise and alignment uncertainties, Qy is obtained
from (5.19) as E [wy(t) wi(t')'] = Qud(t — '), and Q. is set to a value depending on the
expected level of uncertainty of the disturbance torque model.

5.2.2 Measurement update

When measurements are available, the attitude estimate is updated by using a multiplicative
approach, while the classical update equations are adopted for the other states. Then

(Alff q(60)oq;p
w w 4w
QR I 5.30
b} b, +db, |’ (5.30)
7+ T, +07T,
where
29> -
om = [667 sw? b7 or7] =K [ N ] , (5.31)
w—w —b,

A5 = WBodp; and the Kalman gain K is given by (5.14). The filter covariance is updated
as in (5.16). The observation matrix S and measurement noise covariance matrix N for the
considered problem are obtained from (5.17)-(5.18) as

I 00O
S_{OI IO] (5.32)
N = blockdiag(Ny, N,), (5.33)
where
E[wo(ty) wo(ti)" ] = Nob (5.34)
and
FE [Ww(tk) Wy (tk/)T] = Nwékk“ (535)

5.3 Relative navigation

In this section, a relative navigation filter is developed, which can be used in combination
with the control technique presented in Section 3.3 for autonomous rendezvous and dock-
ing of a target-chaser spacecraft formation. In particular it is shown how the state of the
target spacecraft, including position, velocity, attitude and angular rate, can be estimated
on-board the chaser, based on optical measurements of known target features. Notice that
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this approach is only feasible for close proximity operations, because the accuracy of op-
tical observations rapidly decreases as the distance between the two spacecraft grows. To
circumvent this issue, a different navigation solution, based for instance on differential GPS
measurements, can be considered during the initial phase of the rendezvous maneuver.

This section is organized as follows. First, the measurement model is presented. Then,
an EKF design based on the attitude and orbit determination filters previously discussed is
derived. For the sake of a clear exposition, in this section the target trajectory, from the
solution to (3.1),(3.3), will be denoted by rp = r, vy = T.

5.3.1 Measurement model

The observation model used include GPS, gyro, star-tracker, and optical camera measure-
ments. The GPS, gyro and star-tracker models are described in the previous two sections.
The optical camera provides line-of-sight information, i.e. azimuth and elevation angles, by
measuring the location of known features of the target spacecraft in the camera focal plane.
Notice that the considered sensors are installed on the chaser spacecraft, so that the target
may be passive.

The measured azimuth and elevation angles ¢; and v; of a feature i of the target are
modeled as

&; = tan~ ! (;—y) + wq (5.36)

i = sin~! (1) + wy (5.37)

where [, [, I, denote the individual components of the relative line-of-sight unit vector 1;,
and w,, w, model the sensor noise. The line-of-sight vector can be written in terms of the
noise-free angle measurements «; and 1);, according to

cos(1;) cos(a;)
I, = | cos(¢;)sin(ey) | - (5.38)
sin(;)

Alternatively, it can be expressed as a function of the inertial state, as follows

Li = pi/llpill (5.39)
p; =Rip[rr +Riyr; — (r+ Rigr.)], (5.40)

where p, denote the relative range vector, r; denote the position of the i-th feature in the
target frame, r. indicates the camera position in the chaser frame, and Ry expresses the
rotation from the target frame to the ECI frame. The geometry of the problem is illustrated
in Fig. 5.1.

Notice that the target must lie within the field of view of the optical camera to enable the
estimation of the relative position and velocity. Moreover, the observation of at least three
features of the target spacecraft is required to determine its attitude.
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Target feature

Figure 5.1: Optical measurement model.

5.3.2 Propagation

For relative navigation and pose estimation, it is debatable whether to use relative states
to limit the size of the navigation filter versus the absolute states to maximize the available
information [139]. The design presented hereafter is based on the absolute states of the two
spacecraft, according to the orbit and attitude determination approaches presented so far.
The dynamic model of the filter is given by

tr = Vr (5.41)
Lo B .
Vr = — ——=fr +ay(ir) (5.42)
bl
- 1 0 .
qrr = 5 { . } oqrr (5.43)
Wy
op = Izl (wr x Ir wr) (5.44)
F=v (5.45)
L nooo. ~ ~
V= - EBE r+ay(f)+ar (5.46)
: 170 .
qrB = 5 [ N ] oqrB (5.47)
w
b, =0 (5.48)

where q7, wr, I+ and 71 denote the attitude, angular rate and inertia matrix of the tar-
get spacecraft, a; is the control acceleration, and the angular rate dynamics of the chaser
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are replaced by the difference between the gyro output and the estimated gyro bias, by us-
ing (5.20) in (5.47). Notice that, in the considered application, the attitude of the chaser
spacecraft is nominally aligned to the IVHL frame, so that

ar = RY;[u”, 07 /m, (5.49)

where u is given by (3.29). Equation (5.49) is consistent with the fact that the orbit control
thrusters are mounted at fixed orientation with respect to the spacecraft body frame.

Similarly to the design presented in Section 5.2, the attitude estimation error is parame-
terized by using a three-dimensional rotation vector to propagate the covariance matrix and
to update both the state and the covariance matrix of the filter. Hence, the Jacobian matrix
of the system, computed at the current estimate, can be expressed as

[0 I o 0 0O O O O
ovr/dr 0 0O 0O O O 0 0
0 0 -, I o0 0 0 0

5 0 o o J o0 0 0 0O 7 (5.50)
0 o o o0 0o I o0 0O
0 0 0 0 dv/dt 0 Riza* 0
0 0 0 0 0 0 —&° I
.0 o 0 0 0 0 0 O

where J’ is given by (5.28) and a = [u’, 0]7 /m. Moreover, the process noise covariance
matrix is given by

Q = blockdiag (0, T,,0,T,,0,Q,,0,Q, +N,,Q;), (5.51)

where the covariance matrices T, and T, account for uncertainties due to unmodeled dy-
namics in (5.42) and (5.44), respectively. The covariance matrix of the filter is propagated
according to (5.6).

5.3.3 Measurement update

When measurements are available, the state of the filter is updated according to the proce-
dure described in Section 5.1.2 and 5.2.2. In this case, the the update takes the form

[ &5 1 [ &7 +6rr
VJTF Vo 4+ 0vr
61}27; Q(éaT)Oél;B
e S v 52
v v +6v
‘?ljB qA(‘m)O‘EI;B
L bl ] L by +db, |




5.3. Relative navigation 91

where

i
il (5.53)

.Ql|

T
[orh ovE 0% bwrT orT ovT 667 bl =K |2

N

o
and z, denotes the measurement residual from optical observations (before the update).

The observation matrix S and measurement noise covariance matrix N, for the considered
problem, are given by

000O0OTIOO0DO
S=]100000O0TOO (5.54)
So
N = blockdiag(N,., Ny, N,). (5.55)

The filter covariance is updated as in (5.16). The residual z, and the matrices S,, N, are
obtained as explained next.
The residual z; for the optical measurement of the i-th target feature is given by

Zi=17; — Z; = [Zz- _gj (5.56)

In this equation, d;, 1); are specified by (5.36)-(5.37) and &;, 1@' are obtained similarly, as

follows .
&; = tan~! (%) (5.57)

;= sin ! (z) . (5.58)
The estimated line-of-sight vector 1; = [I,,, Zy, 1,)" is given by
=2 (5.59)
123l

where the estimated relative range vector p, can be expressed in terms of the filter state as
p; =Rup |tr + RYr, — 3+ RIgr.)|, (5.60)
according to (5.40). Notice that, by (5.38)-(5.39),
cos(1);) cos(dy;)
pi = 1illli = 1o | cos(dh)sin(a,) | - (5.61)
sin(¢;)

The observation matrix for the -th feature is defined as

0d; /0y
S, = 0 5.62
[3%‘/33’] ( )
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where y denotes the filter state. The corresponding covariance matrix is obtained from
(536)-(537) as K [Wi(tk) Wi(tk/)T] = Nz 5kk” where w; = [wa, wd,]T.

In order to derive the expressions for the partial derivatives in (5.62) observe that, by
using the chain rule

ai)i_apia&i_’_ai)iad}i ol; 04, al; 31[)1'

The vectors 9l; /0é&; and ol; / o, given by
— cos(t;) sin(ay) —sin(t;) cos(&;)
Oli)0d; = | cos(ihi)cos(dy) |, O/ = | —sin(ih;)sin(@) |, (5.64)
0 cos(1);)

turn out to be orthogonal to each other. Then, by multiplying (5.63) by 9, /0é&; and by
0l;/0v;, and solving for 9 &;/0y and 9; /0y, one gets

Da, (aii/aai)T o,

— =t (5.65)
9y |p;]l cos? () 9
W N\T
31&1 _ (8li/8wi) 8ﬁi. (5.66)
oy ol Oy
From (5.60), it follows that
82: =|Rip 0 —Ryrpr 0 —R;p 0 (Riprr+ Rypr; — Ripi)™ 0} ,  (5.67)

where Rrp = Ry BRITT. Hence, the observation matrix (5.62) can be computed by substi-
tuting (5.58)-(5.60),(5.64) and (5.67) in (5.65)-(5.66).

The procedure is repeated for each observed feature (i = 1,...,n) of the target space-
craft, with the final form of the residual z, and the matrices S,, N, in (5.53)-(5.55) given
by

71 S Ny ... O
Zo= ||, So=1|:1, No=|: . . (5.68)
Zn Sn O e Nn



Chapter 6

Numerical Simulations

In this section, the results of numerical simulations are reported and analyzed to evaluate
the performance of the proposed control techniques and the feasibility of EP systems for
orbit and attitude control. The developed software includes an accurate simulator based on
the dynamic models presented in Chapter 2, the GNC module described in Chapters 3-5, and
the mathematical models of different types of LEO and GEO spacecraft (sensors, actuators,
vehicle layouts).

6.1 Autonomous station-keeping with electric propulsion

The objective of this section is to demonstrate the applicability of the orbit control scheme
developed in Section 3.2, together with the navigation system presented in Section 5.1, for
autonomous station-keeping of a small LEO satellite with Hall-effect and resistojet thrusters.

6.1.1 Reference mission

In the following, details of the mission, navigation requirements, and spacecraft configu-
ration, are provided. The reference mission orbit is a specialized sun-synchronous, repeat
ground-track and frozen orbit, which is a common design for LEO satellites [13]. The orbit
is nearly circular, with an altitude of around 228 km, which corresponds to a 5 day ground-
track repeat period. The initial orbital elements are derived by using a simplified J2 and J3
zonal harmonics analysis and refined through numerical simulations, ignoring all the peri-
odic orbital perturbations [131]. Table 6.1 shows the initial nominal values of the orbital
elements for the chosen reference mission.

Table 6.1: Orbital elements (initial nominal values)

Semi-major axis a 6591.338 km
Inclination i 96.3862°
Eccentricity vector x-component €y = €COSW 0
Eccentricity vector y-component ey = esinw 0.0011

Right ascension of the ascending node 10°

The reference orbit is defined in such a way that gravitational perturbations, which cause
the sun synchronous secular motion of {2 = 360°/year, do not need to be counteracted. As
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a consequence, the propulsion system is activated only to compensate for non gravitational
disturbances, by means the orbital element control scheme discussed in Section 3.2.2. The
dominant non gravitational perturbing forces on the reference orbit are due to atmospheric
drag and resonance effects induced by the Sun. The most significant effects of these pertur-
bations on the orbital elements are a constant decay in the semi-major axis, in the order of
300 m per revolution, and a small secular drift of the inclination.

The spacecraft is nominally aligned with the IVLH frame along the orbit. On-board
sensors and actuators are selected in order to meet the navigation and control accuracy
requirements, considering the constraints imposed by the spacecraft size. The driving re-
quirement for orbit control is to keep the satellite orbit within a distance of about 500 m
from the reference orbit. Based on this limitation, a preliminary estimate of the required
navigation system accuracy of about 50 m may be considered. Hence, for absolute position
determination purposes, it is sufficient to consider a GPS navigation solution in a loosely-
coupled GPS/INS integration scheme, capable of providing positioning accuracy of about
20 m [7].

The satellite is equipped with the propulsion system shown in Table 6.2. A 100 W class
Hall effect thruster [86, 108] is employed to compensate the secular variation in the orbit
semi-major axis, caused by the along-track component of atmospheric drag. The acceler-
ation a; provided by the Hall effect thruster, expressed in the inertial reference frame, is
given by

aI:RITL(I—eX)<a+ [ wp, O, O]T/m), (6.1)

where a is the commanded acceleration in (3.5), w, indicates the actuator noise, m is the
spacecraft mass, and e expresses the thrust alignment error. The covariance of the thruster
noise is
/ 2 /
Elw, (t) w, (t')] =0, —1"). (6.2)

The alignment error € is included in (6.1) to account for attitude deviations from the refer-
ence IVLH attitude. It is modeled as a white noise process, with covariance given by

Elet)e(t)] =T1a25(t —1'). (6.3)

For the reference mission scenario, simulation results indicate that the thrust needed to
continuously counteract the drag acceleration ay in (2.11), is in the throttling range of
considered Hall thruster, and comparable to that required in similar missions, like GOCE
(see, e.g., [21]).

A 30 W xenon resistojet [102] provides out of plane impulsive burns to compensate
for the cross-track component of drag, which is due to the co-rotation of the atmosphere
with the Earth, and the sun-synchronous resonance effects on the orbit inclination and right
ascension of the ascending node. The impulsive velocity change Av; provided by the resis-
tojet, expressed in the inertial frame, is modeled as

AvlzR,TL(I—eX)(AvJF[o, W, o]T), (6.4)
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where Av is the commanded velocity change in (3.20) and w, indicates the additive noise
on the velocity change. The covariance of w, is

E[wy (tk) wy (ter)] = 07 S - (6.5)

This considered design is basically a trade-off between the thrust efficiency and the limi-
tations imposed by the satellite payload and available power. In fact, we can take advantage
of the Hall thruster high specific impulse to reduce the propellant consumption required by
drag compensation, which is the dominant factor in the mission delta-v budget, while using
a higher thrust, low-power resistojet to counteract smaller cross-track perturbations, at the
price of a low specific impulse. Moreover, a single propellant tank containing xenon gas
will be shared between the Hall effect thruster and the resistojet, resulting in a simplified
satellite internal layout.

Table 6.2: Spacecraft propulsion system

Propulsion Along-track Cross-track
Type 100 W HET 30 W Resistojet
Specific Impulse | I! =1000s I, =50s
Thrust range 2.5 -6 mN 10 — 50 mN

The specifications of sensors and actuators are summarized in Table 6.3, where o, o,
and o, are defined in (6.2),(6.3) and (6.5), and o¢ is defined by (5.15), with N = Iaé.
In order to assess the feasibility of the proposed propulsion scheme, within the considered
mission, a sketch of the spacecraft size, mass and power system is provided next.

Table 6.3: Sensor and actuator specifications

Device Noise (o) Alignment error | Update frequency
Gps ocg=30m - 0.1 Hz
Hall thruster | o, = 0.3 mN /s o = 4 mrad 0.1 Hz modulation
Resistojet oy = 1 mm/s oe = 4 mrad Impulsive

6.1.2 Spacecraft and power system

The external layout of the spacecraft is modeled as a rectangular box, with a square cross-
section of A = 0.5 x 0.5 m? and a length of 1 m, similar to the elongated shape of the
GOCE spacecraft. The assumed aerodynamic drag coefficient is Cp = 2.5. The total mass
of the spacecraft is assumed to be m = 100 kg, including 30 kg of propellant mass. The
Hall thruster, the cathode and the power conditioning unit (PCU) have a mass of less than
3 kg. The parameters A, m, and Cp are employed in the simulation model, to evaluate the
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disturbance accelerations acting on the spacecraft. The mass of the xenon resistojet plus its
power regulator can be estimated in 1 kg. The tank storing up to 30 liters of xenon and
all the valves, tubing, harness can be limited to additional 6 kg. Therefore, the propulsion
system has a dry mass of less than 9 kg. Including the propellant, the whole propulsion
system mass will not exceed 40 kg, i.e. about 40% of the total spacecraft mass.

Power is supplied by triple junction solar cells with an efficiency of about 28%, a packing
factor of 0.85, and a 3% power degradation over the expected mission life. Given these
figures, it is possible to consider solar arrays with a surface area of less than 0.4 m? and
a mass of about 2 kg, able to provide at least 100 W power at end of life. Moreover, the
external layout of the spacecraft can host a solar array installation of at least 1 m?, whose
total supplied power is largely sufficient for the proposed payload and propulsion needs. A
battery system of 150 Wh/kg based on Li-ion cells is feasible for the proposed design.

The Hall thruster system is operated so that the supplied thrust can be changed about
every 10 seconds. Several approaches have been proposed in literature in order to provide
fast response times for this class of thrusters. Fast flow control valves (e.g. piezoelectric
valves or digital MEMS actuators) can be used to quickly change the propellant flow, which
in turn provides changes in the thrust (for fixed anode voltage). As an alternative, a high
frequency variation (more than 10 Hz), can be obtained by pulse width modulation [65,
116]. Thrust variation can also be obtained by operating on the anode voltage through the
PCU, at fixed propellant flow rate. This is the approach we refer to in this section and is
feasible for the required f;, = 0.1 Hz variation rate. Indeed, for the thrust range reported
in Table 6.2, given the Hall thruster technology characteristic, a minimum thrust of 2.5 mN
can be obtained with about 40 W power (e.g., 200 V and 0.2 A). A 200 V applied voltage
provides a specific impulse of more than 1000 s, as expected. For a 6 mN thrust, one can
increase the applied voltage to about 500 V, keeping constant the propellant flow rate, and
therefore the current. Then, the specific impulse will significantly increase over the assumed
1000 s.

6.1.3 GNC system analysis

The reference mission is simulated by taking into account a realistic truth model, sensors,
actuators and GNC flight algorithms. The truth model, which combines (2.7),(2.16), with
(2.18)-(2.21), is given by

r=v
. _ M
V=——r+a.+ar
r3

vl =vt 4+ Avy
_ma||

o goll

A
m® = mb exp <_ | VII) |
goly,
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where a; and v; are given by (6.1) and (6.4), respectively, and I Qp, I, are specified in Ta-
ble 6.2. The block diagram representation of the closed-loop system is reported in Figure 6.1.
A worst-case scenario, featuring a high solar and geomagnetic activity, is considered, in order
to validate the proposed GNC solution and to evaluate the performance of the propulsion
system. The truth model, navigation state and reference dynamics are propagated for 20
days using a fourth-order Runge-Kutta integration method.

Orbit dynamics »| Sensors »|Navigation (EKF)

B—

[
[
|
I
\\ Actuators Truth model ) , Reference
- r\777777$ 7777777777777777777777 oo \ N
! 5 . \
| o Orbital elements |_
Control law - . -
I computation I
‘ [

Control scheme

Figure 6.1: Block diagram representation of the closed-loop system.

The tuning parameters of the orbit control law are reported in Table 6.4. The control
gains for (3.16) and (3.18) are selected in order to satisfy the Hall thruster output limita-
tions. A sequence of impulsive burns at v, = 0 or v; = 7/2 is commanded according to
(3.20), instead of directly applying (3.19), which ensures the compatibility with the resisto-
jet specifications reported in Table 6.2. The update frequency of the control scheme is taken
equal to the modulation frequency f; of the Hall thruster command (see Section 6.1.2).
The resistojet is operated such as to provide impulsive velocity changes of fixed magnitude
Awv, = 10 mm/s, which correspond to 20 s firings at a thrust level of 50 mN.

Table 6.4: Orbit control law parameters

da gain K,=10"1"

e, de, gain Koy, Koy = 10°

dv; gain K,=10""

Integral gain Kr=10""7

4 control window —ip =iy =3.5-107° rad
0€) control window Qr, =0, Qy =3.5-10"° rad
Resistojet delta-v Awv,, = 10 mm/s

Control update frequency | f, = 0.1 Hz

The performance of the Kalman filtering scheme (see Section 5.1) is evaluated in terms
of the inertial position determination error, shown together with its 3o confidence intervals



98 6. Numerical Simulations

in Figure 6.2. The filter state is initialized with the first position measurements. After a
short transient phase, each component of the 3¢ ECI position vector error drops to a steady
state value of approximately 20 m. Notice that the error has approximately zero mean and
remains within the confidence intervals most of the time.
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Figure 6.2: Inertial position estimation error and 3o confidence intervals.

The control system performance is presented in Figure 6.3, in terms of position track-
ing error, although the control scheme is developed in the orbital element space. This is
consistent with the reference trajectory generation model (3.1)-(3.2), which is propagated
onboard the spacecraft. The normal component is controlled with an accuracy of less than
50 m, reflecting the effectiveness of the control law (3.18) in controlling semi-major axis
error da. The cross-track component is dependent on the inclination and right ascension
of the ascending node errors §i and §¢2: the achieved 250 m accuracy is a function of the
impulsive control window size in (3.20) . The in-track component of the error, which is
proportional to the mean argument of latitude error v, has the major impact on the satel-
lite distance from the reference orbit. It can be observed that the error is kept within 500
m after an initial transient, by using (3.18) in combination with (3.22). Figure 6.4 shows
the satellite distance from the reference orbit, whose mean value is 220 m (neglecting the
transient phase). These results show that the control requirements are satisfied.

The performance of the propulsion system is depicted in Figure 6.5, in terms of the Hall
thruster and resistojet outputs and the Xenon propellant mass consumption. A continuous
thrust with mean value of approximately 4 mN and delta-v impulses of about 10 mm/s
magnitude are delivered for orbital station-keeping. In the second plot of Figure 6.5, each
burn is represented by a bullet. An increased density of bullets in the plot indicates that
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Figure 6.4: Distance from the reference orbit.

the resistojet is firing twice per orbit (at »; = 0 and 7/2) rather than once (at v; = 0
or m/2), while the thruster is not firing in correspondence of empty spaces. Notice that
the commanded thrust is always directed in the opposite direction of the disturbing forces.
Thus, the proposed GNC system provides an efficient propellant utilization.

The power requirements for simultaneous use of the resistojet and the Hall thruster is
about 140 W, which is fully compatible with the power system described in Section 6.1.2.
The total propellant consumption is 1.19 kg, including 0.64 kg for continuous thrust and
0.55 kg for impulsive maneuvers. Given a 30 kg propellant tank, the expected lifetime
of the satellite is approximately 500 days. As a comparison, observe that an uncontrolled
satellite at the considered altitude would burn into the lower atmosphere in few days.

Finally, it is worth remarking that the result presented in this section are obtained by
using conservative specifications for the GNC system, and considering a worst-case mission
scenario. The fact that the control accuracy requirements can be met under such circum-
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Figure 6.5: Propulsion system performance.

stances suggests the applicability of the proposed control scheme to a broad class of com-
mercial LEO missions, which would strongly benefit from the adoption of an autonomous
orbit control system based on EP. In particular, the estimated lifetime of 500 days is feasi-
ble for spacecraft orbiting at the considered altitude, and has to be interpreted as a lower
bound on the mission duration, due to the assumption of a high solar activity. In this regard,
consider that the expected lifetime for GOCE was of about 500 days, in the presence of a
low solar activity [37], and hence of a relatively small amount of atmospheric drag to be
counteracted. Moreover, despite this expectation, the mission lasted almost 5 years.

6.2 Low-thrust rendezvous and docking

In this section, the performance of the LMPC design developed in Section 3.3 is demon-
strated on a small satellite rendezvous and docking mission, in comparison to MPC and LQR
techniques. Moreover, the applicability of the proposed design in combination with a set of
PPT specifically developed for cubesat size spacecraft is investigated.

6.2.1 Reference mission

A possible scenario for the application of the LMPC design developed in Section 3.3 is a
LEO formation flying mission performed by two cubesat size spacecraft, where the relative
dynamics are controlled by means of a miniaturized electric propulsion system. A schematic
view of the formation is depicted in Fig. 6.6. At the beginning of the operative phase, the
spacecraft are flying in a near circular polar orbit, at an altitude of approximately 450 km.
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Based on relative position and velocity data, the chaser spacecraft is required to approach
the target whilst satisfying LoS and thrust magnitude constraints. It is assumed that the
attitude of both spacecraft is kept aligned with the LVLH frame and that the docking port is
located behind the target.

Xivin

Yivin

Chaser

Figure 6.6: Cubesat formation.

The chaser and target spacecraft have identical physical parameters: the total mass of
each of them is 3 kg, the bus size is 30x10x 10 cm® and the cross-sectional area is 10x 10 cm?.
The electric propulsion system installed on the chaser consists of a set of PPTs specifically
designed for application to cubesats, as described in [24]. Two pairs of opposite PPTs aligned
with the along-track and cross-track directions of the IVLH frame are considered. Table 6.5
gives the characteristics of the PPT model.

An integral pulse frequency modulator is used to convert the continuous control signal
from the control algorithm into discrete pulses of fixed magnitude, as required by PPT oper-
ation. The modulator delivers a pulse p;, on input channel j, whenever the integral of the
commanded thrust U;(t) is greater than or equal to the impulse bit U, of the thrusters. For
each component of the input u, one has

UMsgn(Uj(tk)) if |Uj(tk)| > U]\,{
) 6.6
Py {fk) {0 if |U;(te)| < Unt, ©0
where ; .
Uj(tk) = Uj(tk_l) + uj( k_l) + uj( k)At — pj(tk_l), (6.7)

2
At = tr —teq andj = 1,2.

The step size of the modulator is taken as At = 1 s, according to the thruster specifica-
tions in Table 6.5. Under the assumption that the body frame of the spacecraft is nominally
aligned with the IVLH frame, the velocity change imparted by the PPT system can be ex-

pressed as

Av=(I-e)PtYW (6.8)
m




102 6. Numerical Simulations

where p = [p1, p2, 07, € denotes the spacecraft alignment error and w = [w;, wy, 0]
represents the thruster noise. The covariances of the errors are given by F [e(tx) €(t}.)] =

IU? Ok and F [w(ty) W(t;c)] = 10'720 Ok k! -

Table 6.5: PPT specifications

Mass 180 g (wet mass) + 90 g (electronics)
Dimensions 90.17 x 95.89 x 31 mm
Power 0.3-4W
Total Impulse 42 Ns
Impulse Bit Unr=40 uNs
Pulse frequency <1Hz
Specific Impulse I,,=608 s
Misalignment e = 20 mrad
Noise 0w = 2 uNs

Relative navigation is based on differential GPS measurements during the initial phase
of the rendezvous maneuver and on the Kalman filtering algorithm described in Section
5.3, which processes measurement from an optical sensor, during the final approach prior
to docking. The standard deviation of differential GPS measurements is set equal to 0.2 m
[20], whereas the field of view of the optical sensor is # = 30°. Notice that # also specifies
the size of the docking cone in (3.25). The relative position estimation accuracy is depicted,
as a function of the along-track separation between the two spacecraft, in Fig. 6.7.
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Figure 6.7: Relative position estimation accuracy.

6.2.2 LMPC performance

A high-accuracy, nonlinear simulation model is employed to validate the proposed LMPC
design in a realistic scenario. The state vector of the model includes the position and velocity
vectors of chaser (r, v = 1) in (2.7) and those of the target (rr = ¥, vy = t) in (3.1). The
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equations which describe the evolution of the state vector in the ECI frame are

rr =vrp
M _
Vr = — 3 TIr+a
rT
r=v
7]
V:—ﬁr—f—ae,

vl =vt + RT, Av,

A
m! = mtexp (_ I V||1) |
gOISp

where Av is given by (6.8). The terms a. and a. account for the most significant environ-
mental perturbations. Relative position and velocity are obtained from the inertial states
according to (3.24).

The LMPC control law is tuned to provide a trade-off between the maneuver time and
the fuel consumption. Even if these quantities do not explicitly appear in the approxima-
tion (3.36) of the cost function (3.27), the relative dynamics are controllable to zero with
vanishing input energy, from which it follows that, for a sufficiently long prediction horizon
and a relatively small state penalty compared to the input penalty, the minimum energy
solution approaches the minimum fuel solution [5, 124]. The elimination of radial thrust,
which is an underlying assumption in the proposed design, has proven to be effective in
improving the fuel efficiency of control laws based on a quadratic performance index [128].
Since the cross-track motion is a simple undamped oscillatory motion which is decoupled
from the rest of the system, pure derivative control can be applied on this axis to provide
adequate damping [142]. Hence, the cross-track position weighting can be set to zero. Table
6.6 gives the tuning parameters used in the simulations. Notice that the prediction horizon
has been set to a value compatible with the settling time of the maneuver (N, T = 10 s,
see Fig. 6.8). Moreover, the number of coefficients Ny, N, of the Laguerre network is kept
small to retain a sufficiently low computational complexity. The sampling time T’ is set to a
small fraction of the error dynamics timescale, which happens to be very long due extremely
weak thrust level generated by the PPT sytem. The remaining parameters have been tuned
through numerical simulations.

An explicit solution to the LMPC problem is computed off-line by using the parameters
defined in Table 6.7 in (3.65),(3.69), and solving Problem 3.3.3 with the Multi-Parametric
Toolbox [64]. The solution is a piecewise affine control law defined over 946 regions of the
parameter space X C R, given by (3.70). The online computation of the control sequence
boils down to a set-membership evaluation.

The performance of the LMPC scheme is compared to that of an LQR and a standard
MPC scheme (i.e. without Laguerre parametrization, see (3.46)). In this comparison, the
standard MPC formulation is recovered from the LMPC scheme by setting the scaling factors
a1, as of the Laguerre function network to zero in (3.44)-(3.45). Moreover, the same tuning
parameters are used for the three control laws. Figure 6.8 gives the results for the three
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Table 6.6: LMPC tuning parameters

Position weight | W; = W = diag(1, 0, 1, 10°,5 - 10°,10°)
Input weight K=1-2-10"
Slack weight R, = diag(2- 10", 3. 10°)
Sampling time T, =10 sec
Prediction horizon | IV, = 1000
Laguerre terms Ny =Ny =4
Scaling factor a, = as = 0.67
Thrust constraint | up; = 40 uN, M, = {0}
LoS constraint 0 =30° zq =2cm, M, = {1, 50}

Table 6.7: Parameters of explicit LMPC

Max. feasible separation

Ty = 350 m

Additional LoS region

d, = [0.1, 10, 10, 10, 10]" m

Velocity slopes

ko = 0.002

Velocity tolerance

¢ = 0.5 mm/s

controllers in terms of the magnitude of the tracking error for a sample rendezvous and
docking maneuver. As expected, the fastest convergence is achieved by the LQR controller,
which does not enforce input and output constraints, while the LMPC scheme shows a much
better transient response than the MPC scheme. In particular, the oscillatory behavior of
closed-loop trajectory is avoided. The horizontal-plane and the in-plane motions are shown
in Fig. 6.9, together with the sections of the pyramid that approximate the LoS cone. It can
be observed that the LQR controller is unable to keep the radial tracking error within the
LoS constraints, as opposed to the LMPC and MPC schemes.
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Figure 6.8: Tracking performance.
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Figure 6.9: LoS constraints (shown in green) and relative trajectories.
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Figure 6.10: Tracking performance of MPC with different control horizons.

The explicit solution to the MPC problem requires 1015 state-space regions, which is
comparable with the 946 regions over which the LMPC control law is defined. On the other
hand, the modest performance of the MPC controller turns out to be due to the insufficient
length N; = Ny = 4 of the control sequence. To illustrate this point, the tracking errors
obtained with a longer control horizon are reported in Fig. 6.10. For N; = N, = 10, a
small performance improvement can be noticed, but the system response is still oscillatory,
whereas for N; = Ny = 20 the closed-loop trajectories become similar to that resulting from
the application of the LMPC scheme, shown in Fig. (6.9). However, we have not been able to
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solve the MPC problem explicitly in the above two cases, due to the complexity introduced
by the additional optimization variables. The LMPC design is not affected by this issue,
thanks to the flexibility provided by the additional tuning parameters a;, as, which specify
the poles of the Laguerre functions and hence the time scale of the control sequence. For this
reason, the proposed approach allows a trade-off between feasibility and performance to be
made, by using only N1 = Ny = 4 coefficients in the polynomial expansion and deriving an
explicit controller.

Figure 6.11 gives the thrust profiles calculated by each control law, from uncertain ob-
servations (see Fig. 6.7). During the initial phase of the maneuver, the along-track LQR
command exceeds the maximum thrust which can be delivered by the propulsion system.
Since the magnitude of the input is hard-constrained in the model predictive framework,
both the MPC and the LMPC commands do not exceed the operating range of the actuators.
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Figure 6.11: Thrust profiles from uncertain observations.

Comparing these results to the thrust profiles obtained with perfect state information,
shown in Fig. 6.12, it can be seen that the use of Laguerre functions in combination with
an appropriate weight on input variation provides the lowest sensitivity to observation un-
certainty. This is confirmed by Table 6.8, which reports the overall impulse (i.e the integral
of ||ul|1) required by the maneuver. The performance degradation is approximately 60% for
both the LQR and the standard MPC schemes, but 46% for the LMPC design, which is espe-
cially relevant since the overall impulse is proportional to the fuel consumption of the orbit

control system. The applicability of the LMPC scheme, in combination with the considered
PPT system, is discussed next.
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Figure 6.12: Thrust profiles

Table 6.8: Total impulse sensitivity to observation uncertainty

Type LOR MPC LMPC
Without noise | 0.146 Ns | 0.330 Ns | 0.109 Ns
With noise 0.241 Ns | 0.534 Ns | 0.159 Ns

+65% +62% +46%

6.2.3 Rendezvous and docking maneuver analysis

A number of docking maneuvers have been simulated by using the LMPC control law in
combination with the PPT system. The set of initial conditions for which the relative motion
lies near the edge of the LoS region has been identified as the worst-case scenario for the
simulation. Two representative simulation cases are reported, with equal along-track initial
separation and opposite initial conditions for the cross-track and radial components of the
relative position vector. The initial conditions of Case 1 are the same as those used in the
previous simulations. The simulation time is set longer than the one previously used, in
order to evaluate the steady state behaviour of the system.

Figures 6.13 and 6.14 show that the LMPC control law is able to drive the follower
spacecraft to the docking position while satisfying the LoS constraints, in both cases. The
magnitude of the relative position vector at the end of the simulation is equal to 9 mm for
Case 1 and 4 cm for Case 2.

The PPT pulse profile is reported in Fig. 6.15, together with the LMPC command, for
Case 1 (similar results are obtained for Case 2), where the pulse profile is obtained by
modulating the commanded thrust with a step size At = 1 s and adding noise, according
to (6.6)-(6.8). These results show that almost no impulses are commanded in the negative



108 6. Numerical Simulations

140F 7 N ' '
120
~ 100
80
60
40
20

Case 1
- —— Case 2

m)

Distance

4
Time (s) x 10

Figure 6.13: LMPC tracking performance.

/

Cross-track (m

Radial (m)
T
S o o o o

-140 -120 -100 -80 -60 -40 -20 0
Along-track (m)

Figure 6.14: LoS constraints (shown in green) and LMPC trajectory.

along-track direction during the final phase of the approach, which indicates that plume
impingement is avoided according to (3.28) (the few pulses commanded are required to
brake the chaser vehicle upon reaching the target). Moreover, observe that, because the
magnitude of the control inputs is constrained to be less or equal to uy; = 40 pN, integral
windup in (6.7) is prevented.

As a final comparison, the results presented in this section are evaluated against the
open-loop (OL) solution to Problem 3.3.1. To enable this comparison, the boundary value
problem (3.30) is solved using the commercial package DIDO, which implements pseu-
dospectral methods [115]. A value of @« = 1 and 8 = 0 is set in the cost function (3.27),
which is then proportional to the fuel consumption. Instead of considering a free final time,
ty in (3.30) is set equal to the time required by the LMPC scheme to reach the steady-state,
i.e. the length of the simulations presented in this section (35000 s). Moreover, the nonlinear
dynamic model (2.7),(2.16),(3.1),(3.3),(3.24) is replaced by the linearized model (3.31).
A good approximation of the fuel-optimal control policy is obtained by using 30 quadrature
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Figure 6.15: PPT pulse profile and commanded thrust for Case 1.

nodes for the pseudospectral solution.

The open-loop (OL) and feedback (LMPC) control strategies are compared in Table 6.9,
in terms of the overall impulse required by the maneuver and the evaluation time of the
control sequence on a 2 Ghz single-core CPU. Note that the overall impulse obtained with
the LMPC scheme can be more than twice the one corresponding to the fuel-optimal OL
solution. According to Table 6.8, a significant part of this mismatch is due to uncertain
observations, while the rest arises from the approximations made in the design of the LMPC
scheme to retain a sufficiently low computational complexity. In fact, the explicit LMPC
solution is evaluated approximately 400 times faster than the OL solution.

Table 6.9: Open-loop (OL) and feedback solution (LMPC)

Type | Case 1 Impulse | Case 2 Impulse | Running time
OL 0.09 Ns 0.11 Ns ~20s
LMPC 0.16 Ns 0.25 Ns ~ 0.05s
+77% +127% 1/400

Given the relatively high specific impulse of PPTs compared to traditional microthrusters,
and the fact that the overall impulse commanded by the LMPC scheme is only a small frac-
tion of the total impulse which can be delivered by the thrusters (see Table 6.5), it can be
concluded that the proposed combination of technologies may represent a viable and cost-
effective solution for a wide range of small spacecraft rendezvous and docking applications.
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6.3 Precise attitude control of all-electric spacecraft

The objective of this section is to demonstrate the effectiveness of the MPC-based attitude
control scheme developed in Section 4.5. To this purpose, the control law is applied to
an all-electric GEO mission in combination with the attitude determination filter presented
in Section 5.2. The suitability of a reaction control system based on emerging xenon mi-
crothruster technologies is also discussed.

6.3.1 Reference mission

In order to demonstrate the feasibility of the MPC design based on the solution to Prob-
lem 4.5.1, a sample all-electric GEO mission is numerically simulated. The orbit parameters
are reported in Table 6.10. The spacecraft has the typical layout of a small two tons GEO
platform, see e.g. [121]. The size of the main body is 2m x 2m x 2.5 m and two solar panels
of dimensions 5m x 2m are attached to the north and south faces of the bus, providing 4.5
kW of average power.

Table 6.10: GEO reference orbit

Semi-major axis a = 42165 (km)
Inclination i €][0,0.05] (deg)
Longitude A €[75.05, 75.15] (deg)
Eccentricity e =~0

The considered propulsion system is illustrated in Fig. 6.16. Four SPT-100 Hall effect
thruster (HET) modules (EP1, EP2, EP3, EP4) symmetrically oriented around the nadir
vector, with an angle of 45° between the North/South axis and the thrust direction, are used
for SK maneuvers. Such kind of layout is similar to the one adopted for the Small-GEO
platform [32]. Nominally, the EP thrust vectors are aligned with the center of mass of the
spacecraft.

Eight on/off xenon microthruster modules that can be operated either as cold gas thrusters
(CGT) or high temperature electrothermal thrusters (HTET) are used for real-time attitude
control. Operation in HTET mode is achieved by heating the propellant via a resistance
element (ohmic heating), which allows for an increased specific impulse. Four thrusters
(AT1, AT2, AT3, AT4) are mounted on the anti-nadir face, with an angle of 48.5° between
the diagonal of the face and the thrust direction, to maximize the lever arm and hence the
torque about both the roll and pitch axes. The remaining four thruster (AT5a, AT5b, AT6a,
AT6b) are symmetrically oriented around the nadir vector, with an angle of 135° between the
North/South axis and the thrust direction, and fired in pairs to provide pure torques around
the yaw axis. Notice that thrusters AT1-AT4 produce coupled control torques about the roll
and pitch axes. In general, such kind of design may be due to structural and operational
constraints imposed by the overall configuration of the spacecraft, or beneficial to the perfor-
mance of the ACS. In the considered application, it ensures full compatibility with thruster
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Figure 6.16: Thrusters layout.

plume direction, torque level and power requirements of the mission. The basic specifica-
tions of the propulsion system are summarized in Table 6.11, where the specific impulse for
HTET opertation is taken compatible with that expected for high temperature resistojet and
hollow cathode thruster technologies fed by xenon [47]. To avoid control torques summing
up to zero, the simultaneous use of thrusters AT1-AT4, AT2-AT3 and AT5-AT6 is prevented
by setting the constraint matrix M in (4.98) to

100100
M=(010010f. (6.9
001001

Table 6.11: Propulsion system specifications

Type Thrust I, Power Mass
HET 75 mN 1500s | 1350 W | 3.5kg
CGT/HTET | 0.5/1.5mN | 30/90s | <60W | <0.3kg

A detailed analysis of the disturbance torques 7. in (4.10) is performed. The drag torque
T4 iS not present, because there is not atmosphere at the considered altitude. The gravity
gradient torque 7, and magnetic torque torque 7, are usually negligible in GEO, since they
decrease with the inverse cubic power of the distance from the Earth [137]. The solar ra-
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diation pressure torque 7, depends on the orientation of the solar panels. Since the solar
panels rotate at a rate of one rotation per day to track the sun, the resulting disturbance is
characterized by daily quasi-periodic oscillations with an amplitude that depends on the off-
set between the center of mass of the spacecraft and the center of solar pressure. Moreovet,
this disturbance vanishes during eclipses. The disturbance torque 7,, arising from station-
keeping operations, depends on both the offset Ac,, of the center of mass with respect to
the nominal position and the misalignment 3, of the EP thrust vector from the nominal
direction. The geometry of a North/South station-keeping (NSSK) maneuver is depicted
in Figure 6.17, where the EP thrusters are fired in correspondence of circular arcs around
the orbit nodes. During most of the orbital period, the spacecraft is allowed to drift with
respect to the nominal orbit and experiences environmental torques only, while an addi-
tional persistent torque is generated during orbit correction maneuvers. By simulating a
weekly NSSK cycle, with one day devoted to orbit determination followed by six days of
pre-planned maneuvers (see e.g. [9]), it turns out that the maximum magnitude of the SK
disturbance torques is much greater than that of the environmental torques. This is clearly
visible in Figure 6.18 which shows the disturbance torques acting on the spacecraft, for
a typical worst-case simulation with respect to the thruster alignment and center of mass
offset (notice the different magnitudes of the torques).

ZECI

Firing arc

XECI

Figure 6.17: North/South station-keeping maneuver.

Being the maximum magnitude of the SK disturbance torques much greater than that
of the environmental torques, the thruster layout is designed to efficiently reject such a
disturbance. If the EP thrust vector misalignment with respect to the spacecraft center of
mass is reasonably low, the pitch and roll components of the SK disturbance torque are
coupled and have approximately the same magnitude, while the yaw component, with a
larger worst-case magnitude, is almost decoupled. For this reason, coupled control torques
of equal magnitude are produced around the roll and pitch axes by thrusters AT1-AT4, while
a decoupled control torque is generated by the AT5 and AT6 pairs of thrusters around the
yaw axis. The acceleration a, in (2.16), generated by the AT1-AT6 thrusters, represents a
minor orbit perturbation, so that an eventual long-term contribution is easily compensated
by sporadic EP maneuvers. Thrusters AT5a and AT5b, as well as thrusters AT6a and AT6b
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Figure 6.18: Disturbance torques.

(see Fig. 6.16), are fired simultaneously. Hence, the thruster activation command in (4.11)
is denoted by g = [p1,... ig]*, where p, ..., 4 are the command variables of thrusters
AT1-AT4, while us and pg control the AT5 and AT6 pairs of thrusters. Given the thruster
alignments, the matrix G in (4.11) has the following structure

o —dyy dgy O dyy —dgy O
G=[G, ~G|=p| doy doy 0 —doy —duy 0 |, (6.10)
0 0 2. 0 0 —2d.

where p is the nominal thrust level and d,,,, d. are constant lever arms. Thrusters are de-
signed to be possibly operated in HTET mode, by ohmic heating of a resistance element. To
retain an acceptable number of thermal cycles, the following operation regime is considered:
(i) CGT mode operation of AT thrusters for attitude control during free orbit drift, when a
low delta-v is required to counteract the environmental torques; (ii) HTET mode operation
of AT thrusters for attitude control during SK maneuvers, providing increased thrust and
I, for efficient compensation of additional EP-induced torques. A unique thermal cycle is
performed for each SK maneuver.

The attitude control accuracy specifications (4.95) are summarized in Table 6.12, accord-
ing to the typical requirements of a multi-mission platform with Ka/Ku-band communication
and Earth imaging payloads (see, e.g., [71]). Therein, the time interval in which SK ma-
neuvers are not performed is referred as free orbit drift. Notice that pointing rate accuracy
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Table 6.12: Attitude control requirements

ACS requirements Free orbit drift Station-Keeping
Roll, Pitch Yaw Roll, Pitch Yaw
Pointing accuracy | 0.5 mrad 1 mrad | 0.5 mrad 1 mrad
Rate accuracy 1.5 prad/s | 3 purad/s | 10 prad/s | 20 prad/s

requirements are relaxed for SK maneuvers, since Earth imaging is not performed during
such operations. Also, observe that control accuracy requirements for the yaw axis are less
stringent than those for the roll and pitch axes, because the yaw pointing error does not
directly affect the quality of communications and observations. The constraint matrix W
in (4.95) is set according to the bounds reported in Table 6.12. The tuning of the control
law (4.99) is addressed next.

6.3.2 MPC tuning strategy

A high-fidelity simulator has been developed, combining a realistic truth model, sensors,
actuators and the EKF in Section 5.2, to tune the control law and evaluate the performance
of the ACS. The truth model is obtained from (2.26),(2.31),(4.10), as follows

) 170
qarB = 5 [ } °qrB- (6.11)
w
. 71 .
w=1Iy (Te +Tu—wx Iy w—1Iy w) . (6.12)
oo _PlARIL 15
91sp

where A = diag(1,1,1,1,2,2) accounts for the specific thruster layout. The torque 7,
in (6.12) is modeled as the commanded torque Gu plus actuator noise w, and thruster
misalignment 3,

Tu=1-08)G (1 +w,), (6.14)

where F [w,(t) w,(t')" | = 102 4(t —t') and 3, is fixed. The term 7. in (6.12) includes the
most relevant torques, whose profile is depicted in Fig. 6.18. The block diagram represen-
tation of the closed-loop system is depicted in Fig. 6.19. Table 6.13 summarizes the main
simulation parameters, where oy and o, are given by (5.34) and (5.35), with Ny = Iog and
N, =102,

The tuning parameters of the controller are Aty N,, N, K, K, and « in (4.99). A
sampling time At, = 0.5 s is chosen. Such a value is adequate for discretizing the space-
craft dynamic model and is well within the constraints on the minimum firing time im-
posed by the thruster technology. The control horizon N,, which is proportional to the
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Figure 6.19: Closed-loop system
Table 6.13: Simulation parameters
Parameter Value
Center of solar pressure offset 5 cm along the pitch axis
Center of mass offset Ac,, = 1.5 cm per axis

EP thrust vector misalignment B, = 0.6 deg per axis
AT thrust vector misalignment B, = 0.1 deg per axis

AT thrust noise (normalized) o, = 0.01
Star-tracker measurement noise | oy = 0.05 mrad
Gyro measurement noise 0w = 1 prad/s

number of binary variables in the optimization problem, has the major impact on the com-
putational burden of the real-time control system. Since the amount of computational re-
sources available on-board a spacecraft is typically limited, N, = 3 is chosen. A predic-
tion horizon three times longer than the control horizon is selected, by setting N = 9. The
penalty term K, which affects the constraint violations, is chosen as a block diagonal matrix
K, = blockdiag(10?I, 101), while the terminal weight is set to K, = blockdiag(I, 0.1 )W
(see (4.99)). Finally, the parameter « determines the relative weight of the fuel consump-
tion and the number of thruster firings in the cost function of the optimization problem. In
order to find a suitable value of «, the ACS is simulated with values of « ranging from zero
to one. Since different control modes are defined according to the mission requirements,
free orbit periods lasting one day and NSSK maneuvers of 55 minutes have been simulated
separately. A worst-case scenario is considered, by assuming the maximum disturbance
torque compatible with the uncertainty on the center of mass, center of solar pressure and
thruster misalignment. In both cases, the attitude, angular rate and disturbance torque are
estimated by the EKF. The results are depicted in Fig. 6.20, where the fuel consumption and
the number of thruster firings are reported for SK and free orbit drift periods. As expected,
the parameter o allows one to trade-off between two objectives. It can be noticed that for
both SK and free orbit drift the fuel consumption is approximately constant as long as « is
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smaller than 0.8, while it rapidly grows as « approaches 1. Conversely, an acceptable num-
ber of firings is achieved only if « is larger than 0.7. From these observations, o = 0.78 is
selected. Fig. 6.20 also confirms that the major contribution to the attitude control delta-v
budget is due to SK operations. Even if the microthrusters efficiency is increased by HTET
mode operation, the fuel required for disturbance rejection on a single NSSK maneuver is
still considerably higher than the fuel needed to compensate for one day of environmental
torques by using thrusters in CGT mode. The proposed combination of tuning parame-
ters provides an average computational time of the control law in the 25 millisecond range
on a 2 GHz single-core CPU, by using the IBM ILOG CPLEX mixed-integer programming
solver [66], based on a branch and bound algorithm.

Fuel consumption Number of thruster firings
15 " " " " 4000 .
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C 2000 AN
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0 : : : : 0 : : —
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a value a value

Figure 6.20: Tuning of parameter c.

The performance of the control law with the set of tuning parameters described above
is compared to a LQR+PWPF scheme [1], consisting of the cascade of a LQR controller and
a PWPF modulator, for SK disturbance rejection. The SK maneuver consists of firing a pair
of thrusters in sequence around an orbit node. Therefore, the resulting disturbance torque,
depending on the displacement of the thrust vectors with respect to the spacecraft center of
mass, is piecewise constant, as illustrated in Fig. 6.18. In Fig. 6.21, it can be observed that
both controllers succeed in keeping the errors within the maximum allowed deviation, for all
axes (although the LQR law fails to keep the pitch and yaw rate transient within the bounds
due to an impulsive variation of the disturbance torque at time t=1683 s). Clearly, an
advantage of the MPC approach is that the error bounds are enforced directly as constraints
in the optimization problem (4.99), while a trial-and-error procedure has been necessary to
suitably tune the parameters of the LQR+PWPF controller.

The fuel consumption and number of thruster firings of the two control schemes are
reported in Fig. 6.22. The MPC scheme requires about 5% less fuel and 25% less thruster
firings with respect to the LQR+PWPF one, mainly due to a more efficient management of
the firing cycles for the cross-coupled axes (roll and pitch).
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Figure 6.22: Fuel consumption and number of firings in comparison.

6.3.3 Attitude control system analysis

The reference mission is simulated in order to validate the proposed MPC design and to
evaluate the performance of the attitude control system. The simulation model is propa-
gated for a time interval of one week using a fourth-order Runge-Kutta integration method.
The steady state behaviour of the ACS is reported in Fig. 6.23. The attitude tracking er-
ror remains always well enclosed within the bounds (dash-dotted lines) specified by the
pointing accuracy requirements, and shows an oscillating trend that corresponds to the dis-
turbance torque profile, except from periodic spikes due thruster operation within solar
eclipses, when the environmental torques vanish resulting in closed-loop oscillations with
the same amplitude of the deadband (due to the minimum impulse bit of the thrusters, see
e.g. Fig. 4.4). Such kind of behaviour is typical for pulse-modulated thruster control sys-
tems. Similarly to what observed for the attitude error, the angular rate tracking error does
not exceed the pointing rate accuracy bounds, as illustrated in Fig. 6.24. The performance
of the microthruster reaction system is reported in Fig. 6.25, in terms of fuel consumption
(left) and number of firings cyles per thruster (right, where each line represents a single



118 6. Numerical Simulations

thruster). The microthrusters are operated in CGT mode during free orbit drift and in HTET
mode during SK maneuvers.
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Figure 6.23: Pointing error.
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Figure 6.24: Pointing rate error.

The stair-step profile of the expelled fuel clearly indicates that the major contribution to
the propellant budget is due to SK disturbance rejection, as expected. The overall xenon
mass required for precise attitude control is approximately 0.135 kg: 0.019 kg to counteract
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Figure 6.25: Microthruster reaction system performance.

environmental disturbances and 0.116 kg to compensate for SK disturbance torques. The
amount of firing cycles is fairly distributed among free orbit drift and SK periods, and grows
regularly for each thruster. At the end of the simulation, about 800 on/off cycles are ac-
cumulated by thrusters AT1 and AT4, while a number of cycles between 600 and 650 is
observed for the remaining thrusters. The overall firing time per thruster varies between
2.5 hr and 2.9 hr, about 85% of which being spent for SK disturbance rejection. Based on
these results, Table 6.14 summarizes the performance of the reaction control system for a
mission duration of 15 years. The total amount of xenon needed for microthruster opera-
tion represents a significant addition to the fuel budget of the mission, being the propellant
mass required for 15 years of NSSK in the order of 150 kg for the HET thrusters considered
in Table 6.11. However, considering that the typical mass of momentum-exchange devices,
such as reaction wheels or control moment gyros, together with the xenon mass required
for wheel desaturation, can easily exceed 50 kg, and that such systems are replaced by light-
weight microthrusters, the overall penalty on the spacecraft mass is predicted in the 60 kg
range. It is believed that this is a reasonable trade-off as it allows one to remove moving and
vibrating parts from the attitude control system, as well as to reduce its complexity and cost.
Moreover, the results presented so far are obtained by using conservative propulsion system
specifications, which ensure compatibility with different models of EP and HTET thrusters.
In specific cases, where a better alignment of the EP thrust vector and/or an increased I, of
the reaction thrusters can be guaranteed, a significant reduction of the propellant consump-
tion is expected, since the amount of xenon required for EP torques compensation scales
approximately linearly with these quantities. For instance, the performance reported in Ta-
ble 6.15 is obtained for an EP thrust vector misalignment of 0.1 deg, as in [9, 70], and an
I,, of 200 s, which is the target value for the development of the hollow cathode technology
[53]. Such a performance makes the proposed ACS a competitive alternative to systems
based on momentum exchange devices.

Finally, it must be observed that the firing time and the number of on/off and ther-
mal cycles per thruster, given in Tables 6.14 and 6.15, are compatible with the considered
CGT/HTET technology. In particular, the difference between the number of on/off and ther-
mal cycles for HTET is due to the fact that for each SK maneuver a single thermal cycle is
performed, while several valve switchings are required to meet the desired control accuracy.
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Table 6.14: Propulsion system performance: EP misalignment 0.6°, HTET I, = 90 s

Type | Xenon mass | On/off cycles | Firing time | Thermal cycles
CGT 15 kg 350000 300 hr -

HTET 91 kg 300000 2000 hr 10000
Total 106 kg 650000 2300 hr 10000

Table 6.15: Propulsion system performance: EP misalignment 0.1°, HTET I, = 200 s

Type | Xenon mass | On/off cycles | Firing time | Thermal cycles
CGT 15 kg 350000 300 hr -

HTET 22.5 kg 380000 1100 hr 10000
Total 37.5kg 730000 1400 hr 10000

6.4 Performance evaluation of attitude control laws

As discussed in Chapter 4, an efficient attitude control scheme must focus on simultaneously
minimizing the fuel consumption and the number of thruster firings of the reaction control
system, while at the same time enforcing the attitude control accuracy requirements. To this
aim, two suboptimal solutions have been derived for the coupled double integrator model
(4.9), which guarantee an upper bound on the minimum actuator switching frequency and
a predefined pointing accuracy. For the more general linearized attitude error dynamics
(4.91), an MPC scheme, based on the numerical solution of a mixed-integer linear program,
has been also developed. This control scheme has been found to yield a good tracking
accuracy when applied to the all-electric GEO mission in the Section 6.3, but suffers from a
finite-horizon approximation of the fuel and switching costs, which may limit its applicability
within other types of mission. It is therefore of interest to asses the performance of the
proposed solutions and see how they compare on different scenarios.

In order to evaluate the performance of minimum switching (MS) control laws (4.74)
and (4.76), versus the one of the MPC scheme, two aspects should be noticed. The first
is that the MPC formulation in Problem 4.5.1 can explicitly account for angular rate con-
straints, while for the MS strategies such constraints are implicitly defined by the distur-
bance torque size and by the amplitude of the attitude error oscillations on each axis of the
transformed system (4.18), see e.g. Fig. 4.7. The second is that the MPC scheme is able to
handle arbitrary thrusters configurations in (4.11), while the provided MS solution is lim-
ited to symmetric thruster configurations of the form defined by (4.12), with one input per
axis. In practice, however, one can always enforce a set of suitable attitude error bounds
which enable to meet the desired pointing rate accuracy, thus allowing one to apply the
control laws (4.74) and (4.76) also in the presence of angular rate constraints. Moreovet,
in many cases the spacecraft architecture is such that the thruster configuration is minimal
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(but redundant) and symmetric, as in (6.10) (see for example Fig. 6.16).

6.4.1 GEO scenario

In the following, the proposed solutions are compared on the GEO mission scenario de-
scribed in Section 6.3, in terms of effectiveness in rejecting persistent SK disturbances. In
this scenario, the pointing rate accuracy requirements do not allow the attitude error to span
the entire size of the attitude error deadband, as clearly visible in Fig. 6.21 (loosely speak-
ing, the pointing rate constraints are more stringent than the attitude error ones). This is in
conflict with the solutions provided by Theorems 4.3.1 and 4.3.2, which aim at maximizing
the attitude error excursion within the feasible set, as can be seen, for instance, in Fig. 4.11.
Therefore, the size of the feasible set used by these results must be scaled, to ensure that the
required pointing rate accuracy can also be met. This amounts to consider

Wy = diag(k0.5- 1073, £0.5- 1073,k 1073) ! (6.15)

in (4.14), where the SK pointing accuracy requirements from Table 6.12 are scaled by the
scalar term ~. Based on a trial and error procedure, « has been set to 0.14 for the consid-
ered scenario (this low value confirms that, in this scenario, the bottleneck in the limit of
performance is determined by the angular rate constraints).

The SK maneuver has a duration of about 3300 sec, and the disturbance acting on the
spacecraft is piecewise constant: 7, = [1.6, 1.7, 2.7]7 mN-m during the first half of the ma-
neuver and 7, = [1.7, —1.6, 1.1]7 mN-m during the second half. The periodic trajectories
returned by Theorems 4.3.1 and 4.3.2, for the first half of the SK maneuver, are reported
in Fig. 6.26 (a similar solution is obtained for the second half). Notice that the solution
provided by Theorem 4.3.2 has no visible advantages over that provided by Theorem 4.3.1,
due to the particular structure of the problem. Therefore, we expect a similar performance
for the control law (4.74), with the set of parameters prescribed by Corollary 4.4.1 (here-
after, referred as MS+C1) , and the control law (4.76), with that specified by Corollary 4.4.2
(MS+C2).

The MPC scheme (4.99) is compared to the MS control strategies on the considered SK
maneuver. Because the SK disturbance can take two different values, to be estimated by
the EKF, the parameters provided by (4.66) and (4.70)-(4.71) are computed in real-time.
In particular, (4.70)-(4.71) is evaluated by numerical search over a 10 x 10 grid on the
parameters (¢2, ¢3). The evaluation takes approximately 10 ms on a 2Ghz single-core CPU,
which of the same order of the time required to solve the MPC problem.

The tracking errors obtained with the three control laws are reported in Fig. 6.27. It can
be seen that the pointing and pointing rate accuracy requirements are satisfied by the three
solutions. Moreover, notice that the roll and pitch angular errors from the application of the
MS laws are constrained to lie in a smaller region near the origin with respect to those of
the MPC law, because the size of the feasible set in Fig 6.26 (i.e. the outer parallelotope)
has been scaled to meet the desired pointing rate accuracy, according to (6.15).

The average fuel consumption J¢(7") and switching frequency J,(T'), resulting from the
application of the two control laws, are reported in Fig. 6.28, as a function of the simu-
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Figure 6.26: Trajectories corresponding to the solution to (4.65) (dashed) and (4.69) (solid), to-
gether with state constraints (4.20) (outer parallelotope) and |z;| < aj (inner box).
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Figure 6.27: Tracking error for a sample SK maneuver: MS+C1 (red, dashed), MS+C2 (blue, solid)
and MPC (black, dash-dotted).

lation time 7. These cost functions are obtained from (4.15) and (4.48), respectively, by
removing the limit operation. It can be seen that the fuel consumption is approximately the
same for the three solutions, while the MS+C1 law provides a smaller actuator switching
frequency, (in the order of 5%) with respect to the MS+C2 and MPC laws. In particular, the
performance gap between the MS+C1 and MS+C2 schemes is due to the additional input
transitions required by the MS+C2 scheme to reject the effect of noise on the relative phases
(despite the fact that tracking a desired phase does not give any theoretical advantage in
this scenario, according to the structure of the solutions in Fig. 6.26).
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Figure 6.28: Average fuel consumption and switching frequency: MS+C1 (red, dashed), MS+C2
(blue, solid) and MPC (black, dash-dotted).

Clearly, an advantage of the MPC approach in the considered application is that the rate
error bounds are enforced directly as constraints in the optimization problem (4.99), while
an heuristic procedure has been necessary to suitably tune the parameter « in (6.15). In this
respect, the solution to the minimum switching Problem 4.3.1, in the presence of angular
rate constraints, represents one interesting subject for future investigations.

6.4.2 LEO scenario

In the following, the proposed control laws are compared on a LEO mission scenario with
the following features:

e The required pointing accuracy is 0.5 mrad per axis, while no angular rate constraints
are specified;

e A persistent disturbance torque 74 = [0, 0.5, 0.2 mN-m, due to drag, is the main
disturbance acting on the system,;

e A 500 kg class spacecraft is considered, whose design is the same reported in Fig.
6.16, except for a scaling and the fact that solar appendages are not present (panels
are mounted on the external body surfaces).

Notice that the magnitude of the IVLH rate wy in (4.2) and (4.8), for this scenario, is
about 15 times higher than that considered in the previous simulations. Moreover, the
parameters of the navigation system are left unchanged. The matrix Wy in (4.14) is set to
Wy = (k0.5-1073)"'I, where x = 0.9 introduces a 10% safety margin with respect the
pointing accuracy requirements, to account for discretisation and measurement errors.

The periodic trajectories specified by Theorems 4.3.1 and 4.3.2 are reported in Fig. 6.29.
The solution returned by Theorem 4.3.2 provides a 18% reduction of the actuator switching
frequency with respect to that of Theorem 4.3.1. Therefore, we expect a similar advantage
for the MS+C2 law over the MS+C1 law.

The tracking error profiles from the application of the MS+C1 and MS+C2 schemes are
reported in Fig. 6.30. It can be seen that, with the exception of a short initial transient,
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Figure 6.29: Trajectories corresponding to the solution to (4.65) (dashed) and (4.69) (solid), to-
gether with state constraints (4.20) (outer parallelotope) and |z;| < a; (inner box).

during which the MS+C2 controller has to track the desired phases (see the pitch error
profile), the pointing accuracy requirements are satisfied by both solutions. This confirms
that the double integrator model (4.9), which is obtained by neglecting the cross coupling
terms depending on wy, in (4.8), provides reasonable approximation of the attitude error
dynamics for the considered control problem.

Observe from Fig. 6.30 that the growing amplitude of the oscillations about the roll axis
for the MS+C1 law is due to a phase shift effect, arising from measurement and discreti-
sation errors (the amplitude of the oscillations about the pitch axis is decreasing, although
not clearly visible in Fig. 6.30). This phenomenon is better understood by observing the
closed-loop trajectories in the transformed space (z1,z2,23), shown in Fig. 6.31. It can be
seen that, although the trajectory resulting from the application of the MS+C1 scheme (red,
dashed) does not follow the path obtained for ¢; = ¢ = ¢3 = 0 in Fig. 6.29, it is main-
tained within the box |z;| < a] specified by Theorem 4.3.1, with few constraint violations
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Figure 6.30: Tracking error profile: MS+C1 (red, dashed) and MS+C2 (blue, solid).
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due to noise. In fact, the result provided by this theorem does not depend on the relative
phases of the oscillations. Conversely, the oscillations resulting from the application of the
MS+C2 scheme (blue, solid) closely follows the path depicted in Fig. 6.29, because in this
case the relative phases are controlled.
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Figure 6.31: Trajectories from the application of the MS+C1 (red, dashed) and MS+C2 (blue, solid)
schemes, together with state constraints (4.20) (outer parallelotope) and |z;| < a; (inner box).
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Figure 6.32: Average fuel consumption and switching frequency: MS+C1 (red, dashed) and MS+C2
(blue, solid).

The average fuel consumption J;(T') and switching frequency J,(T'), obtained with the
two control schemes, are reported in Fig. 6.32. As expected, the MS+C2 scheme performs
better than the MS+C1 scheme in terms of switching frequency. In particular, it provides a
14% reduction of the switching cost J,(7) at the end of the simulation (the expected 18%
reduction, found by comparing the optimal costs of Theorems 4.3.1 and 4.3.2, is matched
for longer simulations, as the effect of the initial transient is averaged out).

The MPC controller is tuned by using K,, = 10* diag (0.2,0.2,0.2,4,4,2) and K, = 10*I
in (4.99) (where angular rate constraints are not enforced), while the parameters At,, N,
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and N are set as in Section 6.3.2. Figures 6.33 and 6.34 show the performance obtained
for « = 0.7 and a = 0.8 in (4.99). For o = 0.7, the fuel consumption is the same as
that obtained with MS laws, reported in Fig. 6.32, but the switching frequency is about 10
times higher. For o = 0.8, a reduction of the switching frequency can be noticed, but the
fuel consumption is increased by approximately 10%. Moreover, the switching cost is still
considerably higher than that of the MS schemes, and the controller is not able to keep the
roll error in Fig. 6.33 within the bounds.
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Figure 6.33: Tracking error profile of MPC: o = 0.7 (black, solid) and « = 0.8 (blue, dashed).
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Figure 6.34: Average fuel consumption and switching frequency of MPC: « = 0.7 (black, solid) and
o = 0.8 (blue, dashed).

The poor performance of the MPC scheme in this scenario appears to be related to the
prediction horizon N = 9 and control horizon N,, = 3 used by the controller. In particular,
the violation of the roll error bounds in Fig. 6.33 indicates a lack of anticipative action, due
to a too short prediction horizon. Moreover, the fact that the period of the MS trajectories
in Fig. 6.30, and therefore of the underlying control sequence, is of about 100 s, suggests
that the control horizon of the MPC scheme should be set to a similar length. Unfortunately,
the computational time necessary to solve the MILP problem (4.100), scales badly with the
length of the control horizon, as illustrated in Table 6.16 for different values of N,, and N.
In fact, despite the efforts to tune the parameters of the controller, it has not been possible
to increase the performance of the MPC scheme significantly, without compromising the
feasibility of its online implementation.
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Table 6.16: Computational time required by MPC for different prediction and control horizons

Parameter Ny=3,N=9 | N,=6,N=9 | N,=N=25
Running time 25 ms 0.5s minutes

6.4.3 Time-varying torques

In the following, the case in which an additional time-varying disturbance 7, acts on the
system, due to a large residual magnetic dipole of the spacecraft, is addressed within the
LEO mission scenario considered in Section 6.4.2. The profile of the overall disturbance
Te & Tq + T is depicted in Fig. 6.35.
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Figure 6.35: Disturbance torque profile.

Notice that the frequency of the disturbance is equal to the IVLH rate wy,, and hence its
period is equal to the orbital period. Because of the slow variation of the attitude distur-
bance, with respect to the error dynamics timescale, it is still possible to apply the MS+C1
and MS+C2 schemes. To this purpose, (4.66) and (4.70)-(4.71) are evaluated in real-time,
as outlined in Section 6.4.1.

The system is simulated for 3000 s. The attitude error profile resulting from the ap-
plication of the MS+C1 and MS+C2 schemes is reported in Fig. 6.36. It can be seen that
the MS+C1 scheme is able to keep the attitude error within the pointing accuracy bounds
for the entire simulation period, as opposed to the MS+C2 scheme. This is due to the re-
quirement for the MS+C2 scheme to track a time-varying phase, as confirmed by the profile
of the phase tracking errors 5 in (4.84), depicted in Fig. 6.37. Observe that the refer-
ence phase signal from the online solution to (4.71) can change abruptly as the disturbance
torque varies (which is likely due to the fact that, in the presence of noise, different local
minima are found by solving (4.71) at different sampling times). In order to track this sig-
nal, frequent adjustments of the amplitude (and hence the period) of the oscillations have
to be performed, according to (4.83), which turns out to be the main reason for state con-
straint violations. On the other hand, one cannot blame the MS+C2 scheme for such type
of behaviour, as it is designed to reject a constant disturbance torque.

The fuel consumption and switching frequency resulting from the application of the two
control schemes is reported in Fig. 6.38. The fuel consumption is the same for both solutions,
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Figure 6.36: Tracking error profile: MS+C1 (red, dashed) and MS+C2 (blue, solid).
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Figure 6.37: Phase tracking errors.

while the MS+C2 scheme performs better than the MS+C1 scheme in terms of switching
frequency. This advantage, however, comes at the price of a lower tracking accuracy.
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Figure 6.38: Average fuel consumption and switching frequency: MS+C1 (red, dashed) and MS+C2
(blue, solid).

Finally, it is worth remarking that, by focusing the analysis on a LEO orbit, a quite high
value of the frequency wy, of the disturbance has been considered. For disturbances with a
very low frequency, e.g. solar radiation pressure torques in GEO, a better tracking accuracy
of the MS+C2 scheme can be expected. Nevertheless, the extension of this control scheme
to the case of time-varying disturbances is an important topic that remains to be addressed.



Chapter 7

Conclusions and Future Work

This final chapter contains a summary of the thesis contributions and a discussion of the
achieved results and of future research directions.

7.1 Summary of contributions

The contributions of this thesis can be divided into three categories: orbit control techniques,
attitude control techniques, validation of the proposed techniques on EP-based missions.

Orbit control techniques

An orbital element control scheme has been derived for autonomous station-keeping of low
Earth orbiting spacecraft. The proposed design relies on a continuous thrust control strat-
egy, providing asymptotic tracking of the desired in-plane motion, by means of an efficient
rejection of atmospheric drag, and an impulsive control scheme, which compensates for mi-
nor cross-track perturbations, by using small velocity increments of fixed magnitude.

An LMPC scheme has been developed for the autonomous rendezvous and docking prob-
lem. The proposed design is general enough to handle path constraints, as well as thrust
magnitude and rate constraints. By exploiting the use of Laguerre functions, in combina-
tion with multi-parametric programming techniques, the optimal control problem is solved
explicitly, which allows for the implementation of the control law on simple hardware.

Attitude control techniques

The minimum fuel and minimum switching control problem has been addressed for systems
of coupled double integrators, in the context of precise attitude control with on/off actua-
tors. Two suboptimal control strategies have been derived, providing upper bounds on the
minimum switching frequency required to satisfy given state constraints, while rejecting a
persistent disturbance with the minimum propellant consumption.

An MPC scheme, based on the linearized model of the attitude error dynamics, has been
derived. The proposed methodology allows the designer to explicitly take into account both
the fuel consumption and the number of actuator switching cycles, providing a suitable way
to trade-off these objectives by means of a scalar parameter. The approach is general enough
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to be applied also in the case of nonsymmetric thruster configurations, and in the presence
of angular rate constraints.

Validation of the proposed techniques on EP-based missions

A simulation software has been implemented in MATLAB, including an accurate dynamic
model of the spacecraft, as well as a GNC module based on the proposed control techniques
and the developed EKF schemes. The simulation software can be used to design and analyze
the principal classes of Earth orbit missions with electric propulsion.

The proposed control techniques have been validated on different mission scenarios. A LEO
mission has been simulated to demonstrate the effectiveness of the orbital element control
system. The performance of the LMPC design has been compared to standard MPC and
LQR techniques on a formation flying mission, in terms of propellant consumption, maneu-
ver completion time and safety of operation. The performance of the attitude control laws
has been evaluated on GEO and LEO scenarios, in terms of fuel consumption and thruster
switching frequency.

7.2 Discussion of the results

The autonomous station-keeping problem has been addressed for spacecraft with electric
propulsion. By using the proposed control scheme in combination with an Hall effect
thruster, it has been shown that the effect of atmospheric drag on spacecraft flying at very
low altitudes can be compensated for sufficiently long mission lifetimes. The control scheme
permits to compensate also the cross-track perturbations, by using a low power resistojet
which is fed by the same xenon tank used by the Hall thruster. This provides a suitable
trade-off between thrust efficiency and power requirements of the propulsion subsystem.
The results from a case study of a small satellite LEO mission demonstrate the viability of
the proposed solution, in terms of control accuracy and performance of the propulsion sys-
tem. It is believed that this technology will play a key role in a number of future low-cost
missions for remote sensing and Earth observation.

Concerning the autonomous rendezvous and docking problem, it has been shown that
the use of Laguerre functions can be effective in improving the computational efficiency of
model predictive control. The proposed controller accounts for the low thrust level delivered
by the EP technology, while guaranteeing safe proximity operations. Moreover, it does not
require a dedicated solver onboard the spacecraft thanks to the explicit formulation, whose
implementation boils down to the evaluation of a piecewise affine state feedback control law.
The results from the simulation case study of a cubesat formation flying mission indicate that
the achievable performance, in terms of control accuracy and propellant usage, is compatible
with the specifications of a PPT system that is close to flight qualification. Moreover, the
required computations are found to be feasible on low-power hardware, within the sampling
interval of the control system.
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The attitude control problem has been studied for spacecraft equipped with on/off re-
action control systems. The proposed control techniques allow one to confine the attitude
tracking errors within prescribed bounds, while at the same time satisfying the constraints
imposed by the technological limitations of the actuators, and are general enough to be
employed in the presence of coupled dynamics. This is the case, for instance, whenever
non-orthogonal thruster configurations are adopted for maximizing the generated torque
or satisfying constraints coming from the spacecraft layout. The results from a simulation
case study of an all-electric mission show that the additional propellant mass required by
the considered attitude control system, based on small EP thrusters, is balanced by the ben-
efits of removing momentum/reaction wheels from the ACS design, in terms of enhanced
reliability and pointing stability.

From the comparison of the control laws (see Section 6.4), it can be concluded that,
at the current status of the design, both the minimum switching schemes (MS+C1 and
MS+C2) are well-suited for applications in which the disturbance torque is approximately
constant or varies very slowly. However, the MS+C2 scheme is affected by a degradation of
the tracking performance in the case of time-varying torques. In this case, the presence of
many local minima in the objective function that is optimized, at each time step, in order to
compute the reference phase signals, renders the control scheme highly sensitive to noise.
In fact, the MS+C1 law, which does not rely on the optimization of the relative phases, is
not affected by this problem. Moreover, the parameters of both the MS+C1 and MS+C2
schemes have to be scaled in order to cope with angular rate constraints. Alternatively,
the proposed MPC design allows one to optimize the fuel consumption and the number of
actuator switching cycles, while accounting in a systematic way for attitude and angular rate
constraints, as well as for arbitrary thruster configurations. However, it is worth remarking
that the mixed integer optimization problem involved in the computation of the MPC law
is quite challenging. The computational burden is heavily affected by the length of the
control horizon. The latter, in turns, depends on the pointing requirements and has an
impact on the control performance. For the considered GEO mission, it turns out that the
required processing power is compatible with state-of-the-art flight qualified CPUs. On the
other hand, for more general cases (e.g. the LEO scenario in Section 6.4.2), it has not been
possible to obtain a satisfactory performance of the MPC scheme, without compromising the
feasibility of its online implementation.

7.3 Future research directions

The results obtained are by no means exhaustive and there are many aspects of the consid-
ered problems that still remain to be investigated.

A continuous/impulsive control scheme has been developed in Section 3.2 for the station-
keeping problem. Although the stability of the closed-loop system has been shown under
simplifying assumptions on the system structure, the provided results do not extend to the
fully interconnected dynamical system. Therefore, a formal stability proof of the overall
design wold be a valuable add-on to the theoretical analysis presented in this thesis. In this
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respect, the application of backstepping techniques can be envisaged.

An explicit LMPC design has been developed in Section 3.3, for the rendezvous and
docking problem. An underlying assumption in the derivation is that the attitude of the tar-
get spacecraft is aligned to the IVLH frame orientation and that the spacecraft have similar
physical properties. However, this is only true for spacecraft formations which are specifi-
cally designed to satisfy these requirements. In the case of rendezvous and docking with a
tumbling, noncooperative target, e.g. repairing and refueling of defunct satellites, or space
debris removal, the applicability of the explicit controller might be limited, due to the pres-
ence of time-varying constraints. From a theoretical viewpoint, it will be interesting to see
how the MPC and LMPC schemes compare under a dual-mode formulation of the corre-
sponding control problems.

Concerning the attitude control problem, in Chapter 4, it is worth remarking that the op-
timization of the relative phases of the attitude error oscillations gives a conservative upper
bound on the minimum actuator switching frequency. In fact, we have found empirically
that periodic trajectories with a lower switching cost do indeed exist. Moreover, it is still
not clear how to tackle the minimum switching problem without enforcing the constraint
that the periodic solution of each state variable must take the same form as the optimal
solution for the single-axis case. For instance, one could consider periodic trajectories hav-
ing asymmetric amplitudes or different periods along different state components. Another
important aspect for future investigations is the possibility to extend the obtained results to
the case of time varying torques and angular rate constraints, as well as for other classes of
multivariable linear dynamic systems. In this respect, developing methods for improving the
computational efficiency of the mixed-integer MPC algorithm may play a significant role.
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Appendix

For completeness, the proofs of Propositions 3.2.1, 3.2.2, 3.2.4 and 3.3.2 are reported next.

Proof of Proposition 3.2.1
Proof. For system (3.15)-(3.16), a candidate Lyapunov function is
1
V= 5501TK1501, (A1)
which is positive definite. The time derivative of (A.1) is
V = (50{K1(5(.)1 = —50{K1b1b{K1(501 (AZ)

which is negative semidefinite. Consequently, do;, a = @ + da, and hence b; from (3.17)
are bounded. To prove asymptotic stability, we use Barbalat’s lemma. Let x = K;00;. Then

V = —x"b;bT'x and its time derivative is given by
V = —2xTb;bTx — 2x"b, b7k, (A.3)
which is bounded because x = K;do; and x = —Kf bido; are bounded, and b, is bounded
for a > 0. Then,
lim V(t) = 0.
t—o00

Notice that blTKléol = 01in (A.2) implies © = 0 in (3.16) and therefore 66, = 0 in (3.15).
Combining this observation with the fact that, due to the presence of the time-varying
term v(t) in (3.17), the vector b, (t) spans the whole R® space over time, one has that
lim V(¢) = 0 implies lim x(t) = 0. Hence, lim do;(t) = 0, which concludes the proof. [
t—o0 t—o0 t—o0

Proof of Proposition 3.2.2

Proof. Define zZ = (K;z + d). System (3.12), with the control law (3.18), can be rewritten
as

601 = —bbl K01 +biZ
. (A.4)
For system (A.4), a candidate Lyapunov function is
V = L5oTK o, + 3 (A5)
R Y A '
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which is positive definite. The time derivative of (A.5) is

. 1 .
V =60l K 60, + i = —001 K b;bI K 00, = —x"b1bl x, (A.6)
i
which is negative semidefinite. By using the same arguments as in the proof of Theo-
rem 3.2.1, one has that
lim V(t) =0, (A.7)

t—o00

which implies that, for t — oo,

561 — blz
. (A.8)
z — 0.

Notice that, with the same reasoning as in Theorem 3.2.1, the only solution to (A.4) satis-
fying (A.8) is the trivial one (do1,z) = (0,0). Then, fli}m 001(t) = 0, which concludes the
L o0

proof. O

Proof of Proposition 3.2.4

Proof. By substituting (3.21) in (3.14), one gets

- [ 1 T
oy = ‘—\//_LK,, oy + 5 — &—3,
where dv; € (—n, 7]. Then, for 0 < K, < —,
™a?2
oy = —\/ﬁKV 51/1,
and therefore tlim dv; = 0, which concludes the proof. O
—00

Proof of Proposition 3.3.2

Proof. Under the assumptions of Proposition 3.3.2, (3.59) boils down to
min J=n"Qn+2x" (k)¥n
m (A.9)
s.t.  (3.58), s2 =0, x(k+ N,|k) = 0.

Let J*(k) and J*(k + 1) denote the optimal value functions for problem (A.9) at sampling
times k and k + 1. Moreover, denote by

U™ (k) = {L(O0)n"(k), ..., L(N, — 1)n"(k)}

the optimal input sequence at time k. Because the problem is feasible at each time sample,
a feasible input sequence a time k + 1, starting from x(k + 1) = x(k + 1|k), is

Uk +1) = {L)n"(k), ..., LN, — 2)n"(k), 0},
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corresponding to the cost J(k + 1). By definition, one has that J*(k + 1) < J(k + 1) and
therefore
J(k+1)—=J(k) < J(k+1)— J (k). (A.10)

Because J(k+1) and J*(k) share the same control and state sequences for the set of samples
E+1,....k+ N, —1, and x(k + Np|k) = 0, it can be verified that

J(k+1) = J k) = —x(k+ 1)TQax(k +1) —u(k)"Rgu(k). (A.11)

where the matrices Q; = 7,Q’ Q. and R; = T,R' R, are assumed positive definite. By
using (A.11) in (A.10), it follows that

Tk +1) — J*(k) <0,

for x # 0, u # 0, which concludes the proof. O
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Abs’rroct of the thesis:

Electric propulsion represents nowadays a solid established technology
which can provide benefits over a large number of space missions and
enable new challenging applications, as it allows for significant
propellant mass savings and hence for reduced satellite launch costs.
However, the application of this fechnology cannot rely on the impulsive
conftrol strategies established for the traditional chemical propulsion,
calling for a re-design of the spacecraft control system. This thesis fackles
the design problem by developing low-thrust aftitude and orbit confrol
techniques, tailored to statfion-keeping, formation flying and precision
pointing of Earth orbiting spacecraft driven by electric propulsion.
Numerical simulations of stafte-of-the-art dynamic models of the
spacecraft demonstrate the effectiveness of the proposed techniques,
within an autonomous guidance, navigation and control system.
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