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Introduction

In recent years, all the major spacecraft manufacturers have presented development pro-

grams for innovative satellite platforms based on electric propulsion (EP), motivated by

the high fuel efficiency of this technology. In particular, it has been demonstrated that the

application of EP for orbit raising and station-keeping (SK) operations enables significant

propellant mass savings, and therefore reduced satellite launch and servicing costs, com-

pared to traditional chemical propulsion. Electric propulsion technologies have also been

proposed for precise attitude control, as an alternative to momentum exchange devices.

The potential benefits of EP in this application area are an increased system reliability and a

higher pointing stability, as it allows to remove rotating and vibrating parts from the attitude

control subsystem.

With respect to chemical propulsion, EP systems can deliver a much smaller thrust. Con-

sequently, they are required to operate steadily for long time periods. Moreover, unlike

momentum exchange devices, EP-based reaction control systems must be operated in on/off

mode, and restrictions on the duration and number of switching cycles have to be taken into

account. One important implication of these aspects is that the conventional approach to

spacecraft operation, relying on large delta-v impulses for orbit control, and proportional

control torques for attitude stabilization, can no longer be used. Instead, efficient guid-

ance, navigation and control (GNC) techniques, accounting for the peculiarities of the EP

technology, have to be devised.

The contribution of the thesis in this context is threefold. First, a control law is derived

for autonomous station-keeping of low Earth orbiting spacecraft, by suitably adopting or-

bital element feedback methods to deal with the presence of atmospheric drag, and the lack

of radial thrust. Then, the rendezvous and docking problem is considered. By exploiting a

low complexity parametrization of the control sequence, an explicit model predictive con-

trol (MPC) scheme is derived, able to enforce the constraints required for safe maneuvering,

without incurring an excessive computational cost. Finally, the problem of maintaining the

attitude of a spacecraft aligned to a reference orientation, with minimum fuel consumption

and minimum switching frequency of the actuators, is studied. Two solutions are presented

for this problem. An event-based control law, extending the scalar fuel/switch-optimal solu-

tion to the multivariable case, and an MPC scheme, based on the real-time optimization of

the actuator switching cycles, as well as the overall fuel consumption.



2

The application of the proposed control techniques, within an autonomous guidance,

navigation and control system, is demonstrated on a realistic simulation environment, in-

cluding state-of-the-art mathematical models of the attitude and orbital perturbations.

Thesis organization

The thesis is organized as follows.

In Chapter 1, several emerging applications of EP technologies are discussed, with par-

ticular emphasis on the most common classes of Earth-orbiting spacecraft. An overview

of the challenges that need to be faced in the development of efficient control techniques

tailored to the considered applications is provided, along with a summary of the way such

problems are addressed in the literature and in this thesis.

In Chapter 2, some fundamental astrodynamic concepts are recalled, and an accurate

mathematical model describing the translational and rotational motion of the spacecraft,

as well as the most relevant orbital and attitude perturbations, is presented. This model

provides a testbed for validating all the techniques proposed in the thesis.

In Chapter 3, the problem of maintaining a desired low altitude orbit, and that of per-

forming autonomous rendezvous and docking, are addressed for spacecraft with low-thrust

propulsion. A hybrid continuous/impulsive control law, able to keep the spacecraft close

to the reference orbit, without the need for radial thrust, is derived for the first problem.

An explicit MPC scheme, based on a polynomial approximation of the control sequence, is

developed for the second one.

In Chapter 4, the problem of maintaining the attitude of a spacecraft aligned to a given

orientation, while minimizing both the propellant consumption and the on/off switching

frequency of the actuators, in the presence of persisting disturbances, is studied. The clas-

sical single-axis solution is extended to the coupled multivariable case, and an event-based

feedback control law is derived to steer the attitude of the spacecraft towards the provided

multivariable solution. An MPC scheme, based on real-time optimization of the fuel and

switching costs, is also presented, which can be applied to more general system dynamics.

In Chapter 5, an orbit determination filter, an attitude determination filter and a relative

navigation filter, based on extended Kalman filtering (EKF) techniques, are developed, in

order to assess the performance of the proposed control techniques within a closed-loop

GNC system.

In Chapter 6, the results of numerical simulations are reported and analyzed to evaluate

the performance of the proposed control techniques, and the applicability of the considered

EP technologies to different types of space missions.

In Chapter 7, the main contributions of this thesis are summarized and discussed, and

future directions of research are outlined.
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Chapter 1

Electric Propulsion Challenges

Electric propulsion represents nowadays a solid established technology which can provide

benefits over a large number of spacecraft missions and enable new challenging applica-

tions. An EP system is a set of devices arranged so as to convert electrical power from the

spacecraft power system into kinetic energy of a propellant jet engine exhaust. This can

be accomplished by using different types of engine architectures. Operation can be steady

or pulsed; the propellant can be a noble gas or even a solid; gas acceleration can be elec-

trothermal, electrostatic or electromagnetic. Of the many proposed architectures, the one

having reached a considerable level of maturity can be classified as: resistojets, arcjets,

Hall thrusters (HET), ion engines, pulsed plasma thrusters (PPT), field-effect electrostatic

propulsion (FEEP), colloidal ion thrusters, and magnetoplasmadynamic thrusters, see e.g.

[93]. The common paradigm of all these architectures is to provide a higher specific im-

pulse, i.e. a higher exhaust speed and therefore an increased fuel efficiency, when compared

to conventional chemical engines. This is especially relevant because, for a given amount of

propellant, the fuel efficiency ultimately dictates the lifetime and the capability of a space

mission. On the other hand, the thrust generated by EP systems is usually much weaker

than that of chemical engines, due to the limited power level that can be supplied to accel-

erate the propellant. Consequently, EP systems are required to operate continuously for a

significant period of the overall mission time.

The design of guidance, navigation and control schemes for spacecraft driven by low-

thrust EP systems is complicated by the fact that the relatively simple impulsive control

schemes available for high-thrust chemical systems can no longer be applied. Instead, a

continuous thrusting strategy, accounting for the peculiarities of the actuators, is required,

which often poses a difficult design challenge. In fact, analytical or approximate solutions

to low-thrust problems exist only for some special applications, but the general continuous-

thrust problem requires full numerical integration of each initial condition and thrust profile,

as well as the consideration of input amplitude constraints. For this reason, during the last

few years a considerable research effort has been directed towards the development of low-

thrust GNC techniques, with particular focus on two fundamental aspects: the open-loop

optimization of low-thrust trajectories, see e.g. [10, 26], and the derivation of closed-loop

control laws, see e.g. [75, 85, 87]. In this thesis, the interest lies mainly on the second

aspect. More specifically, the attitude and orbit control problems will be addressed for some

representative classes of Earth orbit missions that could greatly benefit from the application

of an EP system, within an autonomous GNC scheme.
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1.1 Electric propulsion applications

In this section, several emerging applications the EP technology are discussed, with particu-

lar emphasis on the most common classes of space missions, i.e. low Earth orbit, formation

flying and geostationary missions.

1.1.1 Low Earth orbit missions

While the use of EP technologies for station-keeping and orbit transfer of commercial geo-

stationary satellites and deep space missions is widely discussed in the literature (e.g. [90,

91, 103, 105, 114]), relatively few studies have been proposed for low Earth orbit (LEO)

missions. Nevertheless, the capability of EP to compensate for atmospheric drag effects

over several thousands of hours, together with the reduced propellant mass consumption,

allows for accurate LEO station-keeping operations over sufficiently long duration missions,

as opposed to traditional chemical technologies. In this regard, the GOCE mission repre-

sents a breakthrough in space technology [21, 100]. Some recent studies have been focused

on drag free spacecraft operations [12, 44]. Besides these challenging scientific missions,

there are other classes of LEO missions that have a potential commercial interest, like Earth

observation by means of small and cheap satellites. In [42], for instance, it is shown that

high resolution Earth imaging can be achieved, by using small optical instruments, from

altitudes of about 300 km and below. Moreover, recent ESA studies on remote sensing ap-

plications have clearly demonstrated that operating an EP system on a LEO orbit can give

a net advantage in terms of both reduced launch mass and enhanced payload performance

[25].

Miniaturized HET thrusters are particularly well-suited for LEO station-keeping when

compared to other classes of EP devices, thanks to the lower input power required. For a

given amount of available power, the thrust produced is nearly two times the one of gridded

ion thrusters and about four times the one provided by FEEP thrusters [116]. For this

reason, HET technologies enable a reduced orbit altitude for the benefit of low-budget Earth

observation missions, which could find a mass-market e.g. in cartographic applications. In

addition to HET, different types of low-power EP technologies, such as resistojet thrusters,

can be considered as a secondary propulsion system to counteract LEO perturbations other

than drag, in order to trade-off the thrust efficiency with the limitations imposed by the

spacecraft mass and available power [51, 102].

Besides the choice of a specific thruster architecture, it is worth remarking that maintain-

ing a given low Earth orbit traditionally requires frequent, ground-based control actions, in

order to compensate for atmospheric drag and other disturbing forces. For small, low cost

satellites, ground-in-the-loop control can be a dominant element of both cost and risk [73].

The combined use of EP technologies and autonomous GNC techniques provides an effec-

tive way to address this issue. In particular, the application of a suitable EP system allows

for significant savings of propellant mass and a consequent increase of the spacecraft life-

time. On the other hand, autonomous station-keeping provides reduced operational costs,

as demonstrated by the UoSat-12 [45], Demeter [78] and PRISMA [31] missions.
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1.1.2 Formation flying missions

Spacecraft formation flying is an enabling technology for many present and future space mis-

sions. Examples include technology demonstrators like PRISMA [54] and PROBA-3 [127],

the space interferometer DARWIN [46], the Mars sample return scientific mission [95], and

on-orbit servicing projects such as the Automated Transfer Vehicle [106] or the orbital life

extension vehicle SMART-OLEV [68]. In most current applications, active control of the for-

mation is achieved by using cold-gas thrusters, which represent the simplest type of chemical

propulsion. This type of thruster technology, however, is affected by a very low specific im-

pulse and by constraints on the minimum impulse capability, which limit both the number

of formation keeping/reconfiguration maneuvers that can be performed and the achievable

control accuracy.

Another application of recent interest is represented by formation flying of picosatellite

class spacecraft that follow the cubesat standard [48, 92]. This standard limits single-unit

(1U) cubesats to 1.5 kg and a 10 cm cube, and three-unit (3U) cubesats to 4 kg and a 30 cm

x 10 cm x 10 cm envelope. Despite their limited size, the increasing capabilities of cubesats,

together with the relatively inexpensive development and flight costs, create the opportunity

for these spacecraft to serve as a low-cost and reliable access to space for companies and

universities. Cubesat specifications does not currently allow for integration of high-pressure

tanks onboard the spacecraft due to the risk of rupture or misfire. Therefore, propulsion

technologies other than cold-gas thrusters may be required for orbit control of future cubesat

formations.

Motivated by the problems outlined above, EP technologies, such as FEEP and PPT

thrusters, have been considered as a possible alternative to cold-gas systems for spacecraft

formation flying [39, 110]. In terms of flight readiness, however, few EP systems are cur-

rently available. This is especially true for cubesat spacecraft, due to the severe volume,

power and mass constraints imposed to these platforms. This thesis addresses the suitability

of a miniaturized PPT called PPTCUP, which is very close to being flight qualified, having

recently completed one million shots in a life testing campaign [24]. Using a set of typical

requirements for rendezvous and docking operations, the applicability of a cluster of these

thrusters is investigated from a control perspective, i.e. whether the thrusters can meet the

control requirements, given the constraints on controllability, mass, number of engines and

their location. Notice that the very low thrust level delivered by PPT engines leads to severe

limitations in the performance achievable by the control system. Therefore, a constrained

control design is required, where both input and state constraints have to be enforced.

1.1.3 Geostationary missions

Spacecraft systems using geostationary orbit (GEO) have a high commercial and strategic

value, thanks to the ability to provide continuous coverage over a wide geographical area.

The vast majority of communication satellites and an increasing number of Earth observa-
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tion missions are in fact designed to operate in GEO, see e.g. [32, 74]. The recent growth of

satellite communication services has imposed severe restrictions on the size and the number

of free GEO locations. At the same time, many scientific organizations have suffered from

budget limitations. As a consequence, commercial platforms with shared communications

and observation payloads have received considerable interest, providing a consistent, de-

pendable and affordable access to space [3, 125]. In order to meet the mission requirements

imposed by multiple payloads, satellite operators are demanded to constantly upgrade the

performance of their systems.

All-electric spacecraft seems to be one of the most promising concepts to enable high

performance GEO missions at a substantially decreased cost compared to conventional plat-

forms. This is achieved through the considerable reduction of spacecraft mass and size

allowed by the use of high efficiency electric propulsion systems for orbit raising and SK op-

erations [43, 55]. Several solutions, however, are still under investigation to provide precise

attitude control of all-electric spacecraft, as required for operation of advanced communi-

cations and Earth observation payloads. Momentum exchange devices, such as ball-bearing

reaction wheels and control moment gyros, are by far the most commonly used actuators.

Their main advantage is that a minimum amount of fuel is needed to counteract attitude

perturbations, in particular when momentum dumping is conveniently performed during

SK maneuvers, using EP thrusters [9]. Nevertheless, micro-vibrations associated with wheel

unbalance, zero-rate crossing and friction instabilities represent serious drawbacks of these

systems, especially for applications that require high pointing accuracy. In addition, momen-

tum exchange devices tend to be costly, massive, and require a large amount of power. As an

attempt to solve some of these issues, a wheel-less EP-based attitude control system (ACS)

has been proposed in [77] for the Geo-Oculus mission. A solar pressure attitude control

concept has been successfully experimented on a class of GEO satellites, but there exist sev-

eral practical implementation problems to be solved prior to a large-scale application of this

advanced technique [138]. The potential application of teflon PPT has been investigated

in [70], and later demonstrated in space by the NASA mission EO-1 [143].

Reaction control systems based on xenon thrusters, sharing a common propellant bus

with the primary EP system, represent another viable solution, that could be beneficial to

reduce development complexity and costs of all-electric spacecraft [102]. Cold-gas and

electrothermal microthrusters, with thrust levels scaled down to the millinewton range, are

particularly well suited for precise attitude control, providing very small impulse bits and

a minimal excitation of the spacecraft flexible modes. While the poor fuel efficiency of

cold-gas systems restricts their use to operational environment where the delta-v budget

is considerably low, the foreseen availability of very high temperature resistojet and hol-

low cathode technologies, providing a substantial increase of the thruster specific impulse,

raises the possibility of replacing existing momentum exchange devices with simple, reli-

able and relatively inexpensive electrothermal microtrusters [23, 53, 80]. However, these

thrusters are typically operated in on/off mode, and restrictions on the duration and number

of thruster firings have to be accounted for in the design of the attitude control scheme.
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1.2 EP-based spacecraft control techniques

Having discussed the benefit of EP technologies for some representative classes of space

missions, this section gives an overview of the challenges that need to be faced in order to

develop efficient control techniques tailored to these applications, and briefly describes the

contribution of this thesis.

1.2.1 Autonomous station-keeping

Station-keeping refers to the process of controlling a spacecraft so as to maintain the nominal

orbit. In general, SK can be either ground-based, which means that a sequence of control

commands is transmitted from the ground segment to the spacecraft, or autonomous, which

indicates that the command is evaluated onboard the spacecraft. For high-performance

spacecraft, ground-in-the-loop orbit control can be the dominant factor of both mission cost

and risk, requiring frequent ground commands to be uplinked to the spacecraft. Conversely,

autonomous SK can provide reduced mission costs as well as increased reliability, thanks

to the possibility of executing the corrective actions in real time. In particular, the orbit

becomes fully predictable so that the position of the spacecraft at all future times is known

in advance within the accuracy of the control system.

Motivated by these advantages, autonomous SK systems have been developed since the

early 90’s [30, 73], and their potential application to spacecraft constellations has been in-

vestigated in terms of absolute orbit control of each vehicle in the formation [136]. However,

these systems are based on traditional impulsive control schemes, which are not directly ap-

plicable to low-thrust problems, mainly because in such problems the magnitude of the

orbital perturbations can approach the thrust level delivered by the propulsion system, as in

the case of small EP-based LEO missions.

Up to now, relatively few studies have been focused on developing autonomous SK strate-

gies for low-thrust spacecraft. Nevertheless, the theoretical framework for solving such type

of problems is already well-established in the formation flying literature. More specifically,

continuous control laws based on orbital element feedback [58, 120] provide an effective

way to evaluate the thrust command to EP-based orbit maintenance systems. In fact, the

SK problem can be recast as the problem of tracking the orbital elements of a virtual space-

craft [29, 50], and therefore it is not conceptually different from the rendezvous problem,

for which the above-mentioned orbital element control laws have been originally developed.

The orbit of the virtual spacecraft, however, is affected only by the Earth’s gravitational field,

so that non-conservative perturbations have to be considered in the design. In particular,

atmospheric drag can have a significant impact on the achievable control performance for

LEO missions. In such applications, the design of a real-time control scheme can be quite

challenging, due to the difficulty in obtaining a reliable estimate of the atmospheric density.

Another important requirement for autonomous SK is the availability of an autonomous

navigation system, providing absolute position and velocity information. For autonomous

navigation in LEO, a GPS receiver, coupled with an orbit determination filter, represents a

viable solution [73].
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In this thesis, a GNC system is proposed for autonomous SK of LEO spacecraft driven

by low-thrust propulsion. A simple control law is derived in Section 3.2, by suitably adopt-

ing orbital element feedback methods to account for the large amount of atmospheric drag

acting on the spacecraft. The navigation solution is based on an EKF that estimates the posi-

tion and velocity of the spacecraft from GPS measurements, as described in Section 5.1. The

simulation of a LEO mission is discussed in Section 6.1, to validate the proposed GNC solu-

tion and evaluate the performance of a propulsion system consisting of HET and resistojet

thrusters.

1.2.2 Low-thrust rendezvous and docking

The development of guidance and control techniques for spacecraft formation flying is the

subject of significant research efforts, due to the key role of such problems in many present

and future space missions. Of particular interest in this field is the optimization of low-

thrust rendezvous and docking trajectories, motivated by the application of miniaturized

or high-efficiency propulsion technologies [57, 97]. When two or more spacecraft in a

formation are required to operate in close proximity, these trajectories must be safe with

respect to collisions and other possible anomalies [17]. This generally leads to complex

trajectory optimization problems, subject to both thrust magnitude and path constraints.

Due to the increasing level of autonomy of future space applications, it is critical to efficiently

compute the solution to these problems and to design a control system tracking the resulting

trajectories [135, 140]. To this purpose, efficient guidance and control algorithms have to

be devised.

Two approaches can be considered for the rendezvous and docking trajectory tracking

problem. The first method separates the vehicle guidance and control problems into an

outer guidance loop and an inner control loop. The inner loop computes the control com-

mand required to follow the trajectories generated by the outer loop. A wide variety of

optimization techniques, based on either direct or indirect methods, have been proposed in

the literature for the guidance loop, see e.g. [40, 59, 61, 112, 115], whereas robust feedback

techniques are typically used in the control loop [49, 109, 126]. The second method uses

an integrated approach wherein both the guidance and control problems are solved simul-

taneously. In this case, modern control design techniques, such as receding horizon control

[16, 33, 62, 83, 111], can be applied.

Cascade control architectures can be advantageous over integrated approaches because

much of the complexity of the tracking problem is transferred into the guidance problem,

which is usually solved at a slower sampling rate compared to that of the control loop. For

the same reason, however, cascade control may be less indicated for applications with a

high degree of autonomy, for which the guidance and control problem should ideally be

solved in real-time. In order to tackle this issue, a number of different approaches have

been investigated, see e.g. [11, 79, 83].



1.2. EP-based spacecraft control techniques 11

In particular, model predictive control, based on computing the optimal control sequence

over a finite number of future sampling instances, under a receding horizon strategy, is be-

coming increasingly attractive, thanks to the possibility of systematically handling thrust

magnitude and path constraints in the design. An effective MPC design requires the con-

trol horizon to be comparable with the settling time of the controlled process. Therefore, a

long control horizon is needed to guarantee adequate performance in low-thrust problems.

During close proximity operations, this is coupled with the requirement to use a small dis-

cretization step, to avoid the violation of path constraints between discrete time samples. In

such cases, the main drawback of MPC is the need to solve a trajectory optimization prob-

lem with a large number of decision variables at each time sample, which may make this

method too computationally intensive to be implemented on-line on low-power spacecraft

processors [118]. A possible way to overcome this last difficulty is to parameterize the con-

trol sequence with a set of Laguerre functions, where the poles of these functions are used

to reflect the time scale of the control system, see e.g. [133]. In this setting, which belongs

to the family of direct optimization methods, the number of decision variables can be made

significantly smaller than the length of the control horizon, while path constraints can still

be enforced over a sufficiently fine discretization grid.

Another important factor, which may prevent the implementation of the MPC design

methods discussed so far, is the requirement to embed a control solver with guaranteed

runtime on board the spacecraft. This requirement can be avoided by solving the control

problem explicitly, i.e. by finding off-line a feedback control law defined on a partition of

the state space [8]. However, this is generally feasible only for low-dimensional problems,

due to the worst-case exponential growth of the number of regions in the partition with

the length of the control sequence [134]. An alternative approach, based on the explicit

solution of a quadratically constrained linear quadratic regulator (LQR) problem, has been

recently developed in [79] for a rendezvous problem with thrust constraints, which confirms

the need for computationally efficient feedback control methods specifically tailored to the

considered application area.

The contribution of the thesis in this context is twofold. First, a low-complexity MPC

scheme is developed for the low-thrust rendezvous and docking problem. In the derivation

of the control algorithm, the trajectory optimization problem is reformulated by parame-

terizing the control sequence by a set of Laguerre functions, which allows a long control

horizon to be considered without using a large number of decision variables. Then, an

explicit solution is derived by exploiting this new algorithm in combination with multi-

parametric programming techniques, to enable a trade-off between feasibility and perfor-

mance of the guidance and control system. Since the proposed approach does not require

online optimization, it is especially suitable for implementation on board small spacecraft

with limited computational capabilities. The derivation of the control scheme is discussed in

Section 3.3. A navigation scheme based on the EKF, which can be used in combination with

the proposed control law, within an autonomous GNC scheme, is presented in Section 5.3. A

detailed simulation-based assessment of the performance achievable under the considered

design is given in Section 6.2 for a cubesat mission with electric propulsion, in comparison

to standard MPC and linear quadratic regulator (LQR) techniques.
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1.2.3 Precise attitude control

Pointing accuracy is a key requirement in communication satellites and Earth observation

missions. Attitude control systems must guarantee tracking of the reference attitude, while

accounting for mission performance indexes such as fuel consumption and actuator wear.

Electric propulsion systems, with thrust levels scaled down to the millinewton range, are

particularly well suited for precise attitude control. Because these systems work by expelling

propellant mass, the minimization of the fuel consumption is the primary requirement in the

design of an EP-based attitude control system. Moreover, thrusters are commonly operated

in on/off mode, so that restrictions on the minimum duration of their firings (the so-called

minimum impulse bit) and the number of on/off cycles which can be delivered have to be

taken into account. In particular, the number of switching cycles has an impact on both

the lifetime of the thrusters, due to valve wear, and on the specific impulse performance,

which is affected by transient effects on the actuator dynamics. Thus, in order to maximize

the performance and the reliability of a thruster control system, attitude control maneuvers

should ideally be made by few long firings rather than several short firings [19, 28]. Such

considerations typically lead to oscillating behaviors of the closed-loop system [104]. Since

the amplitude of these oscillations is inversely proportional to the thruster switching fre-

quency, achieving precise attitude control while retaining an acceptable number of on/off

cycles is a challenging problem.

A wide variety of control techniques have been proposed in the literature for three-

axis attitude stabilization with on on/off actuators, including phase plane methods [35],

LQR with pulse-width pulse-frequency modulators (PWPF) [1, 76], mixed-integer linear

programming (MILP) control allocation [36], and MPC [63, 132]. While many of these

techniques do explicitly account for fuel minimization and impulse duration constraints,

they do not address the problem of minimizing the actuator switching frequency, which has

a key impact on the performance of the thrusters and hence of the mission itself.

A suitable approach consists in the formulation of an optimal control problem, in which

both the number of input transitions and the control accuracy requirements are explicitly

taken into account, so that to minimize the average switching frequency of the actuators,

while guaranteeing adequate pointing performance. For the single-axis attitude stabilization

problem, with the error dynamics approximated by a perturbed double integrator [35], the

limit cycle corresponding to the fuel/switch-optimal solution has been fully characterised

since long time [38, 60, 69]. However, for multivariable systems, the minimum switching

control problem with state constraints becomes very challenging even for simple dynamics,

such as the case of coupled double integrators. In fact, the optimization methods available

for generic switching systems [14, 113, 123, 141] turn out to be of limited help, due to

the combinatorial explosion of the number of state-space modes with the dimension of the

system, and the presence of a nonconvex objective function. This has motivated a thorough

theoretical analysis of the minimum switching problem for systems of coupled integrators

of arbitrary dimension, subject to a constant disturbance term and controlled by on/off

actuators.
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In this thesis, the minimum switching control problem is addressed from a novel per-

spective, based on the extension to the multivariable case of the classical fuel/switch-optimal

limit cycle solution [52]. The first contribution is a suboptimal solution providing an analytic

upper bound to the minimum switching frequency required to satisfy given (polytopic) state

constraints. By exploiting the further degrees of freedom provided by the relative phases of

the periodic trajectories of each state variable along the limit cycle, a less conservative upper

bound is found, through the numerical solution of a static optimization problem. Moreover,

a feedback control law is derived, in order to track the trajectories corresponding to the so-

lutions previously obtained. The last contribution is an MPC scheme based on the real-time

optimization of the number of thruster firings and the fuel consumption [81, 82], which can

be applied, to a certain extent, to a more general class of dynamical systems.

The derivation of the attitude control laws is described in Chapter 4. A relative nav-

igation EKF, which provides the attitude, angular rate, and disturbance torque estimates

required by these control laws, is presented in Section 5.2. The applicability of the MPC

scheme, in combination with a reaction control system based on electrothermal microthrust-

ers, is demonstrated through numerical simulations of an all-electric GEO mission in Sec-

tion 6.3. The performance of the proposed MPC and minimum switching control laws is

compared in Section 6.4.





Chapter 2

Spacecraft Dynamic Model

In this chapter, some fundamental astrodynamic concepts are recalled and an accurate

model describing the translational and rotational motion of the spacecraft is presented. The

material of this chapter is mainly based on [131] and [137].

2.1 Reference frames and notation

Three reference frames are used in this thesis. The first one is the Earth Centered Inertial

(ECI) frame. The other two coordinate systems are moving frames centered at the spacecraft

center of mass. The so called Local-Vertical/Local-Horizontal (LVLH) frame is oriented so

that its Z axis is aligned with the nadir vector, the Y axis is normal to the orbital plane and

the X axis completes an orthogonal right handed frame. The X , Y and Z directions of the

LVLH frame are referred to as the along-track, cross-track and radial directions respectively,

and the motion along the XY or XZ planes is referred as the horizonal-plane or in-plane

motion, respectively. The spacecraft body frame is aligned with the the principal axes of

inertia of the spacecraft. The three reference frames are illustrated in Fig. 2.1

Vector and matrices are denoted by boldface symbols, where 1 denotes a vector whose

components are all equal to 1, the identity matrix is denoted by I and the symbol 0 denotes

the null matrix or vector of compatible dimensions. Diag and blockdiag denote the diago-

nal and block-diagonal matrices, the symbol ⊕nA denotes a block-diagonal matrix with n

diagonal blocks, each equal to A and ‖x ‖1, ‖x ‖ and ‖x ‖∞ indicate the 1-norm, 2-norm

and ∞-norm of a vector x ∈ R
n, respectively. The orientation of reference frame B with

respect to a reference frame A is represented by the rotation matrix RAB or, equivalently,

by the quaternion qAB = [ qAB, ~q
T
AB ]T , where qAB and ~qAB are termed the scalar part and

the vector part of the quaternion. The cross-product operation is denoted by the symbol ×,

and the quaternion multiplication operation ◦ is defined by

qAC = qBC ◦ qAB =

[
qBCqAB − ~qTBC~qAB

qBC~qAB + qAB~qBC − ~qBC × ~qAB

]
,

which corresponds to the sequence of rotations RAC = RBC RAB. Small rotations are rep-

resented in quaternion form as q(δθ) = [1 , δθT/2]T , where δθ is a three-dimensional ro-

tation vector, and the skew-symmetric matrix constructed from a vector ω is denoted by

ω×.
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Figure 2.1: Reference frames.

2.2 Orbit dynamics

In the ECI frame, the force g exerted by a spherical central body with uniform density on

a spacecraft of mass m located at position r relative to the central body is given by the

Newton’s law of universal gravitation

g = −µm
r3

r, (2.1)

where r = [rx, ry, rz ]
T indicates the spacecraft position vector, r = ‖r‖, and µ is the gravita-

tional parameter of the central body. Ideally, g is the only force acting on the spacecraft and

the point-mass dynamics are easily obtained from (2.1) as

r̈ = − µ

r3
r. (2.2)

The solution to (2.2) is the so-called Keplerian orbit, which takes the form of an ellipse or

a conic section, depending on the initial condition r(t0), ṙ(t0). In this thesis, the focus is

on Earth orbiting spacecraft, i.e. spacecraft moving along elliptic orbits. The trajectory of

a spacecraft in an elliptic Keplerian orbit can be parameterized by a vector of six orbital
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elements o = [a, e, i,Ω, ω, ν]T through the following mapping

a = µr/(2µ− r‖ṙ‖2)
e = ‖ǫ‖
i = arccos (hz/‖h‖)
Ω = κ1 arccos (nx/‖n‖) + (1− κ1)π

ω = κ2 arccos

(
nT ǫ

‖n‖‖ǫ‖

)
+(1− κ2)π

ν = κ3 arccos

(
ǫT r

‖ǫ‖r

)
+(1− κ3)π,

(2.3)

where

h = [hx, hy, hz]
T = r× ṙ

n = [nx, ny, nz]
T = [0, 0, 1]T × h

ǫ = [ǫx, ǫy, ǫz]
T = (ṙ× h)/µ− r/r

and κ1 = sgn(ny), κ2 = sgn(ez), κ3 = sgn(rT ṙ) ensure that the corresponding angles are

expressed in the correct quadrant. The inverse mapping is given by

r = ROI




p cos(ν)

1 + e cos(ν)
p sin(ν)

1 + e cos(ν)
0




ṙ = ROI




− sin(ν)
√
µ/p

(e + cos(ν))
√
µ/p

0


 ,

(2.4)

where p = a(1 − e2) and the matrix ROI represents the orientation of the orbital plane in

the inertial frame, given by

ROI =




c(Ω)c(ω) − s(Ω)c(i)s(ω) −c(Ω)s(ω)− s(Ω)c(i)c(ω) s(Ω)s(i)

s(Ω)c(ω) + c(Ω)c(i)s(ω) −s(Ω)s(ω) + c(Ω)c(i)c(ω) −c(Ω)s(i)
s(i)s(ω) s(i)c(ω) c(i)



 ,

where c and s denote the cosine and sine functions, respectively.

Orbital elements are particularly useful because they provide a clear physical insight of

the orbital motion. The semi-major axis a and eccentricity e define the shape of the orbit.

The inclination i, longitude of the ascending node Ω and argument of perigee ω define the

orientation of the orbital plane with respect to the inertial frame. The true anomaly ν defines

the instantaneous angle at which the spacecraft is located relative to the ascending node po-

sition, as illustrated in Fig. 2.2. Notice that the mapping (2.3) is singular for circular (e = 0)

and equatorial (i = 0) orbits. These singularities, however, can be avoided by adopting

an alternative parametrization. For near-circular, inclined orbits, the eccentricity and argu-

ment of perigee are commonly replaced by the eccentricity vector e = [e cos(ω), e sin(ω)]T .
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Figure 2.2: Classical orbital elements.

Moreover the true anomaly ν is replaced by the true argument of latitude

νl = ω + ν = sgn(rz)arccos

(
nT r

‖n‖r

)
+ (1− sgn(rz))π, (2.5)

resulting in the nonsingular representation o = [a, eT , i,Ω, νl]
T . For equatorial orbits, the

globally nonsingular representation provided by the equinoctial elements o = [a, eT , iT , λt]
T

is commonly used. In this parametrization, the quantity i=[tan(i/2)sin(Ω), tan(i/2)cos(Ω)]T

is termed the inclination vector, the eccentricity vector is defined as e = [e cos(̟), e sin(̟)]T ,

where

̟ = ω +Ω = sgn(ǫy)arccos(ǫx/‖ǫ‖) + (1 − sgn(ǫy))π,

and the true longitude λt is given by

λt = ω +Ω + ν = sgn(ry)arccos(rx/r) + (1− sgn(ry))π. (2.6)

Notice that ν in (2.3), νl in (2.5) and λt in (2.6) are time-varying parameters (360 deg per

orbit), whereas the other elements are constants for Keplerian orbits.

Keplerian orbits represent a fairly simple approximation of the real motion of a space-

craft, due to the presence of a number of perturbations which are not modeled by (2.2).

In order to produce a more accurate description of the spacecraft motion, one possibility is

to use the so-called Cowell’s formulation, which consists of directly adding the perturbing

accelerations to (2.2). Then,

r̈ = − µ

r3
r+ ap, (2.7)

where ap denotes the perturbing acceleration. In this thesis, the acceleration vector ap

accounts for the most significant environmental disturbances ae and the acceleration due to
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the thrust at produced by the spacecraft propulsion system. The enviromental disturbances

include the aspherical gravity acceleration ag , the atmospheric drag acceleration ad, the

luni-solar gravity acceleration al, and the solar radiation pressure acceleration ar. The

perturbing term is therefore given by

ap = ae + at = ag + ad + al + ar + at. (2.8)

It is worth remarking that the mapping (2.3) (and the ones presented thereafter) can

still be applied to the trajectories resulting from the solution of (2.7), but in this case all the

orbital elements are time-varying. More precisely, the variation of the orbital elements with

respect to their ideal counterpart is related to the type and the size of the perturbation. As

an example, the qualitative impact of the environmental disturbance on the orbital elements

is reported in Table 2.1 for spacecraft in low Earth orbits (LEO) [72]. In this table, secular

means “which progressively increases with time”, whereas periodic perturbations have pe-

riods that range from days to years. The effects of the perturbations are referred as “small”

if their magnitude is below 1-2 km per month, “moderate” if their magnitude is in the or-

der of 10 km per month and “big” if their magnitude is above few kilometers per day. The

mathematical model of the perturbing accelerations is described next.

Secular Periodic

Big Small Moderate Small

Aspherical Earth Ω, ω - e i, Ω, ω

Atmosperic drag a, e i - Ω, ω

Luni-solar effects - - - a, e, i, Ω, ω

Table 2.1: Impact of environmental disturbances on orbit elements in LEO.

2.2.1 Aspherical gravity acceleration

The gravitational field of the Earth can be decomposed into the ideal contribution (2.1) and

an additional contribution due to the asphericity of the central body, which is typically the

dominant source of perturbation in LEO. According to the joint gravity model (JGM) devel-

oped by NASA, OT, OSU, CNES [41], the disturbance acceleration due to the asphericity of

the Earth can be expressed as the gradient of the following spherical potential function

U(r, ϕ, λ) =
µ

r

(
1 +

nmax∑

n=2

n∑

m=0

(
R

r

)n
Pnm(sin(ϕ)) (Cnm cos(mλ) + Snm sin(mλ))

)
,

where R is the Earth radius, ϕ and λ are the spacecraft geocentric latitude and its East

longitude, nmax is the maximum degree of the expansion, Cnm and Snm are spherical har-

monic coefficients, and Pnm(sinϕ) indicates the associated Legendre function of degree n

and order m. The spacecraft geocentric latitude and its longitude are given by

ϕ = atan2(rz ,
√
rx2 + ry2 )

λ = α− αg = atan2(ry , rx)− αg,
(2.9)
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where α is the spacecraft right ascension and αg is the right ascension of the Greenwich

meridian. The associated Legendre functions are given by

Pnm(sin(ϕ)) =
(cos(ϕ))m

2n n!

∂ n+m

∂(sin(ϕ))n+m
(sin2(ϕ)− 1)n.

The coefficients of the harmonics are referred as zonal ifm = 0, sectorial if m = n or tesseral

if n > m 6= 0. They are commonly disclosed in the normalized form C̄nm, S̄nm, given by

C̄nm =

[
(n+m)!

(2n+ 1)k(n−m)!

] 1

2

Cnm

S̄nm =

[
(n+m)!

(2n+ 1)k(n−m)!

] 1

2

Snm,

where k = 1 if m = 0 and k = 2 otherwise.

The cartesian components of the disturbance acceleration can be expressed in the ECI

frame as

ax =

(
1

r

∂U

∂r
− rz

r2
√
r2x + r2y

∂U

∂ϕ

)
rx −

(
1

r2x + r2y

∂U

∂λ

)
ry

ay =

(
1

r

∂U

∂r
− rz

r2
√
r2x + r2y

∂U

∂ϕ

)
ry +

(
1

r2x + r2y

∂U

∂λ

)
rx (2.10)

az =

(
1

r

∂U

∂r

)
rz −

(
√
r2x + r2y

r2
∂U

∂ϕ

)
,

resulting in the disturbance vector ag = [ax, ay, az ]
T . The partial derivatives of the potential

U with respect to r, ϕ and λ are given by

∂U

∂r
=− µ

r2

nmax∑

n=2

n∑

m=0

(
R

r

)n
(n+ 1)Pnm(sinϕ) (Cnm cos(mλ) + Snm sin(mλ))

∂U

∂λ
=

µ

r

nmax∑

n=2

n∑

m=0

(
R

r

)n
(Pn,m+1(sinϕ)−m tan(ϕ)Pnm(sinϕ))

(Cnm cos(mλ) + Snm sin(mλ))

∂U

∂ϕ
=

µ

r

nmax∑

n=2

n∑

m=0

(
R

r

)n
mPnm(sinϕ) (Snm cos(mλ)− Cnm sin(mλ)) .

2.2.2 Atmospheric drag acceleration

For spacecraft orbiting at low altitudes, atmospheric drag can be a significant perturbation,

causing a spiraling motion towards the Earth that shortens the orbital lifetime. Atmospheric

drag at orbital altitudes is caused by the collisions of gas molecules with the satellite. Since

energy is lost in this process due to friction, drag represents a nonconservative perturbation.



2.2. Orbit dynamics 21

In most space applications, it is reasonable to neglect the aerodynamic lift and consider the

cross-sectional area of the spacecraft for the calculation of the atmospheric drag disturbance.

In this case, the disturbance acceleration can be modeled as

ad = −1

2
CD ρa

A

m
v‖v‖, (2.11)

where ρa expresses the atmospheric density, CD is the drag coefficient, A denotes the cross-

sectional area and v indicates the velocity of the spacecraft relative to the atmosphere. The

vector v is given by

v = ṙ− ω⊖ × r,

where ω⊖ = [0, 0, ω⊖]
T is the vector constructed from the Earth’s rotation rate ω⊖ about the

Z axis of the ECI frame.

An accurate atmospheric model is essential for the calculation of the disturbance ac-

celeration due to drag. In this thesis, the atmospheric density value is obtained from the

Jacchia-71 model [67], which accounts for several factors including solar and geomagnetic

activity, seasonal variations, and orbit altitude. The model relies on a polynomial approxi-

mation of the density profile based on numeric tables obtained from empirical observations,

and complies with the ECSS standard for space environment [41]. A typical atmospheric

density profile is reported as a function of the orbit altitude in Fig. 2.3.
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Figure 2.3: Typical atmospheric density profile.
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2.2.3 Luni-solar acceleration

The perturbation effects due to the gravity of the Sun and the Moon, which are commonly

referred as third-body perturbations, become noticeable when the effect of atmospheric

drag begins to diminish (say above 800 km). Because the cause of third-body perturbations

is the gravitational attraction, the resulting forces are conservative. In order to evaluate the

luni-solar disturbance acceleration, one needs to know the position of the the Sun and the

Moon in the ECI frame. In this thesis, the Moon position vector r$ and the Sun position

vector r☼ are obtained through precise ephemerides. Modeling the Sun and the Moon as

point-masses, the luni-disturbance acceleration turns out to be [2]

al = µ☼

(
r⋄☼

‖r⋄☼‖3 − r☼
‖r☼‖3

)
+ µ$

(
r⋄$

‖r⋄$‖3 − r$

‖r$‖3
)
, (2.12)

where µ☼ and µ$ are the gravitational parameters of the Sun and the Moon, respectively,

and the vectors from the spacecraft to the Sun r⋄☼ and to the Moon r⋄$ are given by

r⋄☼ = r☼ − r

r⋄$ = r$ − r.

The geometry of the problem is illustrated in Fig. 2.4.

Sun

Moon

Earth

r

r☼

r$

r⋄☼

r⋄$

Figure 2.4: Geometry of third-body perturbations.

2.2.4 Solar radiation pressure acceleration

The solar radiation pressure is caused by the absorption or the reflection of photons emitted

by the Sun on the spacecraft surface. Like drag, solar radiation pressure is a nonconservative
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perturbation, but becomes pronounced at high orbit altitudes. The average value of the

pressure generated on a perfectly absorbing planar surface is approximately given by [56]

Pr = 4.56 · 10−6 N/m2. (2.13)

As long as a point-mass model of the spacecraft is concerned, it is usually reasonable to

adopt the so-called Cannonball model, where the shape of the satellite is assumed to be a

sphere. Under this assumption, the solar radiation disturbance acceleration, which depends

on the mass and the properties of the surface exposed to the radiation, is given by

ar = −sr Pr CR
A

m

r⋄☼
‖r⋄☼‖ , (2.14)

where CR is the solar radiation pressure coefficient of the spacecraft and sr is the shadow

function, which accounts for the eclipse effects that occur when the Earth passes between

the spacecraft and the Sun. The shadow function is defined as follows





sr = 0 Satellite in umbra

sr ∈ (0, 1) Satellite in penumbra

sr = 1 Satellite exposed to radiation.

(2.15)

For a detailed derivation of this function, see e.g. [99].

2.2.5 Thrust acceleration

The thrust generated by the spacecraft propulsion system can be considered as a perturba-

tion which may quickly produce a significant effect on the orbit. In general, this perturbation

may include disturbance accelerations aa due to firing of the attitude control thrusters and

control accelerations aI generated by the orbit control subsystem. For a spacecraft with

multiple engines i =, 1 . . . , n, the acceleration due to thrust is given by

at = aa + aI =

n∑

i=1

pi

m
, (2.16)

where pi indicates the thrust vector of the i-th engine, expressed in the ECI frame, and the

contribution aa is in general much smaller than aI .

According to the Newton’s third law of motion, thrust is produced by expelling stored

propellant mass. The relation between the magnitude of the thrust vector and the rate of

change of the propellant mass for a single thruster is given by

‖pi‖ = −g0 Ispi ṁi , (2.17)

where Ispi and ṁi denote the specific impulse and the mass flow rate of engine i, respec-

tively, and g0 indicates the standard gravity. Considering the contributions of all engines,

the rate of change of the spacecraft mass is obtained from (2.17) as

ṁ = −
n∑

i=1

‖pi‖
g0 Ispi

. (2.18)
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The control acceleration aI is sometimes approximated by the impulsive velocity change

∆vI = ∆ṙ =

n∑

i=1

∆ṙi, (2.19)

where ∆ṙi denotes the velocity change produced by the i-th engine. For short impulse

durations (say less than few minutes), this approach introduces a small error in the solution

to (2.8). When an impulsive maneuver occur, the orbit dynamics (2.7) are updated as

follows

v↑ = v↓ +∆vI , (2.20)

where the superscripts ↓ and ↑ indicate the time instants immediately preceding and follow-

ing the maneuver, respectively, and v = ṙ. Moreover, (2.18) is updated according to the

well-know Tsiolkovsky rocket equation

m↑ = m↓ exp

(
−

n∑

i=1

‖∆ṙi‖
g0Ispi

)
. (2.21)

2.3 Attitude dynamics

In this thesis, the orientation of the spacecraft body frame with respect to the ECI frame

is represented by the attitude quaternion qIB or, equivalently, by the rotation matrix RIB,

while the angular rate of the body frame with respect to ECI frame, expressed in the body

frame, is denoted by ω.

In order to describe the evolution of the spacecraft attitude, the time derivatives of both

the quaternion and the angular velocity of the spacecraft are required. The time derivative

of the quaternion qIB is defined as

q̇IB = lim
∆t→0

qIB(t+∆t)− qIB(t)

∆t
, (2.22)

where ∆t is a vanishing time interval. From the definition of the quaternion product opera-

tion, one has that

qIB(∆t+ t) = q(δθ) ◦ qIB(t), (2.23)

where δθ = δθ(∆t) and the small rotation q(δθ) is given by

q(δθ) =

[
1

0

]
+

[
0

δθ/2

]
. (2.24)

Substituting (2.24) into (2.23), one obtains

q(δθ) ◦ qIB = qIB +
1

2

[
0

δθ

]
◦ qIB. (2.25)

Using (2.23) and (2.25) in (2.22), and observing that

lim
∆t→0

δθ

∆t
= ω,
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one gets the final expression for the quaternion kinematic equation

q̇IB = lim
∆t→0

1

∆t

(
1

2

[
0

δθ

]
◦ qIB

)
=

1

2

[
0

ω

]
◦ qIB . (2.26)

The angular rate dynamics are derived under the following assumptions: (i) the space-

craft can be modeled as rigid body and (ii) the spacecraft does not contain rotating parts,

such as momentum exchange devices. Whereas the first one is rather common in the attitude

control literature, the second one follows from the electric propulsion design considered in

this thesis, in which torques are generated by using thrust. Under these assumptions, the

time derivative of the spacecraft angular momentum corresponds to the external torque

acting on the spacecraft, according to the Euler’s second law

υ̇I = τ I , (2.27)

where υI and τ I denote the angular momentum and the external torque, respectively, in

the ECI frame. Equation (2.27) can be expressed in the spacecraft body frame as

υ̇ = τ − ω × υ, (2.28)

where υ = RIB υI , τ = RIBτ I . The relation between the angular momentum and the

spacecraft angular rate is simply given by

υ = IM ω, (2.29)

where IM indicates the spacecraft inertia matrix, expressed in the body frame. For a rigid

body with variable mass, the time derivative of (2.29) is

υ̇ = IM ω̇ + İM ω. (2.30)

Combining (2.28)-(2.30) and rearranging terms, the angular rate dynamics can be ex-

pressed as

ω̇ = I−1
M

(
τ − ω × IM ω − İM ω

)
. (2.31)

In this thesis, the external torque vector τ accounts for the most significative environ-

mental disturbances, as well as the torque generated by the spacecraft propulsion system.

The environmental disturbances include the gravity gradient torque τ g, the aerodynamic

torque τ d, the solar radiation pressure torque τ r and the magnetic torque τm. The torque

produced by the propulsion system is denoted by τ t. Therefore, the vector τ is given by

τ = τ g + τ d + τ r + τm + τ t, (2.32)

where all contributions are expressed in the spacecraft body frame. Some qualitative aspects

of the environmental disturbance components are reported in Table 2.2. Their mathematical

model is reported next, along with the one of the reaction torque from propulsive maneu-

vers.
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Source Dependence on orbit radius Dominant

Aerodynamic e−kr Below ∼ 500 km

Gravity gradient 1/r3 ∼ 500− 35000 km

Magnetic 1/r3 ∼ 500− 35000 km

Solar radiation Independent Above 36000 km

Table 2.2: Effects of environmental torques

2.3.1 Gravity gradient torque

Every nonsymmetric object of finite dimension orbiting the Earth is subject to a gravity

gradient torque caused by the variation of the gravitational force along the object; there

would be no gravity gradient in a uniform gravity field. A number of mathematical models

are available in the literature to describe this phenomenon, ranging from simple models

where the Earth is assumed to be spherical to more complex models taking into account the

oblateness of the planet. For most applications, it is sufficient to consider a spherical Earth

approximation.

The gravitational force dgi acting on an infinitesimal element of mass dmi, located at

position ri with respect to the Earth’s center, is given by

dgi = −µdmi

‖ri‖3
ri,

where µ is the gravitational parameter of the Earth. The torque due to the force dgi, located

at position r′i with respect to the spacecraft center of mass, is obtained as

dτ i = r′i × dgi. (2.33)

By integrating (2.33) over the entire spacecraft body and expressing the resulting torque in

the body frame, after some manipulations, one obtains the total gravity gradient contribu-

tion

τ g =
3µ

r5
[rB × IM rB ] , (2.34)

where rB = RIBr. The gravity gradient torque has the following properties:

• The torque is always orthogonal to the the gravity force;

• The torque is inversely proportional to the cubic distance between the spacecraft and

Earth;

• The torque vanishes for spherically symmetric objects, for which the inertia matrix is

a diagonal matrix with equal entries.

To make an example, the gravity gradient torque acting on a small spacecraft at an orbit

altitude of about 400 km is in the order of 10−5 Nm.
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2.3.2 Aerodynamic torque

The aerodynamic torque is often the dominant source of attitude perturbations at orbit al-

titudes below 400 km. The force producing this torque arises from the interaction of the

atmospheric particles with the spacecraft surfaces, where the interaction can be modeled

as a purely elastic collision. Under the assumption that surface the spacecraft can be de-

composed into a set of planar surfaces, the aerodynamic torque contribution τ i of a surface

element Ai, with outward unit normal ~ni and a lever arm ri, is well approximated by

τ i = ri ×−1

2
CD ρa ( ~ni

T
vB)vB Ai, (2.35)

where vB = RIBv indicates the velocity of the spacecraft relative to the atmosphere, ex-

pressed in the body frame, and the remaining quantities are defined in Section 2.2.2. The

lever arm ri in (2.35) corresponds to the position of the center of pressure of the i-th surface

with respect to the spacecraft center of mass, as illustrated in Fig. 2.5. For planar surfaces

with no shadowing effects, the center of pressure is located at the geometric center of the

surface.

Notice that a contribution τ i is produced only when the unit normal of the i-th surface

element satisfies ~ni
T
vB > 0, because the second term in (2.35), denoting the aerodynamic

force, must point in the opposite direction of the velocity vector vB by definition. Hence,

the total aerodynamic torque on the spacecraft can be expressed as

τ d =
∑

V

τ i, (2.36)

where V = {i : ~nTi vB > 0}. Moreover, one can define the center of pressure of the

spacecraft as the vector rcp satisfying

rcp ×mRIB ad = τ d,

where ad is given by (2.11). In practice, the magnitude of the aerodynamic torque at an

altitude of about 400 km can be in the order of 10−4 Nm.

2.3.3 Solar radiation pressure torque

The solar radiation pressure torque is largely independent from the orbit altitude and hence

becomes dominant in high-altitude orbits and interplanetary spaces. The Cannonball model

described in Section 2.2.4 provides a reasonable approximation of the force acting on the

spacecraft center of mass due to the solar radiation. However, it is in general not suitable

for the evaluation of the corresponding torque, because the forces from the interaction of

the solar radiation with the individual surface elements of the spacecraft are not modeled.

A more accurate model is presented next, which can be used for the evaluation of both the

solar radiation force and the resulting torque in most applications.

The force on a surface element can be adequately modeled by considering that the in-

cident radiation can be in part absorbed, in part specularly reflected and in part diffusely
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Direction of incident particles
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Figure 2.5: Geometric model for the calculation of the aerodynamic torque.

reflected, depending on the physical properties of the surface. Under the assumption that

the surface of the spacecraft can be decomposed into a set of planar surfaces, the force fabsi

due to the portion of radiation which is absorbed on a surface element Ai, with outward

unit normal ~ni, is given by

f absi = −Pr Ca cos(γi)~sAi, (2.37)

where Pr is given by (2.13), ~s = RIB(r⋄☼/‖r⋄☼‖) is the unit vector from the spacecraft to

the Sun, γi = arccos( ~ni ·~s) is the angle between this vector and the surface unit normal ~ni,

and Ca is the absorption coefficient of the surface. Moreover, the force f
ref
i due to specular

reflection is given by

f
ref
i = −2Pr Cs cos2(γi) ~nAi, (2.38)

where Cs is the specular reflection coefficient of the surface. Finally, the contribution f
dif
i

from diffuse reflection can be expressed as

f
dif
i = −Pr Cd

(
2

3
cos(γi) ~n + cos(γi)~s

)
Ai, (2.39)

where Cd is the diffuse reflection coefficient of the surface. Notice that the absorption,

specular reflection and specular diffusion coefficients must satisfy the physical constraint

Ca+Cs+Cd = 1. The graphical interpretation of these components is reported in Fig. 2.6.

When cos(γi) is negative in (2.37), (2.38) and (2.39), the surface element Ai is not il-

luminated and therefore it is not subject to solar radiation forces. Moreover, the shadow

function sr in (2.15), modeling the solar eclipse effects, has to be taken into account. Con-

sidering these factors, the total force acting on the spacecraft can be expressed as

fr = sr
∑

S

f absi + f
ref
i + f

dif
i , (2.40)

where S = {i : cos(γi) > 0}. The corresponding torque is given by

τ r = sr
∑

S

ri ×
(
f absi + f

ref
i + f

dif
i

)
, (2.41)
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Figure 2.6: Absorption, specular reflection and diffuse reflection of solar radiation.

where the centre of pressure ri of the i-th surface element is defined in Section 2.3.2.

From (2.40)-(2.41), one can define the center of solar pressure of the spacecraft as the

vector rcsp satisfying

rcsp × fr = τ r.

The torque generated by the solar radiation pressure on a medium-size spacecraft is typically

in the order of 10−6 Nm.

2.3.4 Magnetic torque

The magnetic disturbance torque, arising from the interaction of the residual magnetic

dipole of the spacecraft with the Earth’s magnetic field, can be the dominant attitude per-

turbation for spacecraft in low Earth orbits. The instantaneous value of the magnetic torque

is given by

τm = m× b, (2.42)

where m denotes the total magnetic dipole of the spacecraft and b indicates the geomag-

netic field. According to the international geomagnetic reference field (IGRF) model [6],

the geomagnetic field can be expressed as the gradient of the following spherical potential

function

V (r, ϑ, λ) = R

nmax∑

n=1

n∑

m=0

(
R

r

)(n+1)(
Ḡnm cos(mλ) + H̄nm sin(mλ)

)
P̄nm (cos(ϑ)) ,

where Ḡnm and H̄nm are the normalized Gauss coefficients of the spherical harmonics,

ϑ = π/2−ϕ, P̄nm(cosϕ) denotes the Schmidt semi-normalized associated Legendre function

of degree n and order m, and the remaining symbols are defined in Section 2.2.1. Because

the coefficients Ḡnm and H̄nm are time varying, they are periodically updated based on data

from space observations.
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The components of the geomagnetic field in the spherical coordinate frame are given by

br = −∂V
∂r

=

nmax∑

n=1

n∑

m=0

(
R

r

)(n+2)

(n+ 1)
(
Ḡnm cos(mλ) + H̄nm sin(mλ)

)
P̄nm (cos(ϑ))

bϑ = −1

r

∂V

∂ϑ
= −

nmax∑

n=1

n∑

m=0

(
R

r

)(n+2)(
Ḡnm cos(mλ) + H̄nm sin(mλ)

) ∂P̄nm (cos(ϑ))

∂ϑ

bλ =
−1

sinϑ

∂V

∂λ
=

−1

sinϑ

nmax∑

n=1

n∑

m=0

(
R

r

)(n+2)

m
(
H̄nm sin(mλ) − Ḡnm cos(mλ)

)
P̄nm (cos(ϑ)).

By using simple coordinate transformations, the geomagnetic field vector can be expressed

in the ECI frame as

bI =




(br cos(ϕ) + bϑ sin(ϕ)) cos(α)− bλ sin(α)

(br cos(ϕ) + bϑ sin(ϕ)) sin(α) + bλ cos(α)

(br sin(ϕ) − bϑ cos(ϕ))


 , (2.43)

where α and ϕ are given by (2.9). The magnetic vector field at an altitude of 300 km is

depicted in Figure 2.7. In order to evaluate the disturbance torque (2.42), the geomagnetic

field vector (2.43) is expressed in the body frame as

b = RIBbI .

For a spacecraft in LEO with magnetic moment of 0.1 At·m2, the magnetic torque is in the

order of 10−5 Nm.

North Pole

Magnetic axis

Figure 2.7: Magnetic vector field.
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2.3.5 Reaction torque

Reaction torques are produced by the spacecraft propulsion system whenever the thrust

vector of the engines is not aligned with the spacecraft center of mass. In general, reac-

tion torques may include disturbance torques τ o due to misalignment of the orbit control

thrusters and attitude control torques τ u provided by the reaction control subsystem to ori-

entate the spacecraft. For a spacecraft with multiple engines i =, 1 . . . , n, the reaction torque

is given by

τ t = τ o + τu =

n∑

i=1

r′i × ti, (2.44)

where r′i indicates the position of the i-th engine relative to the spacecraft center of mass

and ti is the corresponding thrust vector.

Because reaction torques are generated by mass-expulsion devices, the rate of change of

the spacecraft mass (2.18) must be taken into account. Moreover, a variable mass implies

a time-varying inertia-matrix. In general, the rate of change of the inertia matrix İM is

difficult to model and represents a minor contribution in (2.30). Therefore, it can be treated

as a small perturbation to be rejected by the attitude control system. Finally, notice that

the reaction torque (2.44) and the thrust acceleration (2.16) are coupled by the following

relationship

pi = RT
IBti.

In most practical applications, a different set of actuators is employed for orbit and attitude

control, so that the coupling effects are weak and can’t be exploited for control purposes.

Instead, torques due to operation of the orbit control system are treated as perturbations to

be rejected by the attitude control system, and vice versa. For this reason, the attitude and

orbit control problems are addressed separately in the following chapters.





Chapter 3

Autonomous Orbit Control

In this chapter, two orbit control problems are addressed for spacecraft in near-circular

orbits. The first is that of maintaining a desired orbit in the presence of a large amount of

atmospheric drag, as required for autonomous station-keeping of LEO satellites with electric

propulsion. A Lyapunov-based control law, able to keep the spacecraft close to the reference

orbit, without the need for thrust along the radial axis of the LVLH frame, is derived for this

problem.

The second problem is that of autonomous rendezvous and docking between two space-

craft with low-thrust propulsion. In this case, an important requirement is to enforce a

given set of constraints on the input and the state, without incurring an excessive computa-

tional cost. An explicit MPC scheme, based on a polynomial parametrization of the control

sequence, is developed to this purpose.

The material in this chapter is mainly based on [50] and [83].

3.1 Problem setting

Autonomous orbit control techniques aim at controlling the spacecraft position relative to a

given reference trajectory, without ground operator intervention. The orbit control problem

can be cast in terms of relative orbital elements or relative cartesian coordinates, where the

relationship between these two parameterizations has been discussed in Section 2.2. The

former approach is advantageous because the controlled quantities have a clear physical

interpretation. The latter is particularly useful for applications in which constraints on the

relative states between two or more spacecraft are specified in a cartesian reference frame,

see e.g. [30, 144].

3.1.1 Reference trajectory

For orbit control purposes, the reference trajectory can be modeled as the evolution of the

position r̄ and the velocity ˙̄r of a reference point mass, which is denoted as the target

spacecraft. In the case of Earth orbiting spacecraft, the reference dynamics must be in the

form (2.7), hence

¨̄r = − µ

‖r̄‖3 r̄+ āp, (3.1)

where the reference acceleration āp depends on the specific application in exam. In station-

keeping problems, the reference trajectory can be modeled as the steady state motion of a
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virtual target spacecraft which is affected by the gravitational effect (2.10) only, so that

āp = āg (3.2)

in (3.1), where āg = ag(r̄) . In fact, for a specific set of initial conditions, the solution to

(3.1)-(3.2) defines a class of orbits which are of practical interest in several missions, includ-

ing sun-synchronous, repeating ground-track, and frozen orbits. Because (3.2) is required

to track these orbits, it is not treated as a disturbance to be rejected by the orbit control

system.

In formation flying applications, the target spacecraft is a real spacecraft and hence it is

affected by all environmental disturbances. In particular, for autonomous rendezvous and

docking, it is typically assumed that the target spacecraft is passive, so that

āp = āe (3.3)

in (3.1), where āe = ae(r̄). In this case, the reference trajectory is defined by the solution to

(3.1),(3.3).

The mapping (2.3), possibly combined with (2.5)-(2.6), can be used to parameterize

the reference trajectory in terms of orbital elements. Moreover, the initial condition for the

integration of (3.1) is related to the parameters defining the initial orbit by the transforma-

tion (2.4).

3.1.2 Orbit control system

The considered orbit control system can generate thrust only in the along-track and cross-

track directions of the LVLH frame, so that no thrust is available in the radial direction. This

is a desirable configuration for many space applications, because the orbit dynamics can be

controlled by using only along-track and cross-track maneuvers, whereas the use of radial

maneuvers is generally less fuel efficient. Moreover, radial thrust may not be available in

small satellite missions due to mass and power restrictions.

In station-keeping applications, the control system is required to maintain the spacecraft

sufficiently close to the desired orbit, by means of an efficient rejection of the orbital dis-

turbances. In rendezvous and docking applications, the objective of the control system is

to provide a trade-off between the propellant consumption and the maneuver time, while

guaranteeing safe proximity operations.

Hereafter, the acceleration provided by the control system is denoted by a when ex-

pressed in the LVLH frame and by aI in the ECI frame. Similarly, ∆v expresses an impulsive

velocity change in the LVLH frame and ∆vI the corresponding quantity in the ECI frame.

The matrix RIL which expresses the rotation from the ECI to the LVLH frame (see Fig. 2.1)

is defined in (4.1).

3.2 Station-keeping

In this section, the problem of maintaining a given orbit is addressed for a single LEO space-

craft. It is assumed that continuous thrust is available in the along-track direction and that
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the thrust in the cross-track direction can be modeled as an impulsive velocity change of the

form (2.19), resulting in a hybrid continuous/impulsive control scheme. This kind of design

allows a trade-off between the thrust efficiency and the limitations imposed by the satellite

mass and available power. In fact, one can take advantage of high specific impulse, low-

thrust technologies to reduce the propellant consumption required by drag compensation,

which is typically the dominant factor in the LEO delta-v budget, while using high-thrust,

low-power technologies to counteract smaller cross-track perturbations, at the price of a

reduced specific impulse.

Let o and ō denote the orbital elements corresponding to the solution of (2.7) and (3.1)-

(3.2), respectively, through the mapping (2.3). Moreover, let the tracking error be expressed

as

δo = o− ō. (3.4)

Then, the station-keeping control problem can be formalized as follows.

Problem 3.2.1. Find a continuous/impulsive feedback control law

a = [u(δo), 0, 0 ]
T

∆v = [ 0, ∆v(δo), 0 ]
T
,

(3.5)

which guarantees that

lim
t→∞

δo(t) = 0. (3.6)

The control signals a and ∆v are related to the inputs aI and ∆vI in (2.16) and (2.20),

respectively, by the relationships aI = RT
ILa and ∆vI = RT

IL∆v.

In the following, an autonomous control law, based on the orbital element parame-

trization, is derived for Problem 3.2.1.

3.2.1 Relative orbital element dynamics

The vast majority of LEO spacecraft operate in near-circular, near-polar orbits and hence the

mapping (2.3), with e and ω replaced by the eccentricity vector e = [e cos(ω), e sin(ω)]T , and

ν replaced by (2.5), provides a suitable means of expressing the trajectories of the controlled

and the (virtual) target spacecraft, given by the solution of (2.7) and (3.1)-(3.2), in terms

of orbital elements. Then, o = [a, eT, i,Ω, νl]
T , ō = [ā, ēT, ī, Ω̄, ν̄l]

T and

δo = [δa, δeT, δi, δΩ, δνl]
T .

Recall from Section 2.2 that all the components of δo can be time-varying, due to the pres-

ence of the perturbation terms ap in (2.7) and āg in (3.1)-(3.2).

Based on Gauss’ variational equations of motion, adapted for near-circular, near-polar

orbits [98], the relative orbital element dynamics can be approximated as

δȯ = [0, 0, 0, 0, 0, δn]T +B(a+ d), (3.7)
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where δn is the relative mean motion, a is the control acceleration, expressed in the LVLH

frame (see Fig. 2.1), and d accounts for nonconservative perturbations acting on the system.

The relative mean motion δn can be expressed as

δn =

√
µ

a3
−
√

µ

ā3
. (3.8)

The input matrix B is given by

B =

√
a

µ




2 a 0 0

2 cos(νl) 0 − sin(νl)

2 sin(νl) 0 cos(νl)

0 − cos(νl) 0

0 − sin(νl) 0

0 0 0




. (3.9)

In the considered problem, the term d in (3.7) mainly depends on atmospheric drag, i.e d ≈
RILad, with ad given by (2.11), while the other environmental disturbances have a minor

impact. Due to the difficulty in obtaining a reliable estimate of the atmospheric density,

drag can be treated as an unknown disturbance to be compensated. If the tracking error

is kept reasonably small, the disturbance due to drag can be approximated by a constant

acceleration in the along-track direction of the form

d = [d, 0, 0]
T
, (3.10)

where d ≤ 0.

Finally, note that mean orbital elements can be used in place of the classical orbital

elements in (3.4) and (3.7), so that differential oscillations (with respect to the virtual

spacecraft on the reference orbit) due to short periodic gravitational perturbations are not

perceived as tracking errors. The classical elements can be converted to the corresponding

mean elements by using the Brouwer’s analytical transformation [18]. For additional details,

the reader is referred to [120].

3.2.2 Orbital element feedback

Orbital element feedback is a well established topic in the orbit control literature see e.g. [58,

120]. Most of the proposed solutions, however, demand full actuation, while the orbit

control system considered in Section 3.1.2 can provide thrust only in the along-track and

cross-track directions. Moreover, the effect of atmospheric drag is often neglected. In the

following, an hybrid continuous/impulsive control scheme is derived, by taking into account

the structure of the matrix B and the specific features of the considered problem.

The matrix B in (3.9) can be partitioned as follows

B =




b1 0 c

0 b2 0

0 0 0



 , (3.11)
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and the equations of motions (3.7) are decomposed into three subsystems. The first sub-

system consists of the dynamics of the the relative orbital elements δo1 = [δa, δeT ]T , with

along-track acceleration u, given by

δȯ1 = b1 (u+ d) . (3.12)

The second subsystem describes the variation of the orbital elements δo2 = [δi, δΩ], due to

a sequence of impulsive velocity changes ∆v in the cross-track direction, as follows

δo2(tk+1) = δo2(tk) + b2(tk)∆v(tk), (3.13)

where k ∈ N is the index of the elements of the sequences and tk is the corresponding time.

The third subsystem is obtained from (3.7)-(3.9) as

δν̇l = δn =

√
µ

a3
−
√
µ

ā3
. (3.14)

The following proposition addresses the stabilization of system (3.12) in the absence of

disturbances (d = 0).

Proposition 3.2.1. The system

δȯ1 = b1u, (3.15)

together with the control law

u(δo) = −bT1 K1δo1, (3.16)

where

b1 = 2µ− 1

2

[
a

3

2 , a
1

2 cos(νl), a
1

2 sin(νl)
]T
, (3.17)

a > 0, and K1 = diag(Ka,Kex,Key) is a positive definite diagonal matrix, is asymptotically

stable.

Proof. The proof, reported in Appendix A, follows from conventional arguments in Lyapunov

stability theory.

Remark 3.2.1. Notice that b1 in (3.11) expresses the effectiveness of the input u in controlling

the relative orbital element o1. Hence, bT1 in (3.16) provides a suitable means of scaling the

magnitude of the input with its effectiveness. Because the magnitude of the input is proportional

to the fuel consumption, the control law (3.16) is known to yield a good fuel efficiency.

The control law (3.16) has to be modified in order to compensate for the steady state

tracking error of the semi-major axis, arising from the disturbance d in (3.12), due to drag.

One possibility is to estimate d by using a suitable filtering scheme and then subtract the

estimate from the control input u. Another option is to introduce an integral term in the

control law, as shown by the following result.

Proposition 3.2.2. Let

u(δo) = −bT1 K1δo1 +KIz

ż = −KIb
T
1 δo1,

(3.18)

where KI is a positive gain and z(0) = 0. Then system (3.12), with the control law (3.18), is

asymptotically stable.
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Proof. The proof, reported in Appendix A, is similar to that of Theorem 3.2.1.

Remark 3.2.2. Observe that the equilibrium of system (3.12),(3.18) is attained for

u = KIz = −d, i.e drag is compensated by the control acceleration, at steady state.

The benefits of this approach over the solution provided by Theorem 3.2.1 are demonstrated

in the following numerical example.

Example 3.2.1. Let ā = 6.6 · 106 m, d = −4 · 10−5 m/s2 in (3.12), Ka = 10−10 in

(3.16),(3.18), and KI = 10−7 in (3.18). The semi-major axis tracking errors, resulting from

the application of the two control laws to (3.12), are reported in Fig. 3.1, for an initial δa

of 100 m. It can be clearly seen that the control law (3.18) drives the tracking error to zero,

whereas a steady-state error of approximately −235 m is obtained with the control law (3.16).

The evolution of the parameter z in (3.18) is reported in Fig. 3.2. As expected, this parameter

converges to the value z̄ = −d/KI .
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Figure 3.1: Semi-major axis tracking error from the application of (3.16) (dashed) and (3.18) (solid).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−100

0

100

200

300

400

500

z

Time (s)

Figure 3.2: Parameter z in (3.18).

An impulsive control scheme is derived for the cross-track dynamics (3.13), by taking

advantage of the fact that these are decoupled from the along-track dynamics (3.12).
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Proposition 3.2.3. The control law





∆v(δo) =

√
µ√

a cos(νl)
δi for νl = mπ

∆v(δo) =

√
µ√

a sin(νl)
δΩ for νl = mπ + π/2,

(3.19)

where m ∈ Z, drives the trajectory of system (3.13) to the origin in finite-time.

Proof. By letting νl vary in the interval (−π, π] and applying (3.19) to (3.13), it follows that

(3.13) is steered to the origin in finite-time, by using only two impulses at νl(t1) = −π/2
and νl(t2) = 0.

Remark 3.2.3. From (3.9), it is evident that the efficiency of an cross-track maneuver for δi

and δΩ adjustments is maximized at νl = mπ and νl = mπ + π/2, respectively. Therefore, the

control law (3.19) guarantees a good fuel efficiency.

In some applications, small secular perturbations, which are not modeled by (3.7), may

affect the evolution of system (3.13). Moreover, the impulsive velocity changes (3.19) may

not be compatible with the thrust level generated by the propulsion system. In such cases,

an effective approach consists in applying a sequence of impulsive burns of fixed magnitude

∆vn at νl = mπ or νl = mπ+π/2, whenever the tracking errors δi or δΩ exceed a predefined

control window [119, 131]. The sequence of burns is stopped when the corresponding

tracking error reaches the opposite side of the control window. Formally, let the control

windows be defined as iL ≤ δi ≤ iU and ΩL ≤ δΩ ≤ ΩU , where the subscripts L and

U denote predefined lower and upper bounds for the tracking errors. Moreover, let the

direction of the perturbations be such that d/dt δi < 0 and d/dt δΩ < 0, (the reasoning is

the same for d/dt δi > 0 or d/dt δΩ > 0). Then, if ∆vn is sufficiently small, (3.19) can be

replaced by





∆v(δo) = − ∆vn
cos(νl)

for νl = mπ once δi ≤ iL, until δi ≥ iU

∆v(δo) = − ∆vn
sin(νl)

for νl = mπ + π/2 once δΩ ≤ ΩL, until δΩ ≥ ΩU .

(3.20)

Finally, an effective method for correcting the argument of latitude error δν̇l is to treat a

as an input to system (3.14) [101]. In particular, the following proposition holds.

Proposition 3.2.4. Let

a =

(
−Kν δνl +

1

ā3/2

)−2/3

. (3.21)

in (3.14). Then, lim
t→∞

δνl = 0, for 0 < Kν ≤ 1

πā
3

2

.

Proof. The proof is reported in Appendix A.
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Remark 3.2.4. In order to steer a to the to the solution prescribed by (3.21), one possibility is

to set

δo1 = [δa′, δeT ]T (3.22)

in (3.18), where δa′ = a− a′ and

a′ =

(
−Kν δνl +

1

ā3/2

)−2/3

. (3.23)

Notice that the time constant of system (3.12), with the control law (3.18),(3.22), can be made

much smaller than the time constant of system (3.14), by suitably choosing the gains K1, KI

and Kν . This leads to a → a′ thanks to the application of (3.18),(3.22), and consequently to

δνl → 0 by Proposition 3.2.4. Moreover, when δνl vanishes in (3.23), the parameter a′ matches

the reference value ā. Consequently, one has that a′ → ā and δo1 → 0, as desired.

Summing up the application of the control laws (3.18)-(3.20), together with (3.22)-

(3.23) provides a solution to Problem 3.2.1 for spacecraft in near circular orbits, for which

the error dynamics can be approximated by (3.7). The considered solution requires the

absolute position and velocity of the spacecraft to be estimated in real-time. To this aim, a

suitable EKF scheme is presented in Section 5.1. In addition, the reference trajectory must be

available on-board the spacecraft. A formal proof of the stability of the overall system goes

beyond the scope of this thesis. The effectiveness of the proposed design is demonstrated

through numerical simulations in Section 6.1.

3.3 Rendezvous and docking

The problem of performing autonomous rendezvous and docking between two spacecraft

in formation is conceptually similar to that of tracking a virtual spacecraft, treated in the

previous section. In both cases, the objective is to drive to zero the relative position and

velocity of the spacecraft. However, the control accuracies required by these applications

have different orders of magnitude. Moreover, a number of safety requirements have to

be taken into account for spacecraft operating in close proximity. Consider a target-chaser

spacecraft formation, in which the chaser is required to maintain visual contact and to safely

approach the target, based on relative position and velocity data.

Let the target trajectory tracking error be expressed in the LVLH frame centered at the

target, according to

x =

[
R̄IL(r− r̄) + rd

R̄IL(ṙ− ˙̄r)− ω̄×
LR̄IL(r− r̄)

]
, (3.24)

where r, ṙ and r̄, ˙̄r correspond to the solution of (2.7) and (3.1),(3.3), respectively, R̄IL

expresses the rotation between the inertial frame and the LVLH frame (the overbar denotes

that R̄IL refers to the target trajectory), ω̄L denotes the target LVLH rate vector and rd =

[rd, 0, 0], with rd ≥ 0, represents the desired docking position (assuming that the docking

port is located behind the target).

Let X be an admissible subset of the state space defined by the following requirements [17].
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• Collision avoidance: the spacecraft must not collide with each other.

• Line-of-Sight (LoS): the relative motion must be confined within a certain region of

the state space (the so-called docking cone) to maintain visual contact.

These can be represented by the path constraints x ∈ X, where

X =

{
x : x1 ≤ 0,

√
x22 + x23 ≤ (xd − x1) tan(θ/2)

}
, (3.25)

the angle θ specifies the size of the docking cone, and xd ≥ 0 is a predefined constant offset.

The admissible input set U is bounded by the maximum thrust uM that can be delivered

by the propulsion system, as

U = {u : ‖u‖∞ ≤ uM } . (3.26)

Since radial thrust is not available, u = [u1, u2]
T in (3.26), where u1 and u2 denote the

along-track and cross-track thrust components provided by the orbit control system.

The control objective is to minimize a combination of the fuel consumption and the

maneuver time tm = tf − t0. Moreover, it is desired to reduce as much as possible the

magnitude and/or the amount of thruster firings directed towards the target during the

final phase of the approach. Then, a relevant cost function is [88]

J(x,u) = α

∫ tf

t0

‖u(t)‖1 dt+ (1 − α)

∫ tf

t0

1 dt+ β

∫ tf

t0

ǫ(t) dt, (3.27)

where α ∈ [0, 1] is a relative weight on the fuel consumption (first term) and the maneu-

ver time (second term), and β≥ 0 is a weight on the function ǫ, which accounts for plume

impingement requirements. Due to the particular form of (3.25), the thruster plume im-

pingement function can be taken as [112]

ǫ(t) =

{
u−1 (t) if |x1(t)| ≤ xǫ1

0 otherwise,
(3.28)

where xǫ1 > 0 is a predefined tolerance and u−1 (t) is the negative part of the along-track

thrust, defined by

u−1 (t) =

{
|u(t)| if u(t) < 0

0 otherwise.

Notice that (3.28) accounts for thruster firings directed towards the target (i.e. in order

to produce a force in the negative along-track direction, the thruster which points in the

positive along-track direction, towards the target, must be fired) when the two spacecraft

are close to each other.

Then, the considered control problem takes the following form.

Problem 3.3.1. Find a control law

u = [u1(x), u2(x)]
T (3.29)
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which solves the optimal control problem

min
u

J(x,u)

s.t. (2.7), (2.16)

aI = RT
IL[u

T/m, 0]T

(3.1), (3.3), (3.24)

x ∈ X, u ∈ U

x(tf ) = 0,

(3.30)

where the final time tf is free and m is the mass of the spacecraft.

In order to solve Problem 3.3.1, a feedback guidance and control scheme, with the ability

to handle thrust magnitude and path constraints, can be considered. In particular, model

predictive control has been recognized as an attractive solution. Nevertheless, the capabil-

ity of spacecraft onboard processors to handle the real-time computational load that this

technique can generate still needs to be fully validated, especially for low-thrust problems,

where a long control horizon is required.

Motivated by this issue, a low-complexity MPC design is proposed in the following for the

low-thrust rendezvous and docking problem. First, the trajectory optimization problem is

reformulated by parameterizing the control sequence by a set of Laguerre functions, which

allows a long control horizon to be considered without using a large number of decision vari-

ables. Then, an explicit MPC scheme is derived by exploiting the Laguerre parametrization,

in combination with multi-parametric programming techniques. Because the proposed de-

sign does not require on-line optimization, it is especially suitable for implementation on

simple hardware.

3.3.1 Hill-Clohessy-Wiltshire equations

In order to design a low-complexity control scheme, the use of a linearized model is prefer-

able over the full nonlinear model (2.7),(3.1),(3.3). For many applications, the following

assumptions hold: (i) the orbit is nearly circular (ii) the distance between the chaser and

the target is small compared to the orbit radius and (iii) the two spacecraft have similar

physical properties.

Differentiating (3.24) and linearizing the resulting expression, under the above assump-

tions, yields the celebrated Hill-Clohessy-Wiltshire (HCW) equations [22]

ẍ1 = 2ω̄L ẋ3 + u1/m

ẍ2 = −ω̄2
L x2 + u2/m

ẍ3 = 3ω̄2
L x3 − 2ω̄L ẋ1,

(3.31)

where x = [x1, x2, x3, ẋ1, ẋ2, ẋ3]
T contains the along-track, cross-track and radial compo-

nents of the relative position and velocity vectors, u = [u1, u2]
T is the control thrust of the
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form (3.29), expressed in the LVLH frame (see Fig. 2.1) and ω̄L = [0,−ω̄L, 0]. Using (3.31),

the tracking error dynamics can be represented in the state space form

ẋ = Ac x+Bc u , (3.32)

with

Ac =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2ω̄L
0 −ω̄2

L 0 0 0 0

0 0 3ω̄2
L −2ω̄L 0 0




(3.33)

and

Bc =

[
0 0 0 1/m 0 0

0 0 0 0 1/m 0

]T
. (3.34)

For the considered problem, the variation of the spacecraft mass m is negligible and there-

fore one can assume that B is constant. Finally, notice that the controllability matrix

CM =
[
Bc, AcBc, . . . , A

5
cBc

]
(3.35)

has full rank and therefore system (3.32) is controllable with the input u.

3.3.2 Optimal control problem

Problem 3.3.1 does not admit an analytic solution and must be solved numerically. Due

to the limited processing power of spacecraft onboard computers, the implementation of

a feedback control scheme based on the on-line solution to (3.30) may not be feasible.

Therefore, (3.30) is relaxed by making use of the linearized model (3.32) in place of the

nonlinear model (2.7),(3.1),(3.3), and approximating (3.27) with a quadratic cost function

of the form

Jc(x,u) = ‖Wf x(tf )‖2 +
∫ tf

t0

(
‖Qc x(t)‖2 + ‖Rc u(t)‖2

)
dt, (3.36)

where Wf , Qc and Rc are square weighting matrices and Rc is nonsingular. In the above

equation, tf is fixed and the weight Wf on the terminal state relaxes the terminal constraint

x(tf ) = 0 in (3.30). Notice that the non-convex plume impingement function (3.28) is not

included in (3.36). Nevertheless, the choice of a quadratic performance index ensures that

‖u(t)‖ is kept small close to the steady state, so that the plume impingement effect is limited.

Moreover, the set (3.25) is approximated by a polyhedral set X̄ of the form

X̄ = {x : Cx ≤ d} , (3.37)

where

C =




1 0 0 0 0 0

k1 1 0 0 0 0

k1 −1 0 0 0 0

k1 0 1 0 0 0

k1 0 −1 0 0 0



, d =




0

1

1

1

1



k1 xd, (3.38)
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and k1 = tan(θ/2)/
√
2. The set (3.37)-(3.38) describes the interior of a pyramid inscribed

within the LoS cone, as illustrated in Fig. 3.3.

XLVLH

YLVLH

ZLVLH
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Target

Figure 3.3: LoS cone approximation.

By using (3.36)-(3.38), Problem 3.3.1 is reformulated as follows.

Problem 3.3.2. Find a control law

u = [u1(x), u2(x) ]
T

(3.39)

which solves the optimal control problem

min
u

Jc(x,u)

s.t. (3.31)

x ∈ X̄

u ∈ U.

(3.40)

Model predictive control is a potential design method for Problem 3.3.2, as it allows

to derive a feedback control law under the receding horizon strategy [94]. According to

this approach, the solution to (3.40) is computed over a finite number of future sampling

instances, and the first element of the optimal control sequence is applied to the plant, at

each time step. To avoid numerically solving the optimal control problem, at each time

step, an explicit MPC law can be derived, by solving off-line a suitable multi-parametric

quadratic program. However, it is known that the complexity of an explicit solution can

grow exponentially with length of the control sequence [134]. This problem could well
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arise in the considered application, because the control problem must be defined over a

long horizon, to account for the limited control authority, and discretized with a relatively

small step, to avoid the violation of path constraints between discrete time samples. A

possible workaround consist in parameterizing the input sequence with a set of Laguerre

functions (see e.g. [130, 133]), as described next.

Remark 3.3.1. Notice that a control law solving Problem 3.3.1 ensures finite-time convergence

to the desired docking position, whereas one solving Problem 3.3.2, under the receding horizon

principle, can only guarantee asymptotic tracking. In the considered application, this is a

minor issue, because a dedicated docking mechanism is activated as soon as the two spacecraft

get sufficiently close.

3.3.3 Laguerre MPC

For digital implementation of the control law, system (3.32) is discretized with a sampling

period Ts using a zero-order hold, resulting in the discrete state space model

x(k + 1) = Ax(k) +Bu(k), (3.41)

where

A = eAcTs , B =

(∫ Ts

0

eAcτ dτ

)
Bc. (3.42)

The MPC design requires the predicted future states generated from the state space

model (3.41) at the current sampling instant, based on the current state and the computed

input sequence. Let u(k + i) denote the input to be computed i sampling steps ahead from

the current sampling instant k. The basic idea underpinning Laguerre MPC (LMPC) is to

parameterize u(k + i) using a set of discrete Laguerre polynomials, according to

u(k + i) =

[
u1(k + i)

u2(k + i)

]
=

[
lT1 (i) 0

0 lT2 (i)

] [
η1

η2

]
= L(i)η, (3.43)

where lj(i) is the Laguerre function vector and η, which represents the new decision vec-

tor, is termed the coefficient vector. The Laguerre function vector satisfies the difference

equation

lj (i + 1) =




aj 0 . . . . . . 0

bj aj
. . .

... 0

−ajbj bj
. . . 0 0

...
...

. . .
. . . 0

−aNj−2
j −aNj−3

j bj . . . bj aj




lj (i) (3.44)

with

lj (0) =
√
bj

[
1 −aj a2j −a3j . . . (−1)Nj−1a

Nj−1
j

]T
, (3.45)

where bj = (1−a2j), Nj is the number of terms in the expansion and aj ∈ [0, 1] is the scaling

factor of the Laguerre network for input uj . Both aj and Nj are fixed design parameters.
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For aj = 0 in (3.44)-(3.45), the input sequence (3.43) takes the form





[uj(k), . . . , uj(k +Nj)]

T
= ηj

uj(k + i) = lTj (i)ηj = 0, i > Nj.
(3.46)

Notice from (3.46) that, when aj = 0, optimizing with respect to ηj corresponds to opti-

mize with respect to the input sequence uj(k), . . . , uj(k +Nj), as it is done in the standard

MPC design with control horizon Nj . Choosing aj > 0 allows a trade-off between the time

scale of the input sequence, i.e. lTj (i)ηj exponentially decays to zero instead of being iden-

tically zero for i > Nj , and the accuracy of its pointwise approximation. This is particularly

relevant when the number of decision variables Nj is selected to be small to keep the com-

putation feasible and then the truncated parametrization given by (3.46) cannot adequately

describe the future input trajectory.

By substituting (3.43) into (3.41), the state dynamics Np sampling instants ahead of k

can be expressed as





x(k+1|k)=Ax(k)+BL(0)η

x(k+2|k)=A2x(k)+(ABL(0)+BL(1))η
...

x(k+Np|k)=ANpx(k)+(ANp−1BL(0)+· · ·+BL(Np−1))η .

(3.47)

where the prediction horizon Np is unrelated to the number of entries in η, which is equal

to (N1 +N2). The prediction model can be written in the compact form

χ = Fx(k) +Φη , (3.48)

where

χ =
[
xT (k + 1|k) xT (k + 2|k) . . . xT (k +Np|k)

]T

F =
[
(A)T (A2)T . . . (ANp)T

]T
(3.49)

Φ =




BL(0) 0 · · · 0

ABL(0) BL(1) · · · 0
...

...
. . . 0

ANp−1BL(0) ANp−2BL(1) · · · BL(Np − 1)


 .

Moreover, the cost function (3.36) is discretized to give

Jd = χTQχ+ ηTRη , (3.50)

where Q= blockdiag(⊕Np−1TsQ
T
c Qc, Qf ) is a 6Np× 6Np matrix, Qf = TsW

T
fWf and

R = TsM
T
u (⊕NpRT

c Rc)Mu is a (N1+N2)× (N1+N2) matrix, with

Mu =
[
LT (0) LT (1) . . . LT (Np − 1)

]T
. (3.51)
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Hence, by substituting (3.48) into (3.50), the MPC problem can be equivalently rewritten

as

min
η

ηTΩη + 2xT(k)ΨTη + xT(k)FTQFx(k), (3.52)

where Ω = (ΦTQΦ+R) and Ψ = ΦQF. In the absence of constraints, the global minimum

of problem (3.52) is attained (assuming the required matrix inverse exists) at

η∗(k) = −Ω−1 Ψx(k) . (3.53)

Under the receding horizon principle, only the first element of the optimal input sequence

is applied to the plant and hence

u(k) = L(0)η∗(k). (3.54)

Proposition 3.3.1. System (3.41), with the control law (3.53)-(3.54), is asymptotically stable

provided that the eigenvalues of

A−B(L(0)Ω−1 Ψ)

lie inside the unit circle.

Input and state constraints are included in the MPC design to account for the operating

range of the actuators and to ensure safe proximity operations. Unlike the unconstrained

case, the constrained MPC problem does not admit an analytic solution and must be solved

numerically. The input amplitude constraints u ∈ U in (3.26) can be rewritten as

− uM1 ≤ L(i)η ≤ 1uM i = 1, . . . , Np. (3.55)

To reduce the sensitivity of the control system to output noise, one possibility is to introduce

a slack variable s1 ≥ 0, which bounds the variation of u(k) with respect to u(k − 1), and

penalize it in the cost function. The value of s1 is obtained from the linear inequality

−s11 ≤ L(0)η − u(k − 1) ≤ 1s1, (3.56)

where u(k − 1) is treated as an additional input to the optimization problem.

The path constraints x ∈ X̄, with X̄ given by (3.37), are softened according to

Cx(k + i|k) ≤ 1s2 + d i = 1, . . . , Np, (3.57)

where s2 ≥ 0 is a slack variable which relaxes (3.37) in the ∞-norm sense, to ensure fea-

sibility in the presence of observation noise. Notice that (3.55) and (3.57) can be enforced

on predefined subsets of samples Mu ⊆ {1, . . . , Np − 1} and Mx ⊆ {1, . . . , Np}, respec-

tively, rather than on all samples, in order to trade-off the performance and the complexity

of control algorithm.

Let ηC = [ηT s1 s2]
T = [ηT sT ]T be the augmented decision vector and xC(k) =

[xT (k) uT (k − 1)]T the augmented initial condition for the constrained optimization prob-

lem. Then, the constraints (3.55)-(3.57) can be written in the compact form



Mu 0 0

−Mu 0 0

L(0) −1 0

−L(0) −1 0

CNΦ 0 −1






η

s1
s2


 ≤




1uM
1uM
0

0

dN



−




0 0

0 0

0 −I

0 I

CNF 0




[
x(k)

u(k − 1)

]
, (3.58)
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where F and Φ are given by (3.49), CN = ⊕NpC, and dN = [dT . . .dT ]T . The constrained

LMPC problem of the form (3.52) to be solved is

min
ηC

ηTC

[
Ω 0

0 Rs

]
ηC + 2xTC(k)

[
Ψ 0

0 0

]
ηC

s.t. (3.58),

(3.59)

where Rs = diag(R1, R2), with R1, R2 ≥ 0, is a 2 × 2 matrix which penalizes the slack

vector s, and the term xT(k)FTQFx(k) in (3.52), which is constant, has been dropped.

Problem (3.59) is a quadratic program (QP) with linear constraints, which can be efficiently

solved using convex optimization algorithms. By applying the solution to (3.59) to the plant

via (3.54), at each sampling instant, a feedback control scheme is obtained. The following

proposition provides a condition that guarantees the stability of the design.

Proposition 3.3.2. Let x(k + Np|k) = 0 be an additional constraint, Rs = diag(0, 0) and

s2 = 0 in (3.58)-(3.59). Moreover, assume that problem (3.59) is feasible at each time sample.

Then, the control law (3.54),(3.59) guarantees that, for system (3.41),

lim
k→∞

x(k) = 0. (3.60)

Proof. The proof is reported in Appendix A.

Remark 3.3.2. The stabilizing terminal constraint x(k +Np|k) = 0 is rarely used in practice,

as it limits the domain of attraction of the controller. Instead, the combination of a suitable

terminal weight Qf and a terminal set Xf , such that x(k+Np|k) ∈ Xf , can be considered [96].

For sufficiently long prediction and control horizons, the constraint x(k +Np|k) ∈ Xf does not

need to be included explicitly in the optimal control problem, being automatically satisfied for

every initial state x(k) in a given compact set. In addition, state constraints are often softened

(s2 > 0, R2 > 0) in practical implementations, to guarantee global feasibility.

Finally, observe that the proposed MPC design can be readily extended to satellites in

elliptic orbits and formations with large inter-spacecraft separations, by simply adopting a

different set of linearized equations in place of the HCW equations (3.31). For elliptic orbits,

the Tschauner-Hempel equations can be used [129]. For spacecraft which are far from each

other, and therefore subject to differential gravitational perturbations, a suitable model is

provided by the Schweighart-Sedwick equations [122].

3.3.4 Explicit LMPC

Even if the optimization problem (3.59) can be solved efficiently using existing QP algo-

rithms, the required computations may not be feasible onboard small spacecraft. Moreover,

the running time of QP solvers is in general not guaranteed, whereas the reliability of the

control system is a primary concern for space applications. In this respect, one possibility is

to use explicit MPC.
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Before proceeding, it is useful to rewrite the constrained LMPC problem in terms of the

simplified notation

min
ηC

ηTCHηC + 2xTC GηC

s.t. MηC ≤ D+ExC ,
(3.61)

where the matrices H, G, M, D and E are obtained from (3.58) and (3.59). By defining

the new variable

z = ηC +H−1GTxC , (3.62)

(3.61) can be transformed by completing squares into the equivalent multi-parametric qua-

dratic program

min
z

zHz

s.t. Mz ≤ D+ (E+MH−1GT )xC ,
(3.63)

where xC , which appears only in the right hand side of this equation, is treated as a param-

eter vector.

Problem (3.63) can be solved explicitly for all the parameters xC inside a given poly-

hedral set X̄C , as described, for example, in [8]. Hence, the explicit LMPC problem to be

solved is

Problem 3.3.3.

min
z

zHz

s.t. Mz ≤ D+ (E+MH−1GT )xC

xC ∈ X̄C .

(3.64)

For the proposed MPC design, it is beneficial to consider a region of additional size

ds ≥ 0 with respect to the set defined by (3.37), together with the maximum excursion of

the control. The resulting set P is given by

P = {xC : Cx ≤ d+ ds, γ ∈ U} , (3.65)

where xC = [xT , γT ]T . Since the set P is not closed, auxiliary bounds are specified for the

along-track position and the velocity parameters using

− x1 ≤ xM (3.66)

|x4| ≤ −k2x1 + ε, |x5| ≤ −k2x1 + ε, |x6| ≤ −k2x1 + ε, (3.67)

where xM is the maximum feasible along-track separation between the two spacecraft, ε ≥ 0

is a specified tolerance and k2 is a positive slope. The linear dependence of the velocity

bounds (3.67) on x1 is justified by collision avoidance requirements and by the linear de-

pendence of the LoS constraints on x1. The inequalities (3.66)-(3.67) define the set

Pa = {x : Ca x ≤ da} , (3.68)
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where

Ca =




−1 0 0 0 0 0

k2 0 0 1 0 0

k2 0 0−1 0 0

k2 0 0 0 1 0

k2 0 0 0−1 0

k2 0 0 0 0 1

k2 0 0 0 0−1




, da =




xM
ε

ε

ε

ε

ε

ε




. (3.69)

Combining (3.65)-(3.68), the parameter space takes the final form

X̄C = {xC : xC ∈ P ∩ Pa} . (3.70)

The solution z∗(xC) to Problem 3.3.3 is a piece-wise affine linear function defined over

a polyhedral partition of X̄C . Hence, the control law

u(xC) =
[
L(0) 0

] (
z∗(xC)−H−1GTxC

)
, (3.71)

which is obtained from (3.54) and (3.62), observing that ηC = [ηT sT ]T , is piece-wise affine

and can be stored in the following look-up table form

u(xC) = Km xC + gm if Hm xC ≤ bm, m = 1, . . . , Nmpc, (3.72)

where the polyhedral sets {HmxC ≤ bm}, m = 1, . . . , Nmpc are the partition of X̄C , Nmpc

indicates the number of regions in the partition, and Km, Hm, gm, bm are found from the

solution to (3.64). In this thesis, the Multi-Parametric Toolbox [64] is employed to solve

Problem 3.3.3.

The on-line evaluation of u(xC(k)) consist of locating the state space region and hence

the look-up table entry that contains the pre-computed control law for a given xC(k) =

[xT (k), uT (k − 1)]T , through the solution of a set-membership problem. Hence, the on-line

computational load is limited to a piece-wise affine function evaluation.

Remark 3.3.3. The asymptotic stability of an explicit control law can be checked a posteriori,

see e.g. [117], for cases in which the a priori stability of the design is not guaranteed.

It can be concluded that the control law (3.72) provides an approximate solution to Prob-

lem 3.3.2 (and hence to Problem 3.3.1) for a suitable tuning of the parameters Qc, Qf , Rc

in (3.36), aj , Nj in (3.44)-(3.45) and Rs in (3.59). To enable the implementation of the

control law, within an autonomous GNC scheme, the position and velocity of the chaser with

respect to the target must be known. To this aim, a relative navigation EKF is presented in

Section 5.3, which provides an estimate of the vector x(k). A detailed simulation-based

assessment of the performance achievable under this design is given in Section 6.2, in com-

parison to standard MPC (i.e., without Laguerre parametrization of the input signal, see

(3.46)) and LQR techniques.



Chapter 4

Precise Attitude Control

Motivated by the potential application of EP-based reaction control systems to Earth obser-

vation and communication satellites, this chapter studies the problem of maintaining the

attitude of a spacecraft precisely aligned to a given orientation, using on/off actuators. Due

to the presence of on/off restrictions and of persisting disturbances, affecting the attitude

dynamics, the problem does not admit a constant steady state solution. Instead, an oscillat-

ing motion about the set-point must be accepted. In establishing such type of motion, the

minimization of both the propellant consumption and the on/off switching frequency of the

actuators is a key requirement.

The first contribution of this chapter is an analytical upper bound on the minimum

switching frequency required to guarantee fuel-optimal oscillations with prescribed ampli-

tude about the set-point, based on the extension to the coupled multivariable case of the

classical single-axis solution. The provided upper bound does not depend on the relative

phases of the oscillations of each state variable. On the basis of this observation, a less

conservative solution is found, by exploiting phase synchronization. In order to track the

periodic trajectories corresponding to the provided solutions, a minimum switching control

law is derived. Finally, an MPC scheme, based on the real-time optimization of the fuel

consumption, as well as the number of actuator switching cycles, is proposed. This last

approach is general enough to be applied for spacecraft with nonsymmetric thruster config-

urations (e.g. overactuated ACS), and in the presence of angular rate constraints.

The material in this chapter is mainly based on [52] and [81].

4.1 Problem setting

In this section, the model describing the attitude error dynamics is introduced, and the main

features of the attitude control problem are presented.

4.1.1 Reference attitude

It is fairly common in the attitude control literature to describe the orientation of a spacecraft

in terms of the tracking error of a reference LVLH attitude. This is typically the attitude

regime the vehicle is designed for (e.g. to keep the observation window towards Earth,

radiators out of the sun, and solar arrays exposed to the sun). Moreover, the accelerations

required for orbit control are best expressed in the LVLH frame, as seen in Chapter 3.
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The matrix RIL which describes the orientation of the LVLH frame with respect to the

ECI frame (see Fig. 2.1), for a spacecraft at position r with respect to the Earth’s center of

mass, is given by

RIL =

[
h

h
×r

r
, −h

h
, −r

r

]T
. (4.1)

where h = r×ṙ denotes the spacecraft specific angular momentum and h = ‖h‖. For control

design purposes, the rotation (4.1) is parameterized by the quaternion qIL. From (2.2) and

(4.1), it follows that the LVLH frame rotates 360 deg per orbital period about its YLVLH axis,

with an instantaneous angular velocity given by

ωL = [ 0 , −ωL , 0 ]
T
. (4.2)

where ωL = h/r2. For circular orbits, ωL = n =
√
µ/r3 is constant.

4.1.2 Attitude error dynamics

Let qLI denote the inverse rotation of (4.1) in quaternion form. Using quaternion algebra,

the attitude error qLB, corresponding to the orientation of the spacecraft body frame relative

to the LVLH frame, can be expressed as

qLB = qIB ◦ qLI ,

where qIB is the solution to (2.26). If the attitude error is small, it can be approximated by

the three-dimensional rotation vector δθ, which is obtained from the vector part ~qLB of the

attitude error quaternion as

δθ = 2~qLB. (4.3)

The angular rate error is given by the difference between the body frame rotation rate ω

and the LVLH frame rotation rate, expressed in the body frame

δω = ω − ω̃, (4.4)

where ω is the solution to (2.31) and ω̃ = RIBR
T
ILωL.

For small deviations about the setpoint, the tracking error dynamics can be linearized

with negligible loss in accuracy. Because the setpoint is given by the LVLH frame orientation

and angular rate, the attitude error dynamics are obtained by differentiating (4.3)-(4.4) and

linearizing the resulting expression. The time derivative of δθ is simply1

δθ̇ = δω. (4.5)

For linearization purposes, one can assume that the inertia matrix IM = diag(Ix, Iy, Iz) is

constant in (4.4) [84]. In this case, substituting (2.31) into (4.4) and differentiating (4.4)

with respect to time yields

δω̇ = I−1
M τ − I−1

M (ω̃ + δω)×IM (ω̃ + δω)− ˙̃ω. (4.6)

1Alternatively, one can set δω = ω − ωL in (4.4). Then δθ̇ = δω − ω
×

L
δθ.
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Observing that ω̃ ≈ (I − δθ×)ωL and ˙̃ω ≈ −δω×(I − δθ×)ωL for small rotations, and

linearizing (4.6) about (δθ, δω) = (0,0) gives

δω̇ = A1δθ +A2δω + I−1
M τ , (4.7)

where the torque τ is treated as an exogenous input and the matrices A1, A2 turn out to be

A1 =




Iz − Iy
Ix

ω2
L 0 0

0 0 0

0 0
Ix − Iy
Iz

ω2
L


 , A2 =




0 0
Ix − Iy + Iz

Ix
ωL

0 0 0
Iy − Ix − Iz

Iz
ωL 0 0


 .

(4.8)

Notice the cross coupling terms in (4.8) due to the rotation of the LVLH frame.

As long as precise attitude control on nearly circular orbits (e.g. GEO) is concerned, the

dynamic coupling in (4.7)-(4.8) is tipically negligible because |A1δθ+A2δω| ≪ |I−1
M τ |, see

e.g. [34]. In this case, the error dynamics can be approximated by the double integrator

system

δθ̈ = I−1
M τ , (4.9)

where τ is given by

τ = τ e + τ u, (4.10)

and τ e = τ g + τ d + τ r + τm + τ o denotes the disturbance torque vector (see (2.32) and

(2.44)).

4.1.3 Attitude control system

A typical design for attitude control systems based on electric propulsion consists of on-off

reaction thrusters mounted at a fixed orientation with respect to the spacecraft body frame.

For this design, the control torque τ u in (4.10) can be expressed as

τu = Gµ, (4.11)

where µ ∈ {0, 1}m indicates the on-off activation commands of the m thrusters (or thruster

pairs) and the matrix G expresses the linear mapping from this command to the control

torque. Notice that, for the common case of symmetric thruster configurations G = [G̃, −G̃],

equation (4.11) can be rewritten as

τu = G̃ µ̃, (4.12)

where µ̃ ∈ {−1, 0, 1}m
2 .

Attitude control torques are produced by expelling propellant mass. Because spacecraft

only contain a finite amount of propellant and refill operations are costly and impractical,

the amount of propellant mass being expended ultimately dictates the lifetime of a space

mission. Consequently, the minimization of the fuel consumption is the primary requirement

for the considered problem. Besides the fuel consumption, restrictions on the duration and

number of thruster firings have to be accounted for. In particular, the number of firing cycles
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has an impact on both the lifetime and the specific impulse of the thrusters, due to valve

wear and transient effects on the actuator dynamics.

An efficient attitude control scheme must then focus on simultaneously minimizing the

fuel consumption and the thruster switching frequency, while at the same time enforcing the

attitude control accuracy requirements. The minimum fuel and minimum switching control

problems are addressed next.

4.2 Minimum fuel control

This section tackles the problem of minimizing the fuel consumption of the attitude control

system, under the assumptions that the attitude dynamics can be approximated by the sys-

tem (4.9), and that the thruster configuration is symmetric. Combining (4.9)-(4.10) and

(4.12), the tracking error dynamics can be expressed as

δθ̈(t) = B µ̃(t) + d, (4.13)

where θ(t) ∈ R
n, B = I−1

M G̃ and d = I−1
M τ e. Notice that, although in the considered

application n = 3, in the following the minimum fuel and minimum switching problems will

be studied for the more general case in which n is arbitrary. The assumption is made that

B is square and nonsingular, and that ‖B−1 d‖∞ < 1, to ensure the controllability of the

system. In this case, (4.13) describe a system of n double integrators, controlled by m
2 = n

switching inputs µ̃, which are coupled through the n× n matrix B.

The control accuracy requirements are typically dictated by the spacecraft payload, and

specified as the maximum allowed deviation from the set-point. Hence, the objective of the

control system is to guarantee that

‖Wθ δθ(t)‖∞ ≤ 1, ∀t ≥ t̄ (4.14)

for some t̄ ≥ 0, where Wθ can be taken as a diagonal weighting matrix. By applying the

fuel consumption expression (2.18) to the thruster configuration specified by (4.12), under

the assumption that the thruster specific impulse is fixed and equal for all thrusters, a cost

function proportional to the average amount of expended fuel is defined as

Jf (µ̃) = lim
T→∞

1

T

∫ T

0

‖µ̃(t)‖1 dt. (4.15)

Let us now introduce the new state variables x(t) = T−1δθ(t), where

T = BD, (4.16)

D = diag(sgn(̺1), . . . , sgn(̺n)), (4.17)

with sgn(0) = 1, and ̺ = B−1d. Then, system (4.13) can be rewritten as

ẍ(t) = u(t) + k , (4.18)
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Figure 4.1: Feasible set defined by (4.14).
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Figure 4.2: Feasible set defined by (4.20).

where k = T−1d and u = D−1µ̃, with

u ∈ {−1, 0, 1}n. (4.19)

In the following, the j−th entries of the vectors x and u are denoted by xj and uj, respec-

tively. By definition of T and D, it turns out that k ≥ 0 in (4.18). Moreover, the constraint

(4.14) takes the form

‖Cx(t)‖∞ ≤ 1, ∀t ≥ t̄, (4.20)

where C = WθT. Notice that, for t ≥ t̄, (4.20) is equivalent to

max
i

max
t

|wi(t)| ≤ 1, (4.21)

where

wi(t) =
n∑

j=1

cij xj(t), (4.22)

and the coefficients cij are the entries of C.

In the formulation (4.18)-(4.20), the n double integrators have been decoupled, but the

state constraints (4.20) are now coupled. In fact, while the feasible set for δθ(t) in (4.13)

is a box, that of x(t) in (4.18) is a parallelotope, as illustrated in Figs. 4.1-4.2. Moreover,

observe that

Jf (µ) = Jf (µ̃) = Jf (u). (4.23)

Then, the minimum fuel control problem can be formulated as follows.

Problem 4.2.1. Find a feedback control law u(x, ẋ), which solves the optimal control problem

min
u

Jf (u)

s.t. (4.18), (4.19), (4.20).
(4.24)

The solution to Problem 4.2.1, for the ideal case in which k = 0 and the more realistic

case in which k > 0 in (4.18), is presented hereafter.
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4.2.1 Unperturbed dynamics

Consider the system (4.18) in the absence of perturbations, so that k = 0. Moreover, replace

(4.20) by

x(t) = 0, ∀t ≥ t̄. (4.25)

In this case, both the system (4.18) and the state constraints (4.25) are decoupled, and

problem (4.24) reduces to a set of n scalar problems of the form

min
u

Jf (u)

s.t. ẍ = u

x(t) = 0 ∀t ≥ t̄

u ∈ {−1, 0, 1}.

(4.26)

Observe that any control law able to steer the system ẍ = u to the origin in finite time, from

any initial condition, solves problem (4.26) with the optimal cost J∗
f (u) = 0, because for

such control law the steady state fuel consumption is zero. One example is represented by

the well-know time-optimal control law (see e.g. [4])

u(x, ẋ) =

{
−1 if st(x, ẋ) > 0 or st(x, ẋ) = 0 and ẋ > 0

1 if st(x, ẋ) < 0 or st(x, ẋ) = 0 and ẋ < 0,
(4.27)

where switching function st(x, ẋ) is given by

st(x, ẋ) = x+
1

2
ẋ|ẋ|. (4.28)

Two state trajectories resulting from the application of this control law to the system ẍ = u

are reported in the phase plane shown in Fig. 4.3.

x

ẋ

st(x, ẋ) = 0

u = −1u = 1

Figure 4.3: Time-optimal trajectories (dashed) from the application of (4.27)-(4.28).
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Hence, it is straightforward to verify that the control law (4.27)-(4.28), or equivalently

any control law satisfying (4.25), provides a solution to Problem 4.2.1 when applied for

every input channel of the unperturbed system (4.18), independently from the choice of the

constraint matrix C in (4.20).

Unfortunately, such a trivial result holds only if the duration of the thruster firings can

be made arbitrarily small, which is often not the case in practical applications. When the

impulse provided by the control system has a fixed lower bound, the so-called minimum

impulse bit, the attitude control accuracy requirements can have a significant impact on the

fuel consumption, as explained next.

4.2.2 Minimum impulse bit dynamics

In the absence of disturbance torques, it would theoretically be possible place the satellite

into a perfect LVLH attitude, rotating about the YLVLH axis 360 deg per orbit to remain pointed

towards the Earth’s surface. In practical applications, however, constraints on the minimum

duration of thruster firings and hence on the minimum impulse bit provided by the attitude

control system usually prevent the angular rate of the spacecraft from being driven exactly

to zero. In such cases, the solution to the minimum fuel control problem generally takes the

form of a limit-cycle oscillation.

An example of a limit cycle due to the minimum impulse bit and hence the minimum

rate change ∆vmin provided by the control system is reported in the phase plane shown in

Fig. 4.4, for the single-input system ẍ = u. In this figure, u = −1 and u = 1 are applied for

the minimum possible firing time to reverse the sign of the angular velocity before exceeding

the bound defined by |x(t)| ≤ b. Notice that b also represents the amplitude of the resulting

limit cycle. Because pulses of minimum duration are considered, the angular rate dynamics

x

ẋ

−b b

∆vmin

Figure 4.4: Minimum impulse bit limit cycle.

can be approximated by a sequence of impulsive velocity changes, from which it follows that



58 4. Precise Attitude Control

the average fuel consumption is inversely proportional to the time between two consecutive

pulses and hence to b, according to

Jf (u) =
∆vmin
b

. (4.29)

This explains why the desire of a high pointing accuracy (i.e. a small b) can be in conflict

with the requirement to minimize the fuel consumption of a reaction control system.

Let us assume that the desired long-term behaviour for the multi-input system (4.18),

with k = 0, consists in limit cycles of the form depicted in Fig. 4.4 with amplitudes bj , for

all axes j = 1, . . . , n, and that the minimum impulse bit is fixed and equal for all thrusters.

Then, a cost function that accounts for the fuel consumption of system (4.18) is obtained

from (4.29) as

Jf (u) =

n∑

j=1

∆vmin
bj

. (4.30)

By using (4.21)-(4.22), under the assumption that |xj(t)| ≤ bj , one has that

max
t

|wi(t) | ≤ max
t

n∑

j=1

|cij | |xj(t)| ≤
n∑

j=1

|cij | bj , (4.31)

and hence (4.20) can be enforced by imposing

‖Cb‖∞ ≤ 1, (4.32)

where C is the matrix whose entries are |cij | and b = [b1, . . . , bn]. By replacing (4.20) with

(4.32) and enforcing (4.30), problem (4.24) boils down to

min
b

∆vmin

n∑

j=1

1

bj

s.t. ‖Cb‖∞ ≤ 1

bj > 0, j = 1, . . . , n.

(4.33)

Problem (4.33) can be solved numerically for a given constraint matrix C, yielding a vector

b∗ of optimal limit cycle amplitudes. In order to steer the state of the system (4.18) to the

periodic trajectories corresponding to the solution to (4.33), the control law (4.27) can be

modified by adding a symmetric deadband of amplitude b∗j for all axes, as follows

uj(xj , ẋj) =






−1 if st(xj , ẋj) ≥ b∗j
1 if st(xj , ẋj) ≤ −b∗j
0 else,

(4.34)

where j = 1, . . . , n.

Proposition 4.2.1. The control law (4.34) provides a suboptimal solution to Problem 4.2.1

for the case k = 0, in the presence of minimum impulse bit restrictions.



4.2. Minimum fuel control 59

Proof. Considering input quantization, the control law (4.34) drives the solution of (4.18) to

limit cycles of amplitudes b∗j , j = 1, . . . , n, in finite time, from any initial condition. The sub-

optimality follows from the fact that the optimal cost of problem (4.33) is an upper bound

on the optimal cost of problem (4.24), due to the particular class of periodic trajectories

considered in (4.33).

4.2.3 Perturbed dynamics

In many practical applications, the attitude error dynamics (4.18) are perturbed by a dis-

turbance term k > 0 that is approximately constant with respect to the error dynamics

timescale. Examples include disturbance torques arising from atmospheric drag at low or-

bital altitudes and torques generated during station-keeping operations, due to misalign-

ment of the orbit control system (see Section 2.3). A disturbance estimator is often capable

of identifying such contributions. Therefore, in the following it is assumed that k is constant

and known.

Let us analyze first the fuel-optimal control problem for the single-input system

ẍ(t) = u(t) + k , (4.35)

where k > 0 is a fixed scalar parameter and

u(t) ∈ {−1, 0, 1}. (4.36)

In this case, the constraint (4.20) takes the form

|x(t)| ≤ b, ∀t ≥ t̄, (4.37)

where b is a scalar bound, and problem (4.24) becomes

min
u

Jf (u)

s.t. (4.35), (4.36), (4.37).
(4.38)

The following proposition is a standard result from optimal control theory.

Proposition 4.2.2. A minimizer of problem (4.38) satisfies

u(t) ∈ {−1, 0}. (4.39)

Moreover,

J∗
f (u) = k. (4.40)

Proof. Let u(t) be an input signal guaranteeing that (4.37) holds. Then, ẋ(t) is bounded and

therefore

lim
T→∞

1

T

(
ẋ(0) +

∫ T

0

(u(t) + k) dt

)
= 0,

which gives

lim
T→∞

1

T

∫ T

0

u(t) dt = −k. (4.41)
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Hence, the solution to (4.38) is also a minimizer of problem

min
u

Jf (u)

s.t. (4.36), (4.41).
(4.42)

It is straightforward to check that a minimizer of (4.42) satisfies u(t) ∈ {−1, 0}. By enforc-

ing this condition in (4.41), it follows that Jf (u) = k.

Remark 4.2.1. Notice that any input sequence satisfying (4.39) and guaranteeing that (4.37)

holds, satisfies also (4.40) and therefore it is a fuel-optimal solution.

It is well-known (see e.g. [4]) that a fuel-optimal control law for system (4.35) is

u(t) =

{
−1 if s(x, ẋ) > 0 or s(x, ẋ) = 0 and ẋ > 0

0 if s(x, ẋ) < 0 or s(x, ẋ) = 0 and ẋ < 0,
(4.43)

where the switching function s(x, ẋ) is given by

s(x, ẋ) =





x− 1

2(k − 1)
ẋ2 if ẋ ≥ 0

x− 1

2k
ẋ2 if ẋ < 0.

(4.44)

Such a control law guarantees that the trajectory of the closed-loop system converges to

the origin in finite time, from any initial condition, as illustrated in Fig. 4.5. Hence, it also

enforces (4.37) indefinitely and therefore it solves problem (4.38).

x

ẋ

s(x, ẋ) = 0

u = −1u = 0

Figure 4.5: Fuel-optimal trajectories (dashed) from the application of (4.43)-(4.44).

For the multivariable system (4.18), the minimum-fuel problem amounts to minimising

(4.23). In this case, the following proposition holds.
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Proposition 4.2.3. A minimizer of problem (4.24) satisfies

u ∈ {−1, 0}n. (4.45)

Moreover

J∗
f (u) = ‖k‖1. (4.46)

Proof. Thanks to the decoupling provided by (4.16), the optimality condition (4.39) can be

applied for each input channel of (4.18), leading to (4.45)-(4.46).

Consequently, it can be easily verified that the application of the control law (4.43)-

(4.44) to each input channel of (4.18) provides a solution to Problem 4.2.1, for k > 0.

However, notice that an infinite switching frequency is required to keep the trajectory of

system (4.13) exactly at the origin with an input of the form (4.45), which translates into

undesirable chattering of the actuators in practical implementations. This motivates the

problem of minimizing both the fuel consumption and the switching frequency of the control

system, while keeping the attitude error within the bound specified by (4.20), as described

in the next section.

4.3 Minimum switching oscillations

A well-established application of attitude control systems based on electric propulsion is rep-

resented by the compensation of persisting disturbance torques [70]. In this case, problem

(4.24) admits multiple fuel-optimal solutions, as discussed in Section 4.2.3. The aim of this

section is to find, among all these solutions, the one which minimises the actuator switching

frequency, in order to maximise the lifetime and the performance of the ACS.

Notice that the switching frequency of a single actuator corresponds to the average num-

ber of input transitions per time unit commanded by the control system. Therefore, a cost

function that accounts for the average number of input transitions of system (4.18) (and

hence of system (4.13)) is given by

Jt(u) = lim
T→∞

1

T

∫ T

0

‖u̇(t)‖1 dt. (4.47)

Another possibility is represented by the upper bound of the switching frequency per actua-

tor

Js(u) = max
j

lim
T→∞

1

T

∫ T

0

|u̇j(t)| dt. (4.48)

Because (4.48) is an useful indicator of the propulsion system lifetime, it will be adopted

throughout this section. Hence, the minimum switching problem can be formulated as

Problem 4.3.1.
min
u

Js(u)

s.t. (4.18), (4.20), (4.45),
(4.49)

with k > 0 in (4.18).
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x

ẋ

u = −1

u = 0

Figure 4.6: Trajectories of system (4.35) for u = 0 (solid) and u = −1 (dashed).

In the following, the minimum switching problem is reviewed for a single-input double

integrator, and the trajectory parameterizations necessary to solve problem (4.49) is intro-

duced. Then, two different suboptimal solutions to Problem 4.3.1 are derived.

4.3.1 Single-input problem

For the perturbed double integrator system (4.35), the minimum switching problem (4.49)

takes the form

min
u

Js(u) = lim
T→∞

1

T

∫ T

0

|u̇(t)| dt

s.t. (4.35), (4.37), (4.39).

(4.50)

The solution to (4.50) can be found by using phase plane arguments. The trajectories ob-

tained for u(t) = 0 and u(t) = −1 in (4.35) are reported in the phase plane in Fig. 4.6. From

(4.37) and (4.39), it follows that fuel-optimal state trajectories are bounded paths switching

between the curves in Fig. 4.6.

Let

ψL = {(x, ẋ) : x− 1

2k
ẋ2 = −b, −b ≤ x < x̄},

ψU = {(x, ẋ) : x− 1

2(k − 1)
ẋ2 = b, x̄ ≤ x ≤ b},

(4.51)

where x̄ = b(1−2k). Then, the following result characterizes the solution to problem (4.50)

[60, 69].

Proposition 4.3.1. Every optimal solution u∗(t) of problem (4.50) is such that the resulting

trajectory satisfies (x, ẋ) ∈ ψU ∪ ψL and

u∗(t) =

{
−1 if (x(t), ẋ(t)) ∈ ψU

0 if (x(t), ẋ(t)) ∈ ψL,
(4.52)
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for all t ≥ t̃, for some t̃ ≥ 0. Moreover, the resulting minimum switching frequency is

J∗
s (u) = 2

√
γ/b, (4.53)

where

γ = k(1− k)/16. (4.54)

Proof. By integrating system (4.35) with either u = 0 or u = −1, one gets the trajectories

x− 1

2(k − 1)
ẋ2 = β1 and x− 1

2k
ẋ2 = β2, respectively, with β1, β2 ∈ R (see Fig. 4.6). Problem

(4.50) requires to maximize the average time between consecutive input transitions, while

satisfying constraint (4.37). This can be done by choosing the trajectory ψU when u = −1

(β1 = b) and ψL when u = 0 (β2 = −b) i.e. (4.52). By intersecting ψU and ψL, straightfor-

ward calculations allow one to compute the times spent over each trajectory, which amount

to

tU = 4

√
bk

1− k
if u = −1,

tL = 4

√
b(1− k)

k
if u = 0.

Hence, the period of the resulting trajectory is p = tU + tL =
√
b/γ, with γ given by (4.54).

Since two input switchings per period are required, J∗
s (u) = 2/p = 2

√
γ/b. Finally, it can be

observed that the limit cycle defined by ψU and ψL can be reached in finite time from any

initial condition x(0), ẋ(0), with only one input switching, which clearly does not affect the

optimal cost J∗
s (u)

Proposition 4.3.1 provides a minimum switching and fuel-optimal solution for system

(4.35), under the constraint (4.36) and (4.37), in terms of a limit cycle in the phase plane.

Fig. 4.7 shows the resulting trajectory. Through straightforward manipulations, the periodic

trajectory of system (4.35) along the limit cycle ψU ∪ ψL can be expressed as

x(t) = a f(λ),

a = p2 γ,

λ = mod(t/p+ φ, 1),

(4.55)

where a = b is the amplitude, p is the period, φ ∈ [0, 1] is the phase, γ is given by (4.54),

and f(λ) ∈ [−1, 1] is defined as

f(λ) =





1− 8

k
(λ− k

2
)2 if 0 ≤ λ ≤ k

−1− 8

k − 1
(λ− k + 1

2
)2 if k < λ < 1.

(4.56)

Then, the optimal input signal u∗(t) in (4.52) can be rewritten as

u∗(t) =

{
−1 if 0 ≤ λ ≤ k

0 if k < λ < 1.
(4.57)

From (4.55)-(4.57), it follows that the optimal input signal u∗(t) is pulse-width modulated

with period p∗ =
√
b/γ and duty cycle k. The periodic solution (4.55)-(4.56) will be ex-

ploited in the next section, to parameterize the solutions of Problem 4.3.1.
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ψL ψU

−b b

Figure 4.7: Fuel/switch-optimal solution to problem (4.50).

4.3.2 Multi-input problem

Problem 4.3.1 is hard to solve if all feasible solutions to (4.18) are considered. Therefore,

taking inspiration from the optimal solution (4.55)-(4.57) of the single-input problem, we

restrict our attention to solutions of the form

xj(t) = aj f(λj),

λj = mod(t/pj + φj , 1),

aj = p2j γj ,

γj = kj (1− kj)/16,

(4.58)

where aj and φj are free parameters, f(λj)∈ [−1, 1] is given by (4.56), and the input signals

turn out to be

uj(t) =

{
−1 if 0 ≤ λj ≤ kj

0 if kj < λj < 1,
(4.59)

for j = 1, . . . , n. The input signals u(t) = [u1(t), . . . , un(t)]
T in (4.59) satisfy (4.45) and

Jf (u) = ‖k‖1. Hence, according to Proposition 4.2.3, they are fuel-optimal. Being these

signals double-switch periodic, one has

Js(uj) =
2

pj
. (4.60)

By enforcing (4.58) (which satisfies (4.18),(4.45), by definition), problem (4.49) becomes

min
p,φ

max
j

2

pj

s.t. (4.20) , (4.58)

0 ≤ φj < 1

pj > 0, j = 1, . . . , n.

(4.61)
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where p = [p1, . . . , pn]
T and φ = [φ1, . . . , φn]

T . Notice that the solution of problem (4.61)

does not change if all phases φj are shifted by the same quantity. Hence, without loss of

generality, in the sequel we will enforce φ1 = 0.

So far, the dynamic optimization problem (4.49) has been converted into a static op-

timization problem, where the decision variables are p and φ. Note, however, that the

problem is still difficult, being non-convex in these decision variables. Consequently, some

simplifying assumptions will be made in order to derive an upper bound to the solution of

problem (4.61). Let us observe that by (4.21)-(4.22) and (4.58)

max
t

|wi(t) | ≤ max
t

n∑

j=1

|cij | |xj(t)| ≤
n∑

j=1

|cij | aj , (4.62)

and hence (4.20) can be enforced by imposing (similarly to the derivation in (4.32))

‖Ca‖∞ ≤ 1, (4.63)

where a = [a1, . . . , an]
T . From (4.58), it follows that

pj =
√
aj/γj. (4.64)

By replacing (4.20) with (4.63) and substituting (4.64) in (4.60), problem (4.61) boils down

to

min
a

max
j

2

√
γj
aj

s.t. ‖Ca‖∞ ≤ 1

aj > 0, j = 1, . . . , n.

(4.65)

By (4.62), the solution of (4.65) is an upper bound to that of (4.61). It turns out that

problem (4.65) can be solved analytically, as stated by the following theorem.

Theorem 4.3.1. A global minimum of problem (4.65) is attained at

a∗ =
1

‖Q‖∞
Γ1, (4.66)

where Γ = diag(γ1, . . . , γn), Q = CΓ, ‖ · ‖∞ denotes the matrix infinity norm and 1 =

[1, . . . , 1]T .

Proof. Let r = Γ−1a. Then, problem (4.65) can be rewritten as

min
β,r

β

s.t.
2

√
rj

≤ β

‖Qr‖∞ ≤ 1

rj > 0, j = 1, . . . , n.

(4.67)
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The statement of the theorem is proven if r∗ =
1

‖Q‖∞
1, β∗ = 2

√
‖Q‖∞ is a global minimum

for problem (4.67). Let r̂, β̂ be a feasible solution of (4.67). From feasibility, we get

r̂j ≥
4

β̂2
, ∀j = 1, . . . , n,

and, being qij ≥ 0, ∀i, j, where qij denotes the entries of Q, one has

1 ≥
n∑

j=1

qij r̂j ≥
4

β̂2

n∑

j=1

qij , ∀i = 1, . . . n.

Hence,

β̂ ≥ 2

√√√√ max
i=1,...,n

n∑

j=1

qij = β∗,

which concludes the proof.

Remark 4.3.1. Since by (4.66) all the entries of Γ−1a∗ are equal, it follows from (4.64) that

the periods of the closed trajectories resulting from the solution of problem (4.65) are

p∗1 = p∗2 = . . . = p∗n =
1√

‖Q‖∞
. (4.68)

Remark 4.3.2. A geometric interpretation of the relaxation (4.65) of problem (4.61) is as

follows. Consider the box B = {x ∈ R
n : |xi| ≤ ai, i = 1, . . . ...n} and the parallelotope

P = {x ∈ R
n : ‖Cx‖∞ ≤ 1}. Then, a necessary and sufficient condition for B ⊆ P is given by

(4.63). In other words, condition (4.63) forces the trajectory of the system to lie within a box

inscribed in the parallelotope describing the state constraints; then, problem (4.65) optimizes

the sides of the box, in order to maximize the period of the trajectories, thus minimizing the

switching frequency.

In the relaxation (4.65) of problem (4.61), the additional degrees of freedom provided

by the phases φj have not been exploited. In order to find a less conservative relaxation, we

enforce directly the property (4.68) into the original problem (4.61). This leads to the new

relaxed problem

max
p,φ

p1
2

s.t. (4.20), (4.58)

0 ≤ φj < 1, j = 1, . . . , n

p1 = p2 = . . . = pn > 0,

(4.69)

where φ1 = 0. The following theorem provides the solution to problem (4.69).

Theorem 4.3.2. The global maximum of problem (4.69) is attained at

p∗1 =
1√
σ(φ∗)

, (4.70)
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where
σ(φ∗) = min

φ
σ(φ), (4.71)

and

σ(φ) = max
i

max
0≤t≤p1

∣∣
n∑

j=1

cij γjf(t/p1 + φj)
∣∣. (4.72)

Proof. By exploiting (4.58), in combination with (4.21)-(4.22), one can rewrite the con-

straints (4.20),(4.58) as

p21 σ(φ) ≤ 1.

Then, problem (4.69) boils down to

max
p,φ

p1
2

s.t. p21 σ(φ) ≤ 1

0 ≤ φj < 1, j = 1, . . . , n

p1 = p2 = . . . = pn > 0,

(4.73)

where φ1 = 0. Notice that σ(φ) in (4.72) does not depend on the actual value of the period

p1, because the peak values of the sums of the p1-periodic functions f(t/p1 + φj), evaluated

over the period, are independent from the period itself. Consequently, the solution to (4.73)

is that specified by (4.70)-(4.71), which concludes the proof.

Remark 4.3.3. Due to (4.68) and the fact that (4.20) is less restrictive than (4.63), the

solution of problem (4.69) is a lower bound to that of (4.65), while still being an upper bound

to that of (4.61).

Remark 4.3.4. According to (4.59), the input signals u∗j corresponding to the solution provided

by Theorem 4.3.2 are pulse-width modulated with period p∗j = p∗1 and phases φ∗1 = 0 and φ∗j
for j = 2, . . . , n.

The unconstrained problem (4.71) is essentially a crest factor minimization problem,

which is known to be a hard optimization problem, being σ(φ) a non convex function (see

[15] for a study of the crest factor problem in the sinusoidal case). Nevertheless, for low di-

mensional cases, such as n = 3, which are of practical interest in the considered application,

a global minimizer of (4.71) can be found by numeric search over the free phases φj . The

benefits of this approach over the solution provided by Theorem 4.3.1 are demonstrated on

two numerical examples, in the following.

4.3.3 Numerical examples

Example 4.3.1. Let n = 2, k = [0.7, 0.1]T in (4.18), and

C =

[
cos(π/3) sin(π/3)

− sin(π/3) cos(π/3)

]
,

in (4.20). The solutions provided by Theorem 4.3.1 and Theorem 4.3.2 are compared next.
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Figure 4.8: Trajectories x1(t) (solid) and x2(t) (dash-dotted) from the solution to (4.65) (top) and

(4.69) (bottom).
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Figure 4.9: Trajectories in the x1, x2 plane from the solutions to (4.65) (dashed) and (4.69) (solid),

with constraints (4.20) (outer parallelogram) and |xi| ≤ a
∗

i (inner box).

According to Theorem 4.3.1, the solution to (4.65) is given by a∗ = [0.9257, 0.3967]T .

From (4.68), it follows that p∗1 = p∗2 = 8.4 and hence the resulting average switching fre-

quency is J∗
s = 2/p∗1 = 0.238. In order to exploit the additional degrees of freedom provided

by φ, problem (4.69) is solved using Theorem 4.3.2. The solution of (4.71) is found nu-

merically through a one-dimensional search over φ2, with φ1 = 0. One gets φ∗2 = 0.59 and

p∗1 = p∗2 = 9.53, which give J∗
s = 2/p∗1 = 0.21. Hence, the optimal cost of (4.69) is lower

than the optimal cost of (4.65) by approximately 12%.

The trajectories x1(t), x2(t) of system (4.18) are obtained by substituting the solutions
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p∗ and φ∗ in (4.58), for both approaches. Since the solution of (4.65) holds for any φ,

without loss of generality one can set φ∗1 = φ∗2 = 0 in the first approach. The resulting

trajectories are shown in Fig. 4.8 over a single period. The same trajectories are reported in

the x1 x2 plane in Fig. 4.9, together with the set defined by (4.20) and the box |xj | ≤ a∗j . It

can be clearly seen that the control requirements (4.20) are met in both cases. However, the

trajectories satisfying (4.66) are constrained to lie inside a smaller region. Being the period

proportional to the square root of the oscillation amplitude, this yields a higher switching

frequency of the actuators.

Example 4.3.2. Let n = 3,

T =




0.05 0.25 1

−1 1 −0.2

0.65 1.2 −1.2


 ,

and k = [0.4, 0.1, 0.7]T in the transformed system (4.18). Moreover, let Wθ = I in (4.14)

and hence C = T in (4.20). The solutions provided by Theorem 4.3.1 and Theorem 4.3.2 are

compared next.

The solution provided by Theorem 4.3.1 is a∗ = [0.465 , 0.174, 0.407]T , which corre-

sponds to the period p∗1 = p∗2 = p∗3 = 5.57 and the optimal cost J∗
s = 0.36. In order

to apply Theorem 4.3.2, one has to search the 2-dimensional parameter space φ2, φ3 for

a global minimizer of (4.71). Notice that σ(φ) in (4.70) is a non-convex function of the

decision variables φ with multiple local minima, as shown in Fig. 4.10.
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Figure 4.10: Plot of function σ(φ) for the three-dimensional example.

The solution to (4.69) is φ∗2 = 0.91, φ∗3 = 0.1 and p∗1 = p∗2 = p∗3 = 8.14, corresponding

to the optimal cost J∗
s = 0.246. As expected, when φ is optimized, the on-off control law

requires a lower switching frequency, while the average fuel consumption J∗
f = ‖k‖1 = 1.2
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is the same for both solutions, by construction. The optimal cost resulting from the ap-

plication of Theorem 4.3.2 is lower than that corresponding to the solution provided by

Theorem 4.3.1 by approximately 32%, which translates into a significant reduction of the

actuator switching cycles. The three-dimensional plot of the trajectories x1(t), x2(t) and

x3(t) is reported in Fig. 4.11, where it can be seen that the control accuracy requirements

(represented by the 3-dimensional parallelotope) are satisfied.
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Figure 4.11: Trajectories resulting from the solution to (4.65) (dashed) and (4.69) (solid), together

with state constraints (4.20) (outer parallelotope) and |xi| ≤ a
∗

i (inner box).

It can be concluded that Theorem 4.3.1 and Theorem 4.3.2 provide two suboptimal

solutions to Problem 4.3.1. A control law tracking the periodic trajectories corresponding to

these solutions is presented next.

4.4 Minimum switching control

In the previous section, the problem of finding the fuel/switch-optimal periodic trajectories

satisfying given state constraints has been addressed for the multivariable double integra-

tor system (4.18), and two suboptimal (in terms of switching frequency) solutions have

been provided. In this section, it is shown how to steer the system to these solutions from

any given initial condition. Since in (4.18) the n double integrators have been decoupled,

this problem can be tackled by using n single-input feedback control laws based on system

(4.35). For the solution provided by Theorem 4.3.1, this amounts to design a control law

tracking a limit cycle with prescribed period. For the solution specified by Theorem 4.3.2,

the control law must also track a given phase along the limit cycle.
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4.4.1 Tracking of limit cycle solutions with prescribed period

In order to steer the state of the system (4.35) to a limit cycle with prescribed period p from

any initial condition, the fuel-optimal control law (4.43) is modified as follows

u(t) =





−1 if s(x, ẋ) ≥ a

0 if s(x, ẋ) ≤−a
up otherwise,

(4.74)

where up = −1 if s(x, ẋ) ≥ a occurred more recently than s(x, ẋ) ≤ −a, and up = 0

otherwise. The resulting closed-loop system consists of the nonlinear system (4.35), (4.44)

under the relay feedback (4.74), with hysteresis defined by a.

x

ẋ

s(x, ẋ) =−a s(x, ẋ) = a

a−a

Figure 4.12: Switching curves (solid) and example of a state trajectory (dotted).

The switching curves s(x, ẋ) = a and s(x, ẋ) = −a are reported in the phase plane

in Fig. 4.12, together with an example of a state trajectory (dotted). By analysing the

phase portrait in Fig. 4.12, it is evident that, by switching the control input at most once,

a limit cycle is reached from any initial condition. Combining this observation with the

parametrization (4.55), one has the following result.

Proposition 4.4.1. The perturbed double integrator (4.35) with the control law (4.74) con-

verges in finite time to a periodic trajectory of the form (4.55)-(4.56), with period

p =
√
a/γ. (4.75)

Moreover, only one switching of the control input is required to reach this trajectory from any

initial condition.

Corollary 4.4.1. By applying for each input signal uj(t) of system (4.18) the control law

(4.74) with a = a∗j given by (4.66), the periodic trajectories (4.58) with period p∗j in (4.68)

are reached in finite time with one switching per input, from any initial condition.
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4.4.2 Tracking of limit cycle solutions with prescribed period and phase

Assume now that the aim is to design a control law tracking a periodic solution in the

form (4.55)-(4.56), with prescribed period and phase. Besides the relation between the

hysteresis of the relay element and the period of the limit cycle provided by (4.75), a relation

between a variation of the hysteresis width and a corresponding phase shift does indeed

exist. Therefore, the approach proposed hereafter is to steer both the period and the phase

of the closed-loop trajectory to the prescribed values, by using a time-varying hysteresis

defined by two parameters aU (t) and aL(t). More specifically, the following procedure is

proposed: upon reaching of a switching curve, the parameter defining the offset of the

opposite switching curve is updated, to enforce a cycle whose duration is designed to steer

both the phase and the period to the prescribed values. To this purpose, the control law

(4.74) is modified as

u(t) =






−1 if s(x, ẋ) ≥ aU (t)

0 if s(x, ẋ) ≤−aL(t)
up otherwise,

(4.76)

where up = −1 if s(x, ẋ) ≥ aU (t) occurred more recently than s(x, ẋ) ≤−aL(t), and up = 0

otherwise, with aL(t) + aU (t) > 0. The time-varying parameters are designed as explained

next.

Let {zLi }, {zUi } denote two sequences of increasing time instants at which the state tra-

jectory reaches the switching curves of the control law (4.76). Formally

zLi :

{
s(x(zLi ), ẋ(z

L
i )) =−aL(zLi )

∃b : ∀t ∈ (zLi − b, zLi ) s(x(t), ẋ(t)) 6=−aL(t),

zUi :

{
s(x(zUi ), ẋ(z

U
i )) = aU (zUi )

∃b : ∀t ∈ (zUi − b, zUi ) s(x(t), ẋ(t)) 6= aU (t).

(4.77)

Without loss of generality, let us consider u(t0) = 0 (the case u(t0) = −1 being analogous)

and construct a sequence {zl} of increasing time instants as follows

{zl} = {zU1 , zL1 , zU2 , zL2 , . . .}. (4.78)

The proposed approach is to update aU (t) and aL(t) in (4.76) at times zLi and zUi , respec-

tively. To this aim, we define a sequence {al} such that

aL(t) = a2m−1 for t ∈ [z2m−1, z2m+1),

aU (t) = a2m for t ∈ [z2m, z2m+2).
(4.79)

Notice that the offset of a switching curve is updated when the trajectory is not lying on the

same curve.

The sequence {zl} in (4.78) depends on the application of the control law (4.76) to

system (4.35) and hence on the particular choice of the update sequence {al} in (4.79).

The controlled evolution of the system is illustrated in Fig. 4.13, where the state trajectory

(dotted) reaches the time-varying switching curves (solid) at times zl, zl+1 and zl+2. The
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Figure 4.13: Scheme for the computation of the event times: switching curves (solid) and example of

a closed-loop trajectory (dotted).

event times can be computed iteratively according to

zl+1 = zl +
|ẋ(zl+1)|+ |ẋ(zl)|

q(zl)
, (4.80)

where q(zl) = |k + u(zl)| and the velocity |ẋ(zl+1)| is given by

|ẋ(zl+1)| = 4
√
2γ(al + al−1). (4.81)

From the previous observations, it follows that the objective of driving the system to a

steady state periodic solution in the form (4.55)-(4.56), with prescribed period p and phase

φ, can be recast in terms of the design of the sequence {al}.

Theorem 4.4.1. Let a = p2γ and define

a0 = a, (4.82)

al = a
(
1 + 4φ̃l + 2φ̃2l

)
, l = 1, . . . , n, (4.83)

where

φ̃l = mod

(
z̄l+2 − ẑl+2

p
+

1

2
, 1

)
− 1

2
, (4.84)

ẑl+2 = zl +
|ẋ(zl)|
q(zl)

+
q(zl)

2
p+

√
2

4

√
p2 +

al−1

γ
, (4.85)

and the sequence {z̄l} is defined according to

z̄2m−1 = −φp,
z̄2m = (k − φ) p,

(4.86)
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for m ∈ N. Then, the solution of system (4.35) with the control law (4.76)-(4.79) converges

in finite time to the periodic trajectory (4.55)-(4.56) with period p and phase φ. Moreover,

only three switchings of the control input are required to reach this trajectory from any initial

condition.

Proof. Under the assumption that u(t0) = 0 (the reasoning is the same if u(t0) = −1), the

closed-loop system trajectory will reach the curve s(x, ẋ) = a0 = a at a certain time z1,

at which the input switches to u(z1) = −1. Without loss of generality, let z1 = 0. Since

q(z1) = 1− k, (4.82) and (4.85) give

ẑ3 =
ẋ(z1)

1− k
+

(
1− k

2

)
p.

By using (4.80)-(4.81), it is possible to check that ẑ3 represents the time at which the tra-

jectory of the closed-loop system would reach again the curve s(x, ẋ) = a if one enforced

a1 = a2 = a in (4.76)-(4.79). Being z̄3 = −φp,

φ̃1 = h− φ− |ẋ(z1)|
p(1− k)

+
k

2
, (4.87)

for some h ∈ Z. By using a1 from (4.83), with φ̃1 given by (4.87), the procedure is repeated

at time z2. After simple manipulations, one obtains

ẑ4 =
|ẋ(z1)|
1− k

+ p(1 + φ̃1) +
k

2
p,

z̄4 = (k − φ)p,

φ̃2 = mod

(
−1

2
− h, 1

)
− 1

2
= 0,

and hence a2 = a. By induction, it can be easily verified that φ̃l = 0 and al = a ∀ l ≥ 2, for

any ẋ(z1). Hence, by (4.79), aU (t) = aL(t) = a, for all t ≥ z3. From Proposition 4.4.1, one

has that the closed-loop trajectory converges to a solution of the form (4.55)-(4.56) with

period p. Moreover, from (4.80)-(4.81) it follows that the sequence of switching times zl
satisfies

mod

(
z̄l − zl
p

+
1

2
, 1

)
− 1

2
= 0, ∀l ≥ 4. (4.88)

On the other hand, the switching times of the periodic solution (4.55)-(4.56) with given

phase φ occur at time instants t̃ such that either mod(t̃/p+φ, 1) = 0 or mod(t̃/p+φ, 1) = k.

These equations lead to to t̃ = z2m−1 and t̃ = z2m in (4.86), respectively. Therefore, (4.88)

guarantees that, for all t ≥ z4, the switching times of the closed-loop trajectory coincide

with those of the periodic solution (4.55)-(4.56), with desired period p and phase φ. Finally,

since by (4.84) −1/2 ≤ φ̃1 < 1/2, which implies a1 ≥ −1/2 a by (4.83), one has that

aL(t) + aU (t) > 0 ∀t, as it is required for the control law (4.76) to be well defined. This

concludes the proof.
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u(t)= 0 u(t)=−1

s(x, ẋ) ≥ aU (t)

s(x, ẋ) ≤−aL(t)

Set aL(t) by (4.79),(4.82)-(4.86)

Set aU (t) by (4.79),(4.82)-(4.86)

Figure 4.14: Event-based switching logic.

Corollary 4.4.2. By applying for each input signal uj(t) of system (4.18) the control law

(4.76)-(4.79), with the input sequence {al} chosen as in (4.82)-(4.86) and p = p∗j , φ = φ∗j
given by (4.70)-(4.71), the periodic trajectories (4.58) with period p∗j and phase φ∗j are reached

in finite time with three switchings per input, from any initial condition.

Notice that a0 = a is not strictly necessary to prove Theorem 4.4.1. The same conclu-

sions can be drawn for any a0 such that a0 + a1 > 0. Also notice that one has just to shift by

1 the indices of the sequences {zl}, {al} and {z̄l} when u(t0) = −1. For practical implemen-

tation of the control law, the event-based switching logic depicted in Fig. 4.14 can be used.

Finally, observe that the thruster on/off command µ ∈ {0, 1}m=2n in (4.11) is obtained from

µ̃ = Du, where D is given by (4.17), as follows

{
µj = µ̃j , µj+n = 0 if µ̃j ≥ 0

µj = 0, µj+n = −µ̃j if µ̃j < 0,
(4.89)

for j = 1, . . . , n.

Example 4.4.1. Consider the problem defined by Example 4.3.2. For any given initial condi-

tion, the periodic trajectories corresponding to the solution specified by Theorem 4.3.2 can be

tracked by applying the control law (4.76) for each input channel. For simulation purpose,

system (4.18) is discretized with sampling time ∆ts = 0.005 s. The control law is implemented

using the switching logic depicted in Fig. 4.14, for each input channel, and the initial conditions

for the simulation are set to x(t0) = [−3, 1, −2]T and ẋ(t0) = [0.2, 0.4, −0.3]T .

The trajectory of the closed-loop system is reported in Fig. 4.15. It can be clearly seen

that, after a finite transient, the system trajectory converges to the reference limit cycle

(marked). The control inputs are reported in Fig. 4.16. Notice that, as stated by Corollary

4.4.2, the desired duty cycle is attained from the fourth input transition onwards, for each

input channel.
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Figure 4.15: Closed-loop trajectory (solid) and reference limit cycle (marked).
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Figure 4.16: Control inputs.

4.4.3 Feasibility with respect to minimum impulse bit

There are particular cases in which one or more elements of the the disturbance vector k in

(4.18) can be very small. In such cases, the thruster firing time required by the minimum

switching control law may not be compatible with the minimum impulse bit of the thrusters.

Because the minimum impulse bit of attitude control systems based on electric propulsion

is typically very small, this is a rare scenario. Nonetheless, it must be taken into account for
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a reliable implementation of the control scheme. The thruster firing duration required to

track a limit cycle of period given by (4.68), or equivalently the trajectory from the solution

to (4.70)-(4.71), on channel j, is simply kjp
∗
j , because the j-th input is modulated with duty

cycle kj and period p∗j . Then, an effective way to detect if the commanded impulse is below

the minimum firing time ∆tmin to check whether

kjp
∗
j ≤ ∆tmin. (4.90)

If (4.90) holds at least for one j, a suboptimal approach, which guarantees that (4.20) is

satisfied, is to fix a = b∗, where b∗ is the minimizer to (4.33). Then, the control law (4.34)

can be used for all axes for which

kj

√
b∗j/γj ≤ ∆tmin,

while the control law (4.74), with a = b∗j , can be employed for the remaining axes.

4.5 MPC-based control scheme

So far, the minimum switching control problem has been tackled under the assumptions that

the attitude dynamic model can be approximated by a system of coupled double integrators

and that the thruster configuration is symmetric. These assumptions, however, may not

apply to certain scenarios. In such cases, the solution to the minimum switching problem

can be approached via numerical optimization techniques.

In this section, a model predictive control scheme based on the linearized model (4.5)-

(4.7) is derived, as an alternative to the minimum switching control law previously devel-

oped. A finite horizon cost functional including both the fuel consumption and the number

of firing cycles of the control system is minimized at each time step within a receding hori-

zon scheme, yielding a closed-loop control law. Due to the presence of linear performance

indexes and on/off actuators, the problem requires the solution of a mixed integer linear

program.

4.5.1 Problem formulation

A discrete-time linear approximation of the attitude error dynamics is derived for control

purposes. Using the linearized equations (4.5)-(4.7), together with (4.10)-(4.11), the track-

ing error dynamics are represented by the state space model

ẏ = Am y +Bm µ+Be τ e, (4.91)

where y =
[
δθT , δωT

]T ∈ R
2n and µ ∈ {0, 1}m. Notice that, in this formulation, (4.12)

does not have to be satisfied with m = 2n, as in the previous derivations. Instead, it is

sufficient that (4.11) is such that system (4.91) is controllable. The state matrix in (4.91) is

obtained from (4.5)-(4.7) as

Am =

[
0 I

A1 A2

]
, (4.92)
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where the A1 and A2 are given by (4.8). The input matrices are given by

Bm =

[
0

I−1
M G

]
, Be =

[
0

I−1
M

]
, (4.93)

where the matrix G does not need to be invertible. The continuous time model is discretized

with a sampling time ∆ts compatible with the minimum firing time of the attitude control

thrusters, thus obtaining

y(t + 1) = Fy(t) +Hµ(t) +He τ e(t), (4.94)

with F = eAm∆ts , H =

(∫ ∆ts

0

eAmρ dρ

)
Bm and He =

(∫ ∆ts

0

eAmρ dρ

)
Be.

The attitude control system developed in this section is based on an MPC approach,

which explicitly incorporates the limitations on pointing and pointing rate accuracy, as well

as a performance criterion accounting for the fuel consumption and the number of firing

cycles of the control system. The control accuracy requirements can be formulated in terms

of the following constraint

‖Wy‖∞ ≤ 1, (4.95)

where W = blockdiag(Wθ,Wω) and the weighting matrices Wθ and Wω account for

proper scaling of the attitude and angular rate errors. Notice that angular rate constraints

are included in the formulation (4.95), in addition to the attitude error constraints in (4.14).

These may be required for applications demanding a high pointing stability, e.g. high-

accuracy Earth observation missions.

In order to obtain a tractable MPC design problem, the minimum fuel and minimum

switching cost functions have to be reformulated over a finite horizon. According to (4.15),

a cost function proportional to the amount of expended fuel from time t to time t + Nu is

given by

J1(U) =

Nu∑

i=0

‖ µ(t+ i) ‖1 , (4.96)

where U={µ(t), . . . ,µ(t+Nu)} is the input sequence on the considered control horizon, of

length Nu. Moreover, being µ ∈ {0, 1}m, the number of input transitions is obtained from

(4.47) as

J2(U) =

Nu∑

i=0

‖µ(t+ i)− µ(t+ i− 1) ‖1. (4.97)

The cost function for the control problem is defined as a trade-off between the fuel consump-

tion and the number of actuator switching cycles, by introducing a relative weight α ∈ [0, 1]

of the terms J1 and J2 from (4.96) and (4.97), respectively. Given a state vector y(t), the

computation of the control input sequence U at time t can be formulated as an optimization

problem of the following form.
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Problem 4.5.1.

min
U

(1− α)J1(U) + αJ2(U)

s.t. y(t+ i+ 1) = Fy(t+ i) +Hµ(t+ i) +He τ e(t+ i)

‖Wy(t + i)‖∞ ≤ 1

Mµ(t+ i) ≤ 1

µ(t+ i) ∈ {0, 1}m ∀ i = 0, . . . , Nu.

(4.98)

The matrix M in (4.98) is defined to account for control allocation constraints, such

as preventing firing of opposite thrusters. In a receding horizon control strategy (see, e.g.,

[89]), one has to solve problem (4.98) at each time t and then apply the first element of the

computed input sequence, which hereafter will be denoted by Ut+Nu|t= {µ(t|t), ... , µ(t +
Nu|t)}. Hence, the instantaneous thruster activation command is given by µ(t) = µ(t|t).

In order to ensure feasibility in the presence of estimation errors and model uncer-

tainties, the state constraints in problem (4.98) are relaxed by introducing slack variables

S = {s(t + 1), ... , s(t + N)} and penalizing them in the cost function. Such relaxation

is motivated by the fact that small violations of the constraints can be tolerated for short

time periods, provided that slightly conservative bounds on the pointing and pointing rate

accuracy are used. Hence, problem (4.98) can be reformulated as

min
Ut, S

(1− α)J1(Ut+Nu|t) + αJ2(Ut+Nu|t) +
N∑

i=1

‖ s(t+ i) ‖1

s.t. y(t|t) = y(t)

y(t + i+ 1|t) = Fy(t + i|t) +Hµ(t+ i|t) +He τ e(t+ i)

− s(t+ i)−Ks1 ≤ KsWy(t+ i|t) ≤ Ks1+ s(t+ i)

− s(t+N) ≤ Ky y(t+N |t) ≤ s(t+N)

s(t+ i) ≥ 0

Mµ(t+ i|t) ≤ 1

µ(t+ i|t) ∈ {0, 1}m ∀ i = 0, . . . , N − 1

µ(t+Nu + 1|t) = . . . = µ( t+N − 1|t) = 0.

(4.99)

The weight on the terminal state Ky is a standard tool in MPC, which favours stability

of the receding horizon control strategy [96], while matrix Ks is introduced to penalize

the weighted 1-norm of the the slack variables on constraint violations. In order to solve

problem (4.99), the initial state y(t|t) and of the disturbance term τ e(t+i), i = 0, . . . , Nu−1

should be available. Since these quantities are not known in advance, one has to resort to a

navigation algorithm to estimate them. To this aim, a suitable EKF algorithm can be adopted

(see Chapter 5).

It is worth noticing that in problem (4.99), the control horizon Nu is different from the

prediction horizon N , on which the state constraints are enforced (Nu ≤ N − 1). After

the first Nu samples, the control variables are set to zero while the state constraints must
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be satisfied also in the subsequent N − Nu − 1 samples. This allows one to trade-off the

number of optimization variables and the performance of the attitude control system. In

fact, problem (4.99) is a MILP problem, which is known to be computationally intractable

in the general case. Nevertheless, if the control horizon is kept short enough, state-of-the-art

MILP algorithms can provide an approximate solution in a reasonable amount of time. The

effectiveness of this approach is demonstrated through numerical simulations in Section 6.3.

4.5.2 Mixed integer linear program

For practical implementation, the MPC problem can be rewritten as a mixed-integer linear

program. The derivation of the MPC matrices is similar to the one described in Section 3.3.3.

In the present design, however, the optimization variables are simply the elements of the

control sequence, which allows for integer input values. The mixed-integer linear program

corresponding to (4.99) takes the following form

min
zµ∈{0,1}mNu




(1− α)1

α1

1




T 


zµ

z∆

zs





s.t.




Φ 0 −I

−Φ 0 −I

Ψ −I 0

−Ψ −I 0

M̄ 0 0






zµ

z∆

zs


 ≤




m− f − ϑ

m+ f + ϑ

[µ(t− 1)T , 0]T

−[µ(t− 1)T ,0]T

1



,

(4.100)

where

zµ =
[
µT (t), . . . ,µT (t+Nu)

]T

z∆ =
[
|µT (t)− µT (t− 1)|, . . . , |µT (t+Nu)− µT (t+Nu − 1)|

]T

zs =
[
sT (t+ 1), ... , sT (t+N)

]T
,

M̄ = ⊕NuM, and Φ, ϑ, f , Ψ, m are given by

Φ =




KsWH . . . 0
...

. . .
...

KsWFNuH . . . KsWH
...

...
...

KyF
(Nx−1)H . . . KyF

(Nx−Nu)H




,

ϑ =




KsWHe . . . 0
...

. . .
...

KyF
(Nx−1)He . . . KyHe






τ e(t)

...

τ e(t)


 ,
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Ψ =




I 0 . . . 0

−I I . . . 0
...

. . .
. . .

...

0 . . . −I I


 , f =




KsWF
...
...

KyF
Nx



y(t), m =




Ks

...

Ks

0


1.

In this thesis, the IBM ILOG CPLEX mixed-integer programming solver [66], based on a

branch and bound algorithm, is employed to solve problem (4.100).





Chapter 5

Autonomous Navigation

One critical aspect for the successful implementation of the feedback control techniques

developed so far is the capability of autonomously estimating the position, velocity and

orientation of the spacecraft, as well as a number of additional parameters, such as the

disturbance torque acting on the spacecraft. Therefore, nonlinear estimation techniques play

a key role in the development of an autonomous GNC system. Among these techniques, the

extended Kalman filter (EKF) is widely used, and found to provide adequate performance,

in most space applications.

In this chapter, three different navigation schemes based on the continuous-discrete EKF

design [27] are developed for application within a closed-loop control system. First, an

orbit determination filter is presented, which can be used in combination with the control

scheme developed in Section 3.2, for autonomous station-keeping of LEO spacecraft. Then,

an attitude determination filter is derived, to enable the implementation of the control laws

presented in Chapter 4. The last contribution is a navigation filter estimating the relative

state between two spacecraft, as required for the application of the rendezvous and docking

control scheme developed in Section 3.3. The important topic of accurate sensor modeling

is not addressed in this chapter. Instead, a number of simplifying assumptions about the

measurement process are made in order to asses the performance of the proposed control

techniques, within a closed-loop GNC system.

5.1 Orbit determination

In this section, an orbit determination filter is presented, which can be used in combination

with the control scheme developed in Section 3.2. The filter processes GPS measurements

to estimate the absolute position and velocity of the spacecraft. The output of the GPS

is modeled as the true absolute position from the solution to (2.7) plus sensor noise wr,

according to

ř = r+wr. (5.1)

5.1.1 Propagation

The navigation state is a six-dimensional vector ŷ = [r̂T , v̂T ]T , including the inertial position

r̂ and the inertial velocity v̂ = ˆ̇r of the spacecraft. The dynamic model used to propagate
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the navigation state is derived from (2.7) as

˙̂r = v̂ (5.2)

˙̂v = − µ

‖r̂‖3 r̂+ aJ2(r̂), (5.3)

where aJ2(r̂) is the estimate of the gravitational disturbance a g in (2.10), based on the J2

harmonic of the gravity field. The expression for aJ2(r̂) is given by [131]

aJ2(r̂) = −3

2

µC20R
2

r̂7




(r̂2 − 5 r̂2z)r̂x
(r̂2 − 5 r̂2z)r̂y
(3 r̂2 − 5r̂2z)r̂z



 , (5.4)

where C20 denote the second harmonic coefficient,r̂ = [r̂x, r̂y , r̂z]
T and r̂ = ‖r̂‖.

It should be noticed that no thrust and drag accelerations are considered in equation (5.3),

because for the considered application at ≈ −ad in (2.8). The effects of minor orbital per-

turbations is also neglected. The uncertainty introduced by these assumptions is modeled

as white process noise wa, with covariance given by

E [wa(t)wa(t
′)T ] = Qaδ(t− t′), (5.5)

where Qa is the noise spectral density and δ(t − t′) denote the Dirac delta function. The

covariance matrix P=E [ ŷ ŷT ] of the filter is propagated according to

Ṗ = FP+P FT +Q . (5.6)

Making use of the model equations (5.2)-(5.3), the Jacobian matrix of the system, computed

at the current estimate, can be expressed as

F =

[
0 I

∂ ˙̂v/ ∂r̂ 0

]
. (5.7)

The process noise covariance is a block diagonal matrix Q defined by

Q = blockdiag (03×3,Qa) , (5.8)

where Qa is given by (5.5). When an impulsive maneuver occurs, the filter state vector and

covariance matrix must be updated according to

v̂↑ = v̂↓+∆vI (5.9)

P↑ = P↓ +QD. (5.10)

The correction term QD is given by

QD = blockdiag (0,Qv) , (5.11)

where Qv is the covariance associated to the impulsive maneuver uncertainty.
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5.1.2 Measurement update

When measurements are available, the state of the filter is updated by using the classical

update equations [
r̂+

v̂+

]
=

[
r̂− + δr̂

v̂− + δv̂

]
, (5.12)

where [
δr̂+

δv̂+

]
= K(ř− r̂−) . (5.13)

and the superscripts − and + denote the state before and after the update, respectively. The

Kalman filter gain is given by

K = P−ST (SP− ST +N)−1, (5.14)

where the S is the Jacobian of the observation model and N indicates the measurement

noise covariance matrix. The matrices S and N for the considered problem are obtained

from (5.1) as S = [ I 0] and

E [wr(tk) wr(tk′)
T ] = Nδkk′ , (5.15)

where δkk′ is the Kronecker delta function. The filter covariance is updated according to

P+ = (I−KS)P−. (5.16)

5.2 Attitude determination

In this section, an attitude determination filter is presented which can be used in combina-

tion with the control laws presented in Chapter 4. The attitude determination filter processes

data from a star tracker and a set of three orthogonal gyros to estimate the attitude and an-

gular rate of the spacecraft, and the resultant of the disturbance torques. The output of the

star-tracker is a quaternion of the form

q̌IB = q(δwθ) ◦ qIB , (5.17)

where wθ indicates the measurement noise. Gyro measurements are modeled as

ω̌ = ω + bω +wω, (5.18)

where ω is the true angular rate, wω is the measurement noise and bω is the gyro bias. The

gyro bias can be modeled as a random walk process, as

ḃω = wb, (5.19)

where wb is the rate random walk noise.
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5.2.1 Propagation

The dynamic model of attitude determination filters typically include the quaternion q̂IB,

defining the orientation of the spacecraft with respect to the inertial frame, and the gyro

bias b̂ω, while the angular rate dynamics can either be included or replaced by the estimate

provided by the difference between the gyro output and the estimated gyro bias [107]

ω̂ = ω̌ − b̂ω. (5.20)

In the following derivation, the filter state does include the angular rate dynamics, to pro-

vide an estimate τ̂ e of the disturbance torques acting on the spacecraft. In fact, the most

significant disturbance torques τ e are slowly varying, and can be treated as constant param-

eters to be estimated by the EKF. A design based on (5.20) is presented in Section 5.3.

Using a constant approximation of the inertia matrix of the form IM = diag(Ix, Iy, Iz),

the filter state propagation model is obtained from eqs. (2.26), (2.31) and (5.19) as

˙̂qIB =
1

2

[
0

ω̂

]T
◦ q̂IB (5.21)

˙̂ω = I−1
M (τ̂ e + τu − ω̂ × IM ω̂) (5.22)

˙̂
bω = 0 (5.23)

˙̂τ e = 0, (5.24)

where τ u is the commanded control torque from (4.11). To avoid covariance singulari-

ties, due to the quaternion unit-norm constraint, a modified estimation error vector δm is

adopted to propagate the covariance matrix and to update both the state and the covariance

matrix of the filter. In the modified error vector, the attitude error is parameterized by using

the three-dimensional rotation vector δθ, instead of being expressed in quaternion form.

Hence,

δm =
[
δθT δωT δbTω δτ Te

]T
. (5.25)

Making use of the model equations (5.22)-(5.24), and the linearized Bortz equation

[107]

δθ̇ = −ω̂
×δθ + δω, (5.26)

the Jacobian matrix of the system, computed at the current estimate, can be expressed as

J =




−ω̂
×

I 0 0

0 J′ 0 I−1
M

0 0 0 0

0 0 0 0


 , (5.27)

where

J′ =




0
Iy − Iz
Ix

ω̂z
Iy − Iz
Ix

ω̂y

Iz − Ix
Iy

ω̂z 0
Iz − Ix
Iy

ω̂x

Ix − Iy
Iz

ω̂y
Ix − Iy
Iz

ω̂x 0




(5.28)
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and ω̂ = [ω̂x, ω̂y, ω̂z]
T . The covariance matrix P= E [ m̂ m̂T ] of the filter is propagated

according to (5.6), where the process noise covariance is given by the block diagonal matrix

Q = blockdiag (03,Qω,Qb,Qτ ) . (5.29)

In (5.29), Qω accounts for inertia, thruster noise and alignment uncertainties, Qb is obtained

from (5.19) as E [wb(t) wb(t
′)T ] = Qbδ(t − t′), and Qτ is set to a value depending on the

expected level of uncertainty of the disturbance torque model.

5.2.2 Measurement update

When measurements are available, the attitude estimate is updated by using a multiplicative

approach, while the classical update equations are adopted for the other states. Then




q̂+
IB

ω̂
+

b̂+
ω

τ̂
+
e


 =




q(δθ)◦ q̂−
IB

ω̂
− + δω

b̂−
ω + δbω

τ̂
−
e + δτ e


 , (5.30)

where

δm =
[
δθT δωT δbTω δτ Te

]T
= K

[
2 ~q−

B̂B̌

ω̌ − ω̂
− − b̂−

ω

]
, (5.31)

q−

B̂B̌
= q̌IB ◦ q̂−

BI and the Kalman gain K is given by (5.14). The filter covariance is updated

as in (5.16). The observation matrix S and measurement noise covariance matrix N for the

considered problem are obtained from (5.17)-(5.18) as

S =

[
I 0 0 0

0 I I 0

]
(5.32)

N = blockdiag(Nθ, Nω), (5.33)

where

E [wθ(tk) wθ(tk′ )
T ] = Nθδkk′ (5.34)

and

E [wω(tk) wω(tk′ )
T ] = Nωδkk′ . (5.35)

5.3 Relative navigation

In this section, a relative navigation filter is developed, which can be used in combination

with the control technique presented in Section 3.3 for autonomous rendezvous and dock-

ing of a target-chaser spacecraft formation. In particular it is shown how the state of the

target spacecraft, including position, velocity, attitude and angular rate, can be estimated

on-board the chaser, based on optical measurements of known target features. Notice that
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this approach is only feasible for close proximity operations, because the accuracy of op-

tical observations rapidly decreases as the distance between the two spacecraft grows. To

circumvent this issue, a different navigation solution, based for instance on differential GPS

measurements, can be considered during the initial phase of the rendezvous maneuver.

This section is organized as follows. First, the measurement model is presented. Then,

an EKF design based on the attitude and orbit determination filters previously discussed is

derived. For the sake of a clear exposition, in this section the target trajectory, from the

solution to (3.1),(3.3), will be denoted by rT = r̄, vT = ˙̄r.

5.3.1 Measurement model

The observation model used include GPS, gyro, star-tracker, and optical camera measure-

ments. The GPS, gyro and star-tracker models are described in the previous two sections.

The optical camera provides line-of-sight information, i.e. azimuth and elevation angles, by

measuring the location of known features of the target spacecraft in the camera focal plane.

Notice that the considered sensors are installed on the chaser spacecraft, so that the target

may be passive.

The measured azimuth and elevation angles α̌i and ψ̌i of a feature i of the target are

modeled as

α̌i = tan−1

(
ly
lx

)
+ wα (5.36)

ψ̌i = sin−1 (lz) + wψ (5.37)

where lx ly lz denote the individual components of the relative line-of-sight unit vector li,

and wα, wψ model the sensor noise. The line-of-sight vector can be written in terms of the

noise-free angle measurements αi and ψi, according to

li =




cos(ψi) cos(αi)

cos(ψi) sin(αi)

sin(ψi)



 . (5.38)

Alternatively, it can be expressed as a function of the inertial state, as follows

li = ρi/‖ρi‖ (5.39)

ρi = RIB

[
rT +RT

IT ri − (r+RT
IB rc)

]
, (5.40)

where ρi denote the relative range vector, ri denote the position of the i-th feature in the

target frame, rc indicates the camera position in the chaser frame, and RTI expresses the

rotation from the target frame to the ECI frame. The geometry of the problem is illustrated

in Fig. 5.1.

Notice that the target must lie within the field of view of the optical camera to enable the

estimation of the relative position and velocity. Moreover, the observation of at least three

features of the target spacecraft is required to determine its attitude.
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Figure 5.1: Optical measurement model.

5.3.2 Propagation

For relative navigation and pose estimation, it is debatable whether to use relative states

to limit the size of the navigation filter versus the absolute states to maximize the available

information [139]. The design presented hereafter is based on the absolute states of the two

spacecraft, according to the orbit and attitude determination approaches presented so far.

The dynamic model of the filter is given by

˙̂rT = v̂T (5.41)

˙̂vT = − µ

‖r̂T ‖3
r̂T + aJ2(r̂T ) (5.42)

˙̂qIT =
1

2

[
0

ω̂T

]
◦ q̂IT (5.43)

˙̂ωT = I−1
L (ω̂T × IT ω̂T ) (5.44)

˙̂r = v̂ (5.45)

˙̂v = − µ

‖r̂‖3 r̂+ aJ2(r̂) + âI (5.46)

˙̂qIB =
1

2

[
0

ω̂

]
◦ q̂IB (5.47)

˙̂
bω = 0 (5.48)

where qIT , ωT , IT and τT denote the attitude, angular rate and inertia matrix of the tar-

get spacecraft, âI is the control acceleration, and the angular rate dynamics of the chaser
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are replaced by the difference between the gyro output and the estimated gyro bias, by us-

ing (5.20) in (5.47). Notice that, in the considered application, the attitude of the chaser

spacecraft is nominally aligned to the LVHL frame, so that

âI = R̂T
IB[u

T , 0]T /m, (5.49)

where u is given by (3.29). Equation (5.49) is consistent with the fact that the orbit control

thrusters are mounted at fixed orientation with respect to the spacecraft body frame.

Similarly to the design presented in Section 5.2, the attitude estimation error is parame-

terized by using a three-dimensional rotation vector to propagate the covariance matrix and

to update both the state and the covariance matrix of the filter. Hence, the Jacobian matrix

of the system, computed at the current estimate, can be expressed as

J =




0 I 0 0 0 0 0 0

∂ ˙̂vT / ∂r̂T 0 0 0 0 0 0 0

0 0 −ω̂
×
T I 0 0 0 0

0 0 0 J′ 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 ∂ ˙̂v/ ∂r̂ 0 R̂T
IBa

× 0

0 0 0 0 0 0 −ω̂
×

I

0 0 0 0 0 0 0 0




, (5.50)

where J′ is given by (5.28) and a = [uT , 0]T /m. Moreover, the process noise covariance

matrix is given by

Q = blockdiag (0,Ta,0,Tω,0,Qa,0,Qω +Nω,Qb) , (5.51)

where the covariance matrices Ta and Tω account for uncertainties due to unmodeled dy-

namics in (5.42) and (5.44), respectively. The covariance matrix of the filter is propagated

according to (5.6).

5.3.3 Measurement update

When measurements are available, the state of the filter is updated according to the proce-

dure described in Section 5.1.2 and 5.2.2. In this case, the the update takes the form




r̂+T
v̂+
T

q̂+
IT

ω̂
+
T

r̂+

v̂+

q̂+
IB

b̂+
ω




=




r̂−T + δrT
v̂−
T + δvT

q(δθT )◦ q̂−
IB

ω̂
−
T + δωT
r̂− + δr

v̂− + δv

q(δθ)◦ q̂−
IB

b̂−
ω + δbω




, (5.52)
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where

[
δrTT δvTT δθTT δωT

T δrT δvT δθT δbTω
]T

= K



ř− r̂−

2 ~q−

B̂B̌

z̃−o


 , (5.53)

and z̃−o denotes the measurement residual from optical observations (before the update).

The observation matrix S and measurement noise covariance matrix N, for the considered

problem, are given by

S =




0 0 0 0 I 0 0 0

0 0 0 0 0 0 I 0

So


 (5.54)

N = blockdiag(Nr,Nθ,No). (5.55)

The filter covariance is updated as in (5.16). The residual z̃o and the matrices So, No are

obtained as explained next.

The residual z̃i for the optical measurement of the i-th target feature is given by

z̃i = ži − ẑi =

[
α̌i − α̂i
ψ̌i − ψ̂i.

]
(5.56)

In this equation, α̌i, ψ̌i are specified by (5.36)-(5.37) and α̂i, ψ̂i are obtained similarly, as

follows

α̂i = tan−1

(
l̂y

l̂x

)
, (5.57)

ψ̂i = sin−1
(
l̂z

)
. (5.58)

The estimated line-of-sight vector l̂i = [l̂x, l̂y, l̂z]
T is given by

l̂i =
ρ̂i
‖ρ̂i‖

, (5.59)

where the estimated relative range vector ρ̂i can be expressed in terms of the filter state as

ρ̂i = R̂IB

[
r̂T + R̂T

IT ri − (r̂+ R̂T
IB rc)

]
, (5.60)

according to (5.40). Notice that, by (5.38)-(5.39),

ρ̂i = ‖ρ̂i‖̂li = ‖ρ̂i‖




cos(ψ̂i) cos(α̂i)

cos(ψ̂i) sin(α̂i)

sin(ψ̂i)


 . (5.61)

The observation matrix for the i-th feature is defined as

Si =

[
∂α̂i/∂ŷ

∂ψ̂i/∂ŷ

]
, (5.62)
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where ŷ denotes the filter state. The corresponding covariance matrix is obtained from

(5.36)-(5.37) as E [wi(tk) wi(tk′ )
T ] = Ni δkk′ , where wi = [wα, wψ ]

T .

In order to derive the expressions for the partial derivatives in (5.62) observe that, by

using the chain rule

∂ ρ̂i
∂ ŷ

=
∂ ρ̂i
∂α̂i

∂ α̂i
∂ ŷ

+
∂ ρ̂i

∂ ψ̂i

∂ ψ̂i
∂ ŷ

= ‖ρ̂i‖
∂ l̂i
∂α̂i

∂ α̂i
∂ ŷ

+ ‖ρ̂i‖
∂ l̂i

∂ ψ̂i

∂ ψ̂i
∂ ŷ

. (5.63)

The vectors ∂ l̂i/∂α̂i and ∂ l̂i/∂ψ̂i, given by

∂ l̂i/∂α̂i =




− cos(ψ̂i) sin(α̂i)

cos(ψ̂i) cos(α̂i)

0


 , ∂ l̂i/∂ψ̂i =




− sin(ψ̂i) cos(α̂i)

− sin(ψ̂i) sin(α̂i)

cos(ψ̂i)


 , (5.64)

turn out to be orthogonal to each other. Then, by multiplying (5.63) by ∂ l̂i/∂α̂i and by

∂ l̂i/∂ψ̂i, and solving for ∂ α̂i/∂ ŷ and ∂ ψ̂i/∂ ŷ, one gets

∂ α̂i
∂ ŷ

=

(
∂ l̂i/∂α̂i

)T

‖ρ̂i‖ cos2(ψ̂i)
∂ρ̂i
∂ŷ

, (5.65)

∂ ψ̂i
∂ ŷ

=

(
∂ l̂i/∂ψ̂i

)T

‖ρ̂i‖
∂ρ̂i
∂ŷ

. (5.66)

From (5.60), it follows that

∂ ρ̂i
∂ ŷ

=
[
R̂IB 0 −R̂TB r×i 0 −R̂IB 0 (R̂IBrT + R̂TBri − R̂IB r̂)

× 0

]
, (5.67)

where R̂TB = R̂IBR̂
T
IT . Hence, the observation matrix (5.62) can be computed by substi-

tuting (5.58)-(5.60),(5.64) and (5.67) in (5.65)-(5.66).

The procedure is repeated for each observed feature (i = 1, . . . , n) of the target space-

craft, with the final form of the residual z̃o and the matrices So, No in (5.53)-(5.55) given

by

z̃o =



z̃1
...

z̃n


 , So =



S1

...

Sn


 , No =



N1 . . . 0
...

. . .
...

0 . . . Nn


 . (5.68)



Chapter 6

Numerical Simulations

In this section, the results of numerical simulations are reported and analyzed to evaluate

the performance of the proposed control techniques and the feasibility of EP systems for

orbit and attitude control. The developed software includes an accurate simulator based on

the dynamic models presented in Chapter 2, the GNC module described in Chapters 3-5, and

the mathematical models of different types of LEO and GEO spacecraft (sensors, actuators,

vehicle layouts).

6.1 Autonomous station-keeping with electric propulsion

The objective of this section is to demonstrate the applicability of the orbit control scheme

developed in Section 3.2, together with the navigation system presented in Section 5.1, for

autonomous station-keeping of a small LEO satellite with Hall-effect and resistojet thrusters.

6.1.1 Reference mission

In the following, details of the mission, navigation requirements, and spacecraft configu-

ration, are provided. The reference mission orbit is a specialized sun-synchronous, repeat

ground-track and frozen orbit, which is a common design for LEO satellites [13]. The orbit

is nearly circular, with an altitude of around 228 km, which corresponds to a 5 day ground-

track repeat period. The initial orbital elements are derived by using a simplified J2 and J3

zonal harmonics analysis and refined through numerical simulations, ignoring all the peri-

odic orbital perturbations [131]. Table 6.1 shows the initial nominal values of the orbital

elements for the chosen reference mission.

Table 6.1: Orbital elements (initial nominal values)

Semi-major axis a 6591.338 km

Inclination i 96.3862◦

Eccentricity vector x-component ex = e cosω 0

Eccentricity vector y-component ey = e sinω 0.0011

Right ascension of the ascending node Ω 10◦

The reference orbit is defined in such a way that gravitational perturbations, which cause

the sun synchronous secular motion of Ω̇ = 360◦/year, do not need to be counteracted. As
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a consequence, the propulsion system is activated only to compensate for non gravitational

disturbances, by means the orbital element control scheme discussed in Section 3.2.2. The

dominant non gravitational perturbing forces on the reference orbit are due to atmospheric

drag and resonance effects induced by the Sun. The most significant effects of these pertur-

bations on the orbital elements are a constant decay in the semi-major axis, in the order of

300 m per revolution, and a small secular drift of the inclination.

The spacecraft is nominally aligned with the LVLH frame along the orbit. On-board

sensors and actuators are selected in order to meet the navigation and control accuracy

requirements, considering the constraints imposed by the spacecraft size. The driving re-

quirement for orbit control is to keep the satellite orbit within a distance of about 500 m

from the reference orbit. Based on this limitation, a preliminary estimate of the required

navigation system accuracy of about 50 m may be considered. Hence, for absolute position

determination purposes, it is sufficient to consider a GPS navigation solution in a loosely-

coupled GPS/INS integration scheme, capable of providing positioning accuracy of about

20 m [7].

The satellite is equipped with the propulsion system shown in Table 6.2. A 100 W class

Hall effect thruster [86, 108] is employed to compensate the secular variation in the orbit

semi-major axis, caused by the along-track component of atmospheric drag. The acceler-

ation aI provided by the Hall effect thruster, expressed in the inertial reference frame, is

given by

aI = RT
IL(I− ǫ×)

(
a+

[
wp, 0, 0

]T
/m
)
, (6.1)

where a is the commanded acceleration in (3.5), wp indicates the actuator noise, m is the

spacecraft mass, and ǫ expresses the thrust alignment error. The covariance of the thruster

noise is

E [wp (t) wp (t
′) ] = σ2

p δ(t− t′) . (6.2)

The alignment error ǫ is included in (6.1) to account for attitude deviations from the refer-

ence LVLH attitude. It is modeled as a white noise process, with covariance given by

E [ ǫ (t) ǫ (t′) ] = Iσ2
ǫ δ(t− t′) . (6.3)

For the reference mission scenario, simulation results indicate that the thrust needed to

continuously counteract the drag acceleration ad in (2.11), is in the throttling range of

considered Hall thruster, and comparable to that required in similar missions, like GOCE

(see, e.g., [21]).

A 30 W xenon resistojet [102] provides out of plane impulsive burns to compensate

for the cross-track component of drag, which is due to the co-rotation of the atmosphere

with the Earth, and the sun-synchronous resonance effects on the orbit inclination and right

ascension of the ascending node. The impulsive velocity change ∆vI provided by the resis-

tojet, expressed in the inertial frame, is modeled as

∆vI = RT
IL(I− ǫ×)

(
∆v +

[
0, wv, 0

]T )
, (6.4)
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where ∆v is the commanded velocity change in (3.20) and wv indicates the additive noise

on the velocity change. The covariance of wv is

E [wv (tk) wv (tk′) ] = σ2
v δk k′ . (6.5)

This considered design is basically a trade-off between the thrust efficiency and the limi-

tations imposed by the satellite payload and available power. In fact, we can take advantage

of the Hall thruster high specific impulse to reduce the propellant consumption required by

drag compensation, which is the dominant factor in the mission delta-v budget, while using

a higher thrust, low-power resistojet to counteract smaller cross-track perturbations, at the

price of a low specific impulse. Moreover, a single propellant tank containing xenon gas

will be shared between the Hall effect thruster and the resistojet, resulting in a simplified

satellite internal layout.

Table 6.2: Spacecraft propulsion system

Propulsion Along-track Cross-track

Type 100 W HET 30 W Resistojet

Specific Impulse Ihsp = 1000 s Irsp = 50 s

Thrust range 2.5− 6 mN 10− 50 mN

The specifications of sensors and actuators are summarized in Table 6.3, where σp, σǫ
and σv are defined in (6.2),(6.3) and (6.5), and σG is defined by (5.15), with N = Iσ2

G.

In order to assess the feasibility of the proposed propulsion scheme, within the considered

mission, a sketch of the spacecraft size, mass and power system is provided next.

Table 6.3: Sensor and actuator specifications

Device Noise (σ) Alignment error Update frequency

Gps σG = 30 m - 0.1 Hz

Hall thruster σp = 0.3 mN
√

s σǫ = 4 mrad 0.1 Hz modulation

Resistojet σv = 1 mm/s σǫ = 4 mrad Impulsive

6.1.2 Spacecraft and power system

The external layout of the spacecraft is modeled as a rectangular box, with a square cross-

section of A = 0.5 × 0.5 m2 and a length of 1 m, similar to the elongated shape of the

GOCE spacecraft. The assumed aerodynamic drag coefficient is CD = 2.5. The total mass

of the spacecraft is assumed to be m = 100 kg, including 30 kg of propellant mass. The

Hall thruster, the cathode and the power conditioning unit (PCU) have a mass of less than

3 kg. The parameters A, m, and CD are employed in the simulation model, to evaluate the
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disturbance accelerations acting on the spacecraft. The mass of the xenon resistojet plus its

power regulator can be estimated in 1 kg. The tank storing up to 30 liters of xenon and

all the valves, tubing, harness can be limited to additional 6 kg. Therefore, the propulsion

system has a dry mass of less than 9 kg. Including the propellant, the whole propulsion

system mass will not exceed 40 kg, i.e. about 40% of the total spacecraft mass.

Power is supplied by triple junction solar cells with an efficiency of about 28%, a packing

factor of 0.85, and a 3% power degradation over the expected mission life. Given these

figures, it is possible to consider solar arrays with a surface area of less than 0.4 m2 and

a mass of about 2 kg, able to provide at least 100 W power at end of life. Moreover, the

external layout of the spacecraft can host a solar array installation of at least 1 m2, whose

total supplied power is largely sufficient for the proposed payload and propulsion needs. A

battery system of 150 Wh/kg based on Li-ion cells is feasible for the proposed design.

The Hall thruster system is operated so that the supplied thrust can be changed about

every 10 seconds. Several approaches have been proposed in literature in order to provide

fast response times for this class of thrusters. Fast flow control valves (e.g. piezoelectric

valves or digital MEMS actuators) can be used to quickly change the propellant flow, which

in turn provides changes in the thrust (for fixed anode voltage). As an alternative, a high

frequency variation (more than 10 Hz), can be obtained by pulse width modulation [65,

116]. Thrust variation can also be obtained by operating on the anode voltage through the

PCU, at fixed propellant flow rate. This is the approach we refer to in this section and is

feasible for the required fh = 0.1 Hz variation rate. Indeed, for the thrust range reported

in Table 6.2, given the Hall thruster technology characteristic, a minimum thrust of 2.5 mN

can be obtained with about 40 W power (e.g., 200 V and 0.2 A). A 200 V applied voltage

provides a specific impulse of more than 1000 s, as expected. For a 6 mN thrust, one can

increase the applied voltage to about 500 V, keeping constant the propellant flow rate, and

therefore the current. Then, the specific impulse will significantly increase over the assumed

1000 s.

6.1.3 GNC system analysis

The reference mission is simulated by taking into account a realistic truth model, sensors,

actuators and GNC flight algorithms. The truth model, which combines (2.7),(2.16), with

(2.18)-(2.21), is given by

ṙ = v

v̇ = − µ

r3
r+ ae + aI

v↑ = v↓ +∆vI

ṁ = −‖m aI‖
g0 Ihsp

.

m↑ = m↓ exp

(
−‖∆vI‖
g0Irsp

)
,
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where aI and vI are given by (6.1) and (6.4), respectively, and Ihsp, I
r
sp are specified in Ta-

ble 6.2. The block diagram representation of the closed-loop system is reported in Figure 6.1.

A worst-case scenario, featuring a high solar and geomagnetic activity, is considered, in order

to validate the proposed GNC solution and to evaluate the performance of the propulsion

system. The truth model, navigation state and reference dynamics are propagated for 20

days using a fourth-order Runge-Kutta integration method.

Orbit dynamics Sensors

Actuators

Control law
Orbital elements

   computation

Navigation (EKF)

Reference
Truth model

Control scheme

δo

Figure 6.1: Block diagram representation of the closed-loop system.

The tuning parameters of the orbit control law are reported in Table 6.4. The control

gains for (3.16) and (3.18) are selected in order to satisfy the Hall thruster output limita-

tions. A sequence of impulsive burns at νl = 0 or νl = π/2 is commanded according to

(3.20), instead of directly applying (3.19), which ensures the compatibility with the resisto-

jet specifications reported in Table 6.2. The update frequency of the control scheme is taken

equal to the modulation frequency fh of the Hall thruster command (see Section 6.1.2).

The resistojet is operated such as to provide impulsive velocity changes of fixed magnitude

∆vn = 10 mm/s, which correspond to 20 s firings at a thrust level of 50 mN.

Table 6.4: Orbit control law parameters

δa gain Ka = 10−10

δex, δey gain Kex, Key = 103

δνl gain Kν = 10−12

Integral gain KI = 10−7

δ i control window −iL = iU = 3.5 · 10−5 rad

δΩ control window ΩL = 0, ΩU = 3.5 · 10−5 rad

Resistojet delta-v ∆vn = 10 mm/s

Control update frequency fh = 0.1 Hz

The performance of the Kalman filtering scheme (see Section 5.1) is evaluated in terms

of the inertial position determination error, shown together with its 3σ confidence intervals
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in Figure 6.2. The filter state is initialized with the first position measurements. After a

short transient phase, each component of the 3σ ECI position vector error drops to a steady

state value of approximately 20 m. Notice that the error has approximately zero mean and

remains within the confidence intervals most of the time.
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Figure 6.2: Inertial position estimation error and 3σ confidence intervals.

The control system performance is presented in Figure 6.3, in terms of position track-

ing error, although the control scheme is developed in the orbital element space. This is

consistent with the reference trajectory generation model (3.1)-(3.2), which is propagated

onboard the spacecraft. The normal component is controlled with an accuracy of less than

50 m, reflecting the effectiveness of the control law (3.18) in controlling semi-major axis

error δa. The cross-track component is dependent on the inclination and right ascension

of the ascending node errors δi and δΩ: the achieved 250 m accuracy is a function of the

impulsive control window size in (3.20) . The in-track component of the error, which is

proportional to the mean argument of latitude error δνl, has the major impact on the satel-

lite distance from the reference orbit. It can be observed that the error is kept within 500

m after an initial transient, by using (3.18) in combination with (3.22). Figure 6.4 shows

the satellite distance from the reference orbit, whose mean value is 220 m (neglecting the

transient phase). These results show that the control requirements are satisfied.

The performance of the propulsion system is depicted in Figure 6.5, in terms of the Hall

thruster and resistojet outputs and the Xenon propellant mass consumption. A continuous

thrust with mean value of approximately 4 mN and delta-v impulses of about 10 mm/s

magnitude are delivered for orbital station-keeping. In the second plot of Figure 6.5, each

burn is represented by a bullet. An increased density of bullets in the plot indicates that



6.1. Autonomous station-keeping with electric propulsion 99

0 2 4 6 8 10 12 14 16 18 20
−500

0

500

In
−

tr
ac

k 
(m

)

0 2 4 6 8 10 12 14 16 18 20

−200

0

200

C
ro

ss
−

tr
ac

k 
(m

)

0 2 4 6 8 10 12 14 16 18 20

−50

0

50

Time (days)

N
or

m
al

 (
m

)

Figure 6.3: Position tracking error.
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Figure 6.4: Distance from the reference orbit.

the resistojet is firing twice per orbit (at νl = 0 and π/2) rather than once (at νl = 0

or π/2), while the thruster is not firing in correspondence of empty spaces. Notice that

the commanded thrust is always directed in the opposite direction of the disturbing forces.

Thus, the proposed GNC system provides an efficient propellant utilization.

The power requirements for simultaneous use of the resistojet and the Hall thruster is

about 140 W, which is fully compatible with the power system described in Section 6.1.2.

The total propellant consumption is 1.19 kg, including 0.64 kg for continuous thrust and

0.55 kg for impulsive maneuvers. Given a 30 kg propellant tank, the expected lifetime

of the satellite is approximately 500 days. As a comparison, observe that an uncontrolled

satellite at the considered altitude would burn into the lower atmosphere in few days.

Finally, it is worth remarking that the result presented in this section are obtained by

using conservative specifications for the GNC system, and considering a worst-case mission

scenario. The fact that the control accuracy requirements can be met under such circum-
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Figure 6.5: Propulsion system performance.

stances suggests the applicability of the proposed control scheme to a broad class of com-

mercial LEO missions, which would strongly benefit from the adoption of an autonomous

orbit control system based on EP. In particular, the estimated lifetime of 500 days is feasi-

ble for spacecraft orbiting at the considered altitude, and has to be interpreted as a lower

bound on the mission duration, due to the assumption of a high solar activity. In this regard,

consider that the expected lifetime for GOCE was of about 500 days, in the presence of a

low solar activity [37], and hence of a relatively small amount of atmospheric drag to be

counteracted. Moreover, despite this expectation, the mission lasted almost 5 years.

6.2 Low-thrust rendezvous and docking

In this section, the performance of the LMPC design developed in Section 3.3 is demon-

strated on a small satellite rendezvous and docking mission, in comparison to MPC and LQR

techniques. Moreover, the applicability of the proposed design in combination with a set of

PPT specifically developed for cubesat size spacecraft is investigated.

6.2.1 Reference mission

A possible scenario for the application of the LMPC design developed in Section 3.3 is a

LEO formation flying mission performed by two cubesat size spacecraft, where the relative

dynamics are controlled by means of a miniaturized electric propulsion system. A schematic

view of the formation is depicted in Fig. 6.6. At the beginning of the operative phase, the

spacecraft are flying in a near circular polar orbit, at an altitude of approximately 450 km.
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Based on relative position and velocity data, the chaser spacecraft is required to approach

the target whilst satisfying LoS and thrust magnitude constraints. It is assumed that the

attitude of both spacecraft is kept aligned with the LVLH frame and that the docking port is

located behind the target.

Target

Chaser Earth

XLVLH

YLVLH

ZLVLH

Figure 6.6: Cubesat formation.

The chaser and target spacecraft have identical physical parameters: the total mass of

each of them is 3 kg, the bus size is 30×10×10 cm3 and the cross-sectional area is 10×10 cm2.

The electric propulsion system installed on the chaser consists of a set of PPTs specifically

designed for application to cubesats, as described in [24]. Two pairs of opposite PPTs aligned

with the along-track and cross-track directions of the LVLH frame are considered. Table 6.5

gives the characteristics of the PPT model.

An integral pulse frequency modulator is used to convert the continuous control signal

from the control algorithm into discrete pulses of fixed magnitude, as required by PPT oper-

ation. The modulator delivers a pulse pj , on input channel j, whenever the integral of the

commanded thrust Uj(t) is greater than or equal to the impulse bit UM of the thrusters. For

each component of the input u, one has

pj(tk) =

{
UMsgn(Uj(tk)) if |Uj(tk)| ≥ UM

0 if |Uj(tk)| < UM ,
(6.6)

where

Uj(tk) = Uj(tk−1) +
uj(tk−1) + uj(tk)

2
∆t− pj(tk−1), (6.7)

∆t = tk − tk−1 and j = 1, 2.

The step size of the modulator is taken as ∆t = 1 s, according to the thruster specifica-

tions in Table 6.5. Under the assumption that the body frame of the spacecraft is nominally

aligned with the LVLH frame, the velocity change imparted by the PPT system can be ex-

pressed as

∆v = (I− ǫ×)
p+w

m
, (6.8)
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where p = [p1, p2, 0]
T , ǫ denotes the spacecraft alignment error and w = [w1, w2, 0]

T

represents the thruster noise. The covariances of the errors are given by E [ǫ(tk) ǫ(t′k)] =

Iσ2
ǫ δk k′ and E [w(tk) w(t′k)] = Iσ2

w δk k′ .

Table 6.5: PPT specifications

Mass 180 g (wet mass) + 90 g (electronics)

Dimensions 90.17 x 95.89 x 31 mm

Power 0.3-4W

Total Impulse 42 Ns

Impulse Bit UM=40 µNs

Pulse frequency ≤ 1 Hz

Specific Impulse Isp=608 s

Misalignment σǫ = 20 mrad

Noise σw = 2 µNs

Relative navigation is based on differential GPS measurements during the initial phase

of the rendezvous maneuver and on the Kalman filtering algorithm described in Section

5.3, which processes measurement from an optical sensor, during the final approach prior

to docking. The standard deviation of differential GPS measurements is set equal to 0.2 m

[20], whereas the field of view of the optical sensor is θ = 30◦. Notice that θ also specifies

the size of the docking cone in (3.25). The relative position estimation accuracy is depicted,

as a function of the along-track separation between the two spacecraft, in Fig. 6.7.
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Figure 6.7: Relative position estimation accuracy.

6.2.2 LMPC performance

A high-accuracy, nonlinear simulation model is employed to validate the proposed LMPC

design in a realistic scenario. The state vector of the model includes the position and velocity

vectors of chaser (r, v = ṙ) in (2.7) and those of the target (rT = r̄, vT = ˙̄r) in (3.1). The
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equations which describe the evolution of the state vector in the ECI frame are

ṙT = vT

v̇T = − µ

r3T
rT + āe

ṙ = v

v̇ = − µ

r3
r+ ae ,

v↑ = v↓ +RT
IL∆v,

m↑ = m↓ exp

(
−‖∆v‖1
g0Isp

)
,

where ∆v is given by (6.8). The terms āe and ae account for the most significant environ-

mental perturbations. Relative position and velocity are obtained from the inertial states

according to (3.24).

The LMPC control law is tuned to provide a trade-off between the maneuver time and

the fuel consumption. Even if these quantities do not explicitly appear in the approxima-

tion (3.36) of the cost function (3.27), the relative dynamics are controllable to zero with

vanishing input energy, from which it follows that, for a sufficiently long prediction horizon

and a relatively small state penalty compared to the input penalty, the minimum energy

solution approaches the minimum fuel solution [5, 124]. The elimination of radial thrust,

which is an underlying assumption in the proposed design, has proven to be effective in

improving the fuel efficiency of control laws based on a quadratic performance index [128].

Since the cross-track motion is a simple undamped oscillatory motion which is decoupled

from the rest of the system, pure derivative control can be applied on this axis to provide

adequate damping [142]. Hence, the cross-track position weighting can be set to zero. Table

6.6 gives the tuning parameters used in the simulations. Notice that the prediction horizon

has been set to a value compatible with the settling time of the maneuver (Np Ts = 104 s,

see Fig. 6.8). Moreover, the number of coefficients N1, N2 of the Laguerre network is kept

small to retain a sufficiently low computational complexity. The sampling time Ts is set to a

small fraction of the error dynamics timescale, which happens to be very long due extremely

weak thrust level generated by the PPT sytem. The remaining parameters have been tuned

through numerical simulations.

An explicit solution to the LMPC problem is computed off-line by using the parameters

defined in Table 6.7 in (3.65),(3.69), and solving Problem 3.3.3 with the Multi-Parametric

Toolbox [64]. The solution is a piecewise affine control law defined over 946 regions of the

parameter space X̄C ⊂ R
8, given by (3.70). The online computation of the control sequence

boils down to a set-membership evaluation.

The performance of the LMPC scheme is compared to that of an LQR and a standard

MPC scheme (i.e. without Laguerre parametrization, see (3.46)). In this comparison, the

standard MPC formulation is recovered from the LMPC scheme by setting the scaling factors

a1, a2 of the Laguerre function network to zero in (3.44)-(3.45). Moreover, the same tuning

parameters are used for the three control laws. Figure 6.8 gives the results for the three
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Table 6.6: LMPC tuning parameters

Position weight Wf = W = diag(1, 0, 1, 105, 5 · 105, 105)
Input weight K = I · 2 · 1010
Slack weight Rs = diag(2 · 1014, 3 · 106)

Sampling time Ts = 10 sec

Prediction horizon Np = 1000

Laguerre terms N1 = N2 = 4

Scaling factor a1 = a2 = 0.67

Thrust constraint uM = 40 µN, Mu = {0}
LoS constraint θ = 30◦, xd = 2 cm, Mx = {1, 50}

Table 6.7: Parameters of explicit LMPC

Max. feasible separation xM = 350 m

Additional LoS region ds = [0.1, 10, 10, 10, 10]T m

Velocity slopes k2 = 0.002

Velocity tolerance ε = 0.5 mm/s

controllers in terms of the magnitude of the tracking error for a sample rendezvous and

docking maneuver. As expected, the fastest convergence is achieved by the LQR controller,

which does not enforce input and output constraints, while the LMPC scheme shows a much

better transient response than the MPC scheme. In particular, the oscillatory behavior of

closed-loop trajectory is avoided. The horizontal-plane and the in-plane motions are shown

in Fig. 6.9, together with the sections of the pyramid that approximate the LoS cone. It can

be observed that the LQR controller is unable to keep the radial tracking error within the

LoS constraints, as opposed to the LMPC and MPC schemes.
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Figure 6.8: Tracking performance.
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Figure 6.9: LoS constraints (shown in green) and relative trajectories.
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Figure 6.10: Tracking performance of MPC with different control horizons.

The explicit solution to the MPC problem requires 1015 state-space regions, which is

comparable with the 946 regions over which the LMPC control law is defined. On the other

hand, the modest performance of the MPC controller turns out to be due to the insufficient

length N1 = N2 = 4 of the control sequence. To illustrate this point, the tracking errors

obtained with a longer control horizon are reported in Fig. 6.10. For N1 = N2 = 10, a

small performance improvement can be noticed, but the system response is still oscillatory,

whereas for N1 = N2 = 20 the closed-loop trajectories become similar to that resulting from

the application of the LMPC scheme, shown in Fig. (6.9). However, we have not been able to
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solve the MPC problem explicitly in the above two cases, due to the complexity introduced

by the additional optimization variables. The LMPC design is not affected by this issue,

thanks to the flexibility provided by the additional tuning parameters a1, a2, which specify

the poles of the Laguerre functions and hence the time scale of the control sequence. For this

reason, the proposed approach allows a trade-off between feasibility and performance to be

made, by using only N1 = N2 = 4 coefficients in the polynomial expansion and deriving an

explicit controller.

Figure 6.11 gives the thrust profiles calculated by each control law, from uncertain ob-

servations (see Fig. 6.7). During the initial phase of the maneuver, the along-track LQR

command exceeds the maximum thrust which can be delivered by the propulsion system.

Since the magnitude of the input is hard-constrained in the model predictive framework,

both the MPC and the LMPC commands do not exceed the operating range of the actuators.
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Figure 6.11: Thrust profiles from uncertain observations.

Comparing these results to the thrust profiles obtained with perfect state information,

shown in Fig. 6.12, it can be seen that the use of Laguerre functions in combination with

an appropriate weight on input variation provides the lowest sensitivity to observation un-

certainty. This is confirmed by Table 6.8, which reports the overall impulse (i.e the integral

of ‖u‖1) required by the maneuver. The performance degradation is approximately 60% for

both the LQR and the standard MPC schemes, but 46% for the LMPC design, which is espe-

cially relevant since the overall impulse is proportional to the fuel consumption of the orbit

control system. The applicability of the LMPC scheme, in combination with the considered

PPT system, is discussed next.
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Figure 6.12: Thrust profiles

Table 6.8: Total impulse sensitivity to observation uncertainty

Type LQR MPC LMPC

Without noise 0.146 Ns 0.330 Ns 0.109 Ns

With noise 0.241 Ns 0.534 Ns 0.159 Ns

+65% +62% +46%

6.2.3 Rendezvous and docking maneuver analysis

A number of docking maneuvers have been simulated by using the LMPC control law in

combination with the PPT system. The set of initial conditions for which the relative motion

lies near the edge of the LoS region has been identified as the worst-case scenario for the

simulation. Two representative simulation cases are reported, with equal along-track initial

separation and opposite initial conditions for the cross-track and radial components of the

relative position vector. The initial conditions of Case 1 are the same as those used in the

previous simulations. The simulation time is set longer than the one previously used, in

order to evaluate the steady state behaviour of the system.

Figures 6.13 and 6.14 show that the LMPC control law is able to drive the follower

spacecraft to the docking position while satisfying the LoS constraints, in both cases. The

magnitude of the relative position vector at the end of the simulation is equal to 9 mm for

Case 1 and 4 cm for Case 2.

The PPT pulse profile is reported in Fig. 6.15, together with the LMPC command, for

Case 1 (similar results are obtained for Case 2), where the pulse profile is obtained by

modulating the commanded thrust with a step size ∆t = 1 s and adding noise, according

to (6.6)-(6.8). These results show that almost no impulses are commanded in the negative
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Figure 6.13: LMPC tracking performance.
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Figure 6.14: LoS constraints (shown in green) and LMPC trajectory.

along-track direction during the final phase of the approach, which indicates that plume

impingement is avoided according to (3.28) (the few pulses commanded are required to

brake the chaser vehicle upon reaching the target). Moreover, observe that, because the

magnitude of the control inputs is constrained to be less or equal to uM = 40 µN, integral

windup in (6.7) is prevented.

As a final comparison, the results presented in this section are evaluated against the

open-loop (OL) solution to Problem 3.3.1. To enable this comparison, the boundary value

problem (3.30) is solved using the commercial package DIDO, which implements pseu-

dospectral methods [115]. A value of α = 1 and β = 0 is set in the cost function (3.27),

which is then proportional to the fuel consumption. Instead of considering a free final time,

tf in (3.30) is set equal to the time required by the LMPC scheme to reach the steady-state,

i.e. the length of the simulations presented in this section (35000 s). Moreover, the nonlinear

dynamic model (2.7),(2.16),(3.1),(3.3),(3.24) is replaced by the linearized model (3.31).

A good approximation of the fuel-optimal control policy is obtained by using 30 quadrature
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Figure 6.15: PPT pulse profile and commanded thrust for Case 1.

nodes for the pseudospectral solution.

The open-loop (OL) and feedback (LMPC) control strategies are compared in Table 6.9,

in terms of the overall impulse required by the maneuver and the evaluation time of the

control sequence on a 2 Ghz single-core CPU. Note that the overall impulse obtained with

the LMPC scheme can be more than twice the one corresponding to the fuel-optimal OL

solution. According to Table 6.8, a significant part of this mismatch is due to uncertain

observations, while the rest arises from the approximations made in the design of the LMPC

scheme to retain a sufficiently low computational complexity. In fact, the explicit LMPC

solution is evaluated approximately 400 times faster than the OL solution.

Table 6.9: Open-loop (OL) and feedback solution (LMPC)

Type Case 1 Impulse Case 2 Impulse Running time

OL 0.09 Ns 0.11 Ns ∼ 20 s

LMPC 0.16 Ns 0.25 Ns ∼ 0.05 s

+77% +127% 1/400

Given the relatively high specific impulse of PPTs compared to traditional microthrusters,

and the fact that the overall impulse commanded by the LMPC scheme is only a small frac-

tion of the total impulse which can be delivered by the thrusters (see Table 6.5), it can be

concluded that the proposed combination of technologies may represent a viable and cost-

effective solution for a wide range of small spacecraft rendezvous and docking applications.
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6.3 Precise attitude control of all-electric spacecraft

The objective of this section is to demonstrate the effectiveness of the MPC-based attitude

control scheme developed in Section 4.5. To this purpose, the control law is applied to

an all-electric GEO mission in combination with the attitude determination filter presented

in Section 5.2. The suitability of a reaction control system based on emerging xenon mi-

crothruster technologies is also discussed.

6.3.1 Reference mission

In order to demonstrate the feasibility of the MPC design based on the solution to Prob-

lem 4.5.1, a sample all-electric GEO mission is numerically simulated. The orbit parameters

are reported in Table 6.10. The spacecraft has the typical layout of a small two tons GEO

platform, see e.g. [121]. The size of the main body is 2m× 2m× 2.5m and two solar panels

of dimensions 5m × 2m are attached to the north and south faces of the bus, providing 4.5

kW of average power.

Table 6.10: GEO reference orbit

Semi-major axis a = 42165 (km)

Inclination i ∈ [ 0 , 0.05 ] (deg)

Longitude λ ∈ [ 75.05 , 75.15 ] (deg)

Eccentricity e ≃ 0

The considered propulsion system is illustrated in Fig. 6.16. Four SPT-100 Hall effect

thruster (HET) modules (EP1, EP2, EP3, EP4) symmetrically oriented around the nadir

vector, with an angle of 45◦ between the North/South axis and the thrust direction, are used

for SK maneuvers. Such kind of layout is similar to the one adopted for the Small-GEO

platform [32]. Nominally, the EP thrust vectors are aligned with the center of mass of the

spacecraft.

Eight on/off xenon microthruster modules that can be operated either as cold gas thrusters

(CGT) or high temperature electrothermal thrusters (HTET) are used for real-time attitude

control. Operation in HTET mode is achieved by heating the propellant via a resistance

element (ohmic heating), which allows for an increased specific impulse. Four thrusters

(AT1, AT2, AT3, AT4) are mounted on the anti-nadir face, with an angle of 48.5◦ between

the diagonal of the face and the thrust direction, to maximize the lever arm and hence the

torque about both the roll and pitch axes. The remaining four thruster (AT5a, AT5b, AT6a,

AT6b) are symmetrically oriented around the nadir vector, with an angle of 135◦ between the

North/South axis and the thrust direction, and fired in pairs to provide pure torques around

the yaw axis. Notice that thrusters AT1-AT4 produce coupled control torques about the roll

and pitch axes. In general, such kind of design may be due to structural and operational

constraints imposed by the overall configuration of the spacecraft, or beneficial to the perfor-

mance of the ACS. In the considered application, it ensures full compatibility with thruster
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Figure 6.16: Thrusters layout.

plume direction, torque level and power requirements of the mission. The basic specifica-

tions of the propulsion system are summarized in Table 6.11, where the specific impulse for

HTET opertation is taken compatible with that expected for high temperature resistojet and

hollow cathode thruster technologies fed by xenon [47]. To avoid control torques summing

up to zero, the simultaneous use of thrusters AT1-AT4, AT2-AT3 and AT5-AT6 is prevented

by setting the constraint matrix M in (4.98) to

M =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


 . (6.9)

Table 6.11: Propulsion system specifications

Type Thrust Isp Power Mass

HET 75 mN 1500 s 1350 W 3.5 kg

CGT/HTET 0.5/1.5 mN 30/90 s < 60 W < 0.3 kg

A detailed analysis of the disturbance torques τ e in (4.10) is performed. The drag torque

τ d is not present, because there is not atmosphere at the considered altitude. The gravity

gradient torque τ g and magnetic torque torque τm are usually negligible in GEO, since they

decrease with the inverse cubic power of the distance from the Earth [137]. The solar ra-
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diation pressure torque τ r depends on the orientation of the solar panels. Since the solar

panels rotate at a rate of one rotation per day to track the sun, the resulting disturbance is

characterized by daily quasi-periodic oscillations with an amplitude that depends on the off-

set between the center of mass of the spacecraft and the center of solar pressure. Moreover,

this disturbance vanishes during eclipses. The disturbance torque τ o, arising from station-

keeping operations, depends on both the offset ∆cm of the center of mass with respect to

the nominal position and the misalignment βt of the EP thrust vector from the nominal

direction. The geometry of a North/South station-keeping (NSSK) maneuver is depicted

in Figure 6.17, where the EP thrusters are fired in correspondence of circular arcs around

the orbit nodes. During most of the orbital period, the spacecraft is allowed to drift with

respect to the nominal orbit and experiences environmental torques only, while an addi-

tional persistent torque is generated during orbit correction maneuvers. By simulating a

weekly NSSK cycle, with one day devoted to orbit determination followed by six days of

pre-planned maneuvers (see e.g. [9]), it turns out that the maximum magnitude of the SK

disturbance torques is much greater than that of the environmental torques. This is clearly

visible in Figure 6.18 which shows the disturbance torques acting on the spacecraft, for

a typical worst-case simulation with respect to the thruster alignment and center of mass

offset (notice the different magnitudes of the torques).

Figure 6.17: North/South station-keeping maneuver.

Being the maximum magnitude of the SK disturbance torques much greater than that

of the environmental torques, the thruster layout is designed to efficiently reject such a

disturbance. If the EP thrust vector misalignment with respect to the spacecraft center of

mass is reasonably low, the pitch and roll components of the SK disturbance torque are

coupled and have approximately the same magnitude, while the yaw component, with a

larger worst-case magnitude, is almost decoupled. For this reason, coupled control torques

of equal magnitude are produced around the roll and pitch axes by thrusters AT1-AT4, while

a decoupled control torque is generated by the AT5 and AT6 pairs of thrusters around the

yaw axis. The acceleration aa in (2.16), generated by the AT1-AT6 thrusters, represents a

minor orbit perturbation, so that an eventual long-term contribution is easily compensated

by sporadic EP maneuvers. Thrusters AT5a and AT5b, as well as thrusters AT6a and AT6b
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Figure 6.18: Disturbance torques.

(see Fig. 6.16), are fired simultaneously. Hence, the thruster activation command in (4.11)

is denoted by µ = [µ1 , ... µ6 ]
T , where µ1, . . . , µ4 are the command variables of thrusters

AT1-AT4, while µ5 and µ6 control the AT5 and AT6 pairs of thrusters. Given the thruster

alignments, the matrix G in (4.11) has the following structure

G =
[
G̃, −G̃

]
= p̄




−dxy dxy 0 dxy −dxy 0

dxy dxy 0 −dxy −dxy 0

0 0 2dz 0 0 −2dz



 , (6.10)

where p̄ is the nominal thrust level and dxy, dz are constant lever arms. Thrusters are de-

signed to be possibly operated in HTET mode, by ohmic heating of a resistance element. To

retain an acceptable number of thermal cycles, the following operation regime is considered:

(i) CGT mode operation of AT thrusters for attitude control during free orbit drift, when a

low delta-v is required to counteract the environmental torques; (ii) HTET mode operation

of AT thrusters for attitude control during SK maneuvers, providing increased thrust and

Isp for efficient compensation of additional EP-induced torques. A unique thermal cycle is

performed for each SK maneuver.

The attitude control accuracy specifications (4.95) are summarized in Table 6.12, accord-

ing to the typical requirements of a multi-mission platform with Ka/Ku-band communication

and Earth imaging payloads (see, e.g., [71]). Therein, the time interval in which SK ma-

neuvers are not performed is referred as free orbit drift. Notice that pointing rate accuracy
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Table 6.12: Attitude control requirements

ACS requirements
Free orbit drift Station-Keeping

Roll, Pitch Yaw Roll, Pitch Yaw

Pointing accuracy 0.5 mrad 1 mrad 0.5 mrad 1 mrad

Rate accuracy 1.5 µrad/s 3 µrad/s 10 µrad/s 20 µrad/s

requirements are relaxed for SK maneuvers, since Earth imaging is not performed during

such operations. Also, observe that control accuracy requirements for the yaw axis are less

stringent than those for the roll and pitch axes, because the yaw pointing error does not

directly affect the quality of communications and observations. The constraint matrix W

in (4.95) is set according to the bounds reported in Table 6.12. The tuning of the control

law (4.99) is addressed next.

6.3.2 MPC tuning strategy

A high-fidelity simulator has been developed, combining a realistic truth model, sensors,

actuators and the EKF in Section 5.2, to tune the control law and evaluate the performance

of the ACS. The truth model is obtained from (2.26),(2.31),(4.10), as follows

q̇IB =
1

2

[
0

ω

]
◦ qIB. (6.11)

ω̇ = I−1
M

(
τ e + τu − ω × IM ω − İM ω

)
. (6.12)

ṁ = − p̄ ‖Λµ ‖1
g Isp

, (6.13)

where Λ = diag(1, 1, 1, 1, 2, 2) accounts for the specific thruster layout. The torque τ u

in (6.12) is modeled as the commanded torque Gµ plus actuator noise wa and thruster

misalignment βa

τ u = (I− β×
a )G (µ+wa), (6.14)

where E [wa(t) wa(t
′)T ] = Iσ2

a δ(t− t′) and βa is fixed. The term τ e in (6.12) includes the

most relevant torques, whose profile is depicted in Fig. 6.18. The block diagram represen-

tation of the closed-loop system is depicted in Fig. 6.19. Table 6.13 summarizes the main

simulation parameters, where σθ and σω are given by (5.34) and (5.35), with Nθ = Iσ2
θ and

Nω = Iσ2
ω .

The tuning parameters of the controller are ∆ts Nu, N , Ks, Ky and α in (4.99). A

sampling time ∆ts = 0.5 s is chosen. Such a value is adequate for discretizing the space-

craft dynamic model and is well within the constraints on the minimum firing time im-

posed by the thruster technology. The control horizon Nu, which is proportional to the
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Table 6.13: Simulation parameters

Parameter Value

Center of solar pressure offset 5 cm along the pitch axis

Center of mass offset ∆cm = 1.5 cm per axis

EP thrust vector misalignment βt = 0.6 deg per axis

AT thrust vector misalignment βa = 0.1 deg per axis

AT thrust noise (normalized) σa = 0.01

Star-tracker measurement noise σθ = 0.05 mrad

Gyro measurement noise σω = 1 µrad/s

number of binary variables in the optimization problem, has the major impact on the com-

putational burden of the real-time control system. Since the amount of computational re-

sources available on-board a spacecraft is typically limited, Nu = 3 is chosen. A predic-

tion horizon three times longer than the control horizon is selected, by setting N = 9. The

penalty term Ks, which affects the constraint violations, is chosen as a block diagonal matrix

Ks= blockdiag(102 I, 10 I), while the terminal weight is set to Ky= blockdiag(I, 0.1 I)W

(see (4.99)). Finally, the parameter α determines the relative weight of the fuel consump-

tion and the number of thruster firings in the cost function of the optimization problem. In

order to find a suitable value of α, the ACS is simulated with values of α ranging from zero

to one. Since different control modes are defined according to the mission requirements,

free orbit periods lasting one day and NSSK maneuvers of 55 minutes have been simulated

separately. A worst-case scenario is considered, by assuming the maximum disturbance

torque compatible with the uncertainty on the center of mass, center of solar pressure and

thruster misalignment. In both cases, the attitude, angular rate and disturbance torque are

estimated by the EKF. The results are depicted in Fig. 6.20, where the fuel consumption and

the number of thruster firings are reported for SK and free orbit drift periods. As expected,

the parameter α allows one to trade-off between two objectives. It can be noticed that for

both SK and free orbit drift the fuel consumption is approximately constant as long as α is
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smaller than 0.8, while it rapidly grows as α approaches 1. Conversely, an acceptable num-

ber of firings is achieved only if α is larger than 0.7. From these observations, α = 0.78 is

selected. Fig. 6.20 also confirms that the major contribution to the attitude control delta-v

budget is due to SK operations. Even if the microthrusters efficiency is increased by HTET

mode operation, the fuel required for disturbance rejection on a single NSSK maneuver is

still considerably higher than the fuel needed to compensate for one day of environmental

torques by using thrusters in CGT mode. The proposed combination of tuning parame-

ters provides an average computational time of the control law in the 25 millisecond range

on a 2 GHz single-core CPU, by using the IBM ILOG CPLEX mixed-integer programming

solver [66], based on a branch and bound algorithm.
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Figure 6.20: Tuning of parameter α.

The performance of the control law with the set of tuning parameters described above

is compared to a LQR+PWPF scheme [1], consisting of the cascade of a LQR controller and

a PWPF modulator, for SK disturbance rejection. The SK maneuver consists of firing a pair

of thrusters in sequence around an orbit node. Therefore, the resulting disturbance torque,

depending on the displacement of the thrust vectors with respect to the spacecraft center of

mass, is piecewise constant, as illustrated in Fig. 6.18. In Fig. 6.21, it can be observed that

both controllers succeed in keeping the errors within the maximum allowed deviation, for all

axes (although the LQR law fails to keep the pitch and yaw rate transient within the bounds

due to an impulsive variation of the disturbance torque at time t=1683 s). Clearly, an

advantage of the MPC approach is that the error bounds are enforced directly as constraints

in the optimization problem (4.99), while a trial-and-error procedure has been necessary to

suitably tune the parameters of the LQR+PWPF controller.

The fuel consumption and number of thruster firings of the two control schemes are

reported in Fig. 6.22. The MPC scheme requires about 5% less fuel and 25% less thruster

firings with respect to the LQR+PWPF one, mainly due to a more efficient management of

the firing cycles for the cross-coupled axes (roll and pitch).
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Figure 6.21: Tracking errors for a sample SK maneuver.
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Figure 6.22: Fuel consumption and number of firings in comparison.

6.3.3 Attitude control system analysis

The reference mission is simulated in order to validate the proposed MPC design and to

evaluate the performance of the attitude control system. The simulation model is propa-

gated for a time interval of one week using a fourth-order Runge-Kutta integration method.

The steady state behaviour of the ACS is reported in Fig. 6.23. The attitude tracking er-

ror remains always well enclosed within the bounds (dash-dotted lines) specified by the

pointing accuracy requirements, and shows an oscillating trend that corresponds to the dis-

turbance torque profile, except from periodic spikes due thruster operation within solar

eclipses, when the environmental torques vanish resulting in closed-loop oscillations with

the same amplitude of the deadband (due to the minimum impulse bit of the thrusters, see

e.g. Fig. 4.4). Such kind of behaviour is typical for pulse-modulated thruster control sys-

tems. Similarly to what observed for the attitude error, the angular rate tracking error does

not exceed the pointing rate accuracy bounds, as illustrated in Fig. 6.24. The performance

of the microthruster reaction system is reported in Fig. 6.25, in terms of fuel consumption

(left) and number of firings cyles per thruster (right, where each line represents a single
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thruster). The microthrusters are operated in CGT mode during free orbit drift and in HTET

mode during SK maneuvers.
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Figure 6.23: Pointing error.
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Figure 6.24: Pointing rate error.

The stair-step profile of the expelled fuel clearly indicates that the major contribution to

the propellant budget is due to SK disturbance rejection, as expected. The overall xenon

mass required for precise attitude control is approximately 0.135 kg: 0.019 kg to counteract
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Figure 6.25: Microthruster reaction system performance.

environmental disturbances and 0.116 kg to compensate for SK disturbance torques. The

amount of firing cycles is fairly distributed among free orbit drift and SK periods, and grows

regularly for each thruster. At the end of the simulation, about 800 on/off cycles are ac-

cumulated by thrusters AT1 and AT4, while a number of cycles between 600 and 650 is

observed for the remaining thrusters. The overall firing time per thruster varies between

2.5 hr and 2.9 hr, about 85% of which being spent for SK disturbance rejection. Based on

these results, Table 6.14 summarizes the performance of the reaction control system for a

mission duration of 15 years. The total amount of xenon needed for microthruster opera-

tion represents a significant addition to the fuel budget of the mission, being the propellant

mass required for 15 years of NSSK in the order of 150 kg for the HET thrusters considered

in Table 6.11. However, considering that the typical mass of momentum-exchange devices,

such as reaction wheels or control moment gyros, together with the xenon mass required

for wheel desaturation, can easily exceed 50 kg, and that such systems are replaced by light-

weight microthrusters, the overall penalty on the spacecraft mass is predicted in the 60 kg

range. It is believed that this is a reasonable trade-off as it allows one to remove moving and

vibrating parts from the attitude control system, as well as to reduce its complexity and cost.

Moreover, the results presented so far are obtained by using conservative propulsion system

specifications, which ensure compatibility with different models of EP and HTET thrusters.

In specific cases, where a better alignment of the EP thrust vector and/or an increased Isp of

the reaction thrusters can be guaranteed, a significant reduction of the propellant consump-

tion is expected, since the amount of xenon required for EP torques compensation scales

approximately linearly with these quantities. For instance, the performance reported in Ta-

ble 6.15 is obtained for an EP thrust vector misalignment of 0.1 deg, as in [9, 70], and an

Isp of 200 s, which is the target value for the development of the hollow cathode technology

[53]. Such a performance makes the proposed ACS a competitive alternative to systems

based on momentum exchange devices.

Finally, it must be observed that the firing time and the number of on/off and ther-

mal cycles per thruster, given in Tables 6.14 and 6.15, are compatible with the considered

CGT/HTET technology. In particular, the difference between the number of on/off and ther-

mal cycles for HTET is due to the fact that for each SK maneuver a single thermal cycle is

performed, while several valve switchings are required to meet the desired control accuracy.
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Table 6.14: Propulsion system performance: EP misalignment 0.6◦, HTET Isp = 90 s

Type Xenon mass On/off cycles Firing time Thermal cycles

CGT 15 kg 350000 300 hr -

HTET 91 kg 300000 2000 hr 10000

Total 106 kg 650000 2300 hr 10000

Table 6.15: Propulsion system performance: EP misalignment 0.1◦, HTET Isp = 200 s

Type Xenon mass On/off cycles Firing time Thermal cycles

CGT 15 kg 350000 300 hr -

HTET 22.5 kg 380000 1100 hr 10000

Total 37.5 kg 730000 1400 hr 10000

6.4 Performance evaluation of attitude control laws

As discussed in Chapter 4, an efficient attitude control scheme must focus on simultaneously

minimizing the fuel consumption and the number of thruster firings of the reaction control

system, while at the same time enforcing the attitude control accuracy requirements. To this

aim, two suboptimal solutions have been derived for the coupled double integrator model

(4.9), which guarantee an upper bound on the minimum actuator switching frequency and

a predefined pointing accuracy. For the more general linearized attitude error dynamics

(4.91), an MPC scheme, based on the numerical solution of a mixed-integer linear program,

has been also developed. This control scheme has been found to yield a good tracking

accuracy when applied to the all-electric GEO mission in the Section 6.3, but suffers from a

finite-horizon approximation of the fuel and switching costs, which may limit its applicability

within other types of mission. It is therefore of interest to asses the performance of the

proposed solutions and see how they compare on different scenarios.

In order to evaluate the performance of minimum switching (MS) control laws (4.74)

and (4.76), versus the one of the MPC scheme, two aspects should be noticed. The first

is that the MPC formulation in Problem 4.5.1 can explicitly account for angular rate con-

straints, while for the MS strategies such constraints are implicitly defined by the distur-

bance torque size and by the amplitude of the attitude error oscillations on each axis of the

transformed system (4.18), see e.g. Fig. 4.7. The second is that the MPC scheme is able to

handle arbitrary thrusters configurations in (4.11), while the provided MS solution is lim-

ited to symmetric thruster configurations of the form defined by (4.12), with one input per

axis. In practice, however, one can always enforce a set of suitable attitude error bounds

which enable to meet the desired pointing rate accuracy, thus allowing one to apply the

control laws (4.74) and (4.76) also in the presence of angular rate constraints. Moreover,

in many cases the spacecraft architecture is such that the thruster configuration is minimal
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(but redundant) and symmetric, as in (6.10) (see for example Fig. 6.16).

6.4.1 GEO scenario

In the following, the proposed solutions are compared on the GEO mission scenario de-

scribed in Section 6.3, in terms of effectiveness in rejecting persistent SK disturbances. In

this scenario, the pointing rate accuracy requirements do not allow the attitude error to span

the entire size of the attitude error deadband, as clearly visible in Fig. 6.21 (loosely speak-

ing, the pointing rate constraints are more stringent than the attitude error ones). This is in

conflict with the solutions provided by Theorems 4.3.1 and 4.3.2, which aim at maximizing

the attitude error excursion within the feasible set, as can be seen, for instance, in Fig. 4.11.

Therefore, the size of the feasible set used by these results must be scaled, to ensure that the

required pointing rate accuracy can also be met. This amounts to consider

Wθ = diag(κ 0.5 · 10−3, κ 0.5 · 10−3, κ 10−3)−1 (6.15)

in (4.14), where the SK pointing accuracy requirements from Table 6.12 are scaled by the

scalar term κ. Based on a trial and error procedure, κ has been set to 0.14 for the consid-

ered scenario (this low value confirms that, in this scenario, the bottleneck in the limit of

performance is determined by the angular rate constraints).

The SK maneuver has a duration of about 3300 sec, and the disturbance acting on the

spacecraft is piecewise constant: τ o= [1.6, 1.7, 2.7]T mN·m during the first half of the ma-

neuver and τ o = [1.7, −1.6, 1.1]T mN·m during the second half. The periodic trajectories

returned by Theorems 4.3.1 and 4.3.2, for the first half of the SK maneuver, are reported

in Fig. 6.26 (a similar solution is obtained for the second half). Notice that the solution

provided by Theorem 4.3.2 has no visible advantages over that provided by Theorem 4.3.1,

due to the particular structure of the problem. Therefore, we expect a similar performance

for the control law (4.74), with the set of parameters prescribed by Corollary 4.4.1 (here-

after, referred as MS+C1) , and the control law (4.76), with that specified by Corollary 4.4.2

(MS+C2).

The MPC scheme (4.99) is compared to the MS control strategies on the considered SK

maneuver. Because the SK disturbance can take two different values, to be estimated by

the EKF, the parameters provided by (4.66) and (4.70)-(4.71) are computed in real-time.

In particular, (4.70)-(4.71) is evaluated by numerical search over a 10 × 10 grid on the

parameters (φ2, φ3). The evaluation takes approximately 10 ms on a 2Ghz single-core CPU,

which of the same order of the time required to solve the MPC problem.

The tracking errors obtained with the three control laws are reported in Fig. 6.27. It can

be seen that the pointing and pointing rate accuracy requirements are satisfied by the three

solutions. Moreover, notice that the roll and pitch angular errors from the application of the

MS laws are constrained to lie in a smaller region near the origin with respect to those of

the MPC law, because the size of the feasible set in Fig 6.26 (i.e. the outer parallelotope)

has been scaled to meet the desired pointing rate accuracy, according to (6.15).

The average fuel consumption Jf (T ) and switching frequency Js(T ), resulting from the

application of the two control laws, are reported in Fig. 6.28, as a function of the simu-
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Figure 6.26: Trajectories corresponding to the solution to (4.65) (dashed) and (4.69) (solid), to-

gether with state constraints (4.20) (outer parallelotope) and |xi| ≤ a
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i (inner box).
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Figure 6.27: Tracking error for a sample SK maneuver: MS+C1 (red, dashed), MS+C2 (blue, solid)

and MPC (black, dash-dotted).

lation time T . These cost functions are obtained from (4.15) and (4.48), respectively, by

removing the limit operation. It can be seen that the fuel consumption is approximately the

same for the three solutions, while the MS+C1 law provides a smaller actuator switching

frequency, (in the order of 5%) with respect to the MS+C2 and MPC laws. In particular, the

performance gap between the MS+C1 and MS+C2 schemes is due to the additional input

transitions required by the MS+C2 scheme to reject the effect of noise on the relative phases

(despite the fact that tracking a desired phase does not give any theoretical advantage in

this scenario, according to the structure of the solutions in Fig. 6.26).
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Figure 6.28: Average fuel consumption and switching frequency: MS+C1 (red, dashed), MS+C2

(blue, solid) and MPC (black, dash-dotted).

Clearly, an advantage of the MPC approach in the considered application is that the rate

error bounds are enforced directly as constraints in the optimization problem (4.99), while

an heuristic procedure has been necessary to suitably tune the parameter κ in (6.15). In this

respect, the solution to the minimum switching Problem 4.3.1, in the presence of angular

rate constraints, represents one interesting subject for future investigations.

6.4.2 LEO scenario

In the following, the proposed control laws are compared on a LEO mission scenario with

the following features:

• The required pointing accuracy is 0.5 mrad per axis, while no angular rate constraints

are specified;

• A persistent disturbance torque τ d = [0, 0.5, 0.2]T mN·m, due to drag, is the main

disturbance acting on the system;

• A 500 kg class spacecraft is considered, whose design is the same reported in Fig.

6.16, except for a scaling and the fact that solar appendages are not present (panels

are mounted on the external body surfaces).

Notice that the magnitude of the LVLH rate ωL in (4.2) and (4.8), for this scenario, is

about 15 times higher than that considered in the previous simulations. Moreover, the

parameters of the navigation system are left unchanged. The matrix Wθ in (4.14) is set to

Wθ = (κ 0.5 · 10−3)−1I, where κ = 0.9 introduces a 10% safety margin with respect the

pointing accuracy requirements, to account for discretisation and measurement errors.

The periodic trajectories specified by Theorems 4.3.1 and 4.3.2 are reported in Fig. 6.29.

The solution returned by Theorem 4.3.2 provides a 18% reduction of the actuator switching

frequency with respect to that of Theorem 4.3.1. Therefore, we expect a similar advantage

for the MS+C2 law over the MS+C1 law.

The tracking error profiles from the application of the MS+C1 and MS+C2 schemes are

reported in Fig. 6.30. It can be seen that, with the exception of a short initial transient,
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Figure 6.29: Trajectories corresponding to the solution to (4.65) (dashed) and (4.69) (solid), to-

gether with state constraints (4.20) (outer parallelotope) and |xi| ≤ a
∗

i (inner box).

during which the MS+C2 controller has to track the desired phases (see the pitch error

profile), the pointing accuracy requirements are satisfied by both solutions. This confirms

that the double integrator model (4.9), which is obtained by neglecting the cross coupling

terms depending on ωL in (4.8), provides reasonable approximation of the attitude error

dynamics for the considered control problem.

Observe from Fig. 6.30 that the growing amplitude of the oscillations about the roll axis

for the MS+C1 law is due to a phase shift effect, arising from measurement and discreti-

sation errors (the amplitude of the oscillations about the pitch axis is decreasing, although

not clearly visible in Fig. 6.30). This phenomenon is better understood by observing the

closed-loop trajectories in the transformed space (x1,x2,x3), shown in Fig. 6.31. It can be

seen that, although the trajectory resulting from the application of the MS+C1 scheme (red,

dashed) does not follow the path obtained for φ1 = φ2 = φ3 = 0 in Fig. 6.29, it is main-

tained within the box |xi| ≤ a∗i specified by Theorem 4.3.1, with few constraint violations
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Figure 6.30: Tracking error profile: MS+C1 (red, dashed) and MS+C2 (blue, solid).
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due to noise. In fact, the result provided by this theorem does not depend on the relative

phases of the oscillations. Conversely, the oscillations resulting from the application of the

MS+C2 scheme (blue, solid) closely follows the path depicted in Fig. 6.29, because in this

case the relative phases are controlled.
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Figure 6.31: Trajectories from the application of the MS+C1 (red, dashed) and MS+C2 (blue, solid)

schemes, together with state constraints (4.20) (outer parallelotope) and |xi| ≤ a
∗

i (inner box).
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Figure 6.32: Average fuel consumption and switching frequency: MS+C1 (red, dashed) and MS+C2

(blue, solid).

The average fuel consumption Jf (T ) and switching frequency Js(T ), obtained with the

two control schemes, are reported in Fig. 6.32. As expected, the MS+C2 scheme performs

better than the MS+C1 scheme in terms of switching frequency. In particular, it provides a

14% reduction of the switching cost Js(T ) at the end of the simulation (the expected 18%

reduction, found by comparing the optimal costs of Theorems 4.3.1 and 4.3.2, is matched

for longer simulations, as the effect of the initial transient is averaged out).

The MPC controller is tuned by using Ky = 104 diag (0.2, 0.2, 0.2, 4, 4, 2) and Ks= 102 I

in (4.99) (where angular rate constraints are not enforced), while the parameters ∆ts, Nu
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and N are set as in Section 6.3.2. Figures 6.33 and 6.34 show the performance obtained

for α = 0.7 and α = 0.8 in (4.99). For α = 0.7, the fuel consumption is the same as

that obtained with MS laws, reported in Fig. 6.32, but the switching frequency is about 10

times higher. For α = 0.8, a reduction of the switching frequency can be noticed, but the

fuel consumption is increased by approximately 10%. Moreover, the switching cost is still

considerably higher than that of the MS schemes, and the controller is not able to keep the

roll error in Fig. 6.33 within the bounds.
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Figure 6.33: Tracking error profile of MPC: α = 0.7 (black, solid) and α = 0.8 (blue, dashed).
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Figure 6.34: Average fuel consumption and switching frequency of MPC: α = 0.7 (black, solid) and

α = 0.8 (blue, dashed).

The poor performance of the MPC scheme in this scenario appears to be related to the

prediction horizon N = 9 and control horizon Nu = 3 used by the controller. In particular,

the violation of the roll error bounds in Fig. 6.33 indicates a lack of anticipative action, due

to a too short prediction horizon. Moreover, the fact that the period of the MS trajectories

in Fig. 6.30, and therefore of the underlying control sequence, is of about 100 s, suggests

that the control horizon of the MPC scheme should be set to a similar length. Unfortunately,

the computational time necessary to solve the MILP problem (4.100), scales badly with the

length of the control horizon, as illustrated in Table 6.16 for different values of Nu and N .

In fact, despite the efforts to tune the parameters of the controller, it has not been possible

to increase the performance of the MPC scheme significantly, without compromising the

feasibility of its online implementation.
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Table 6.16: Computational time required by MPC for different prediction and control horizons

Parameter Nu = 3, N = 9 Nu = 6, N = 9 Nu = N = 25

Running time 25 ms 0.5 s minutes

6.4.3 Time-varying torques

In the following, the case in which an additional time-varying disturbance τm acts on the

system, due to a large residual magnetic dipole of the spacecraft, is addressed within the

LEO mission scenario considered in Section 6.4.2. The profile of the overall disturbance

τ e ≈ τ a + τm is depicted in Fig. 6.35.
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Figure 6.35: Disturbance torque profile.

Notice that the frequency of the disturbance is equal to the LVLH rate ωL, and hence its

period is equal to the orbital period. Because of the slow variation of the attitude distur-

bance, with respect to the error dynamics timescale, it is still possible to apply the MS+C1

and MS+C2 schemes. To this purpose, (4.66) and (4.70)-(4.71) are evaluated in real-time,

as outlined in Section 6.4.1.

The system is simulated for 3000 s. The attitude error profile resulting from the ap-

plication of the MS+C1 and MS+C2 schemes is reported in Fig. 6.36. It can be seen that

the MS+C1 scheme is able to keep the attitude error within the pointing accuracy bounds

for the entire simulation period, as opposed to the MS+C2 scheme. This is due to the re-

quirement for the MS+C2 scheme to track a time-varying phase, as confirmed by the profile

of the phase tracking errors φ̃ in (4.84), depicted in Fig. 6.37. Observe that the refer-

ence phase signal from the online solution to (4.71) can change abruptly as the disturbance

torque varies (which is likely due to the fact that, in the presence of noise, different local

minima are found by solving (4.71) at different sampling times). In order to track this sig-

nal, frequent adjustments of the amplitude (and hence the period) of the oscillations have

to be performed, according to (4.83), which turns out to be the main reason for state con-

straint violations. On the other hand, one cannot blame the MS+C2 scheme for such type

of behaviour, as it is designed to reject a constant disturbance torque.

The fuel consumption and switching frequency resulting from the application of the two

control schemes is reported in Fig. 6.38. The fuel consumption is the same for both solutions,
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Figure 6.36: Tracking error profile: MS+C1 (red, dashed) and MS+C2 (blue, solid).
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Figure 6.37: Phase tracking errors.

while the MS+C2 scheme performs better than the MS+C1 scheme in terms of switching

frequency. This advantage, however, comes at the price of a lower tracking accuracy.
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Figure 6.38: Average fuel consumption and switching frequency: MS+C1 (red, dashed) and MS+C2

(blue, solid).

Finally, it is worth remarking that, by focusing the analysis on a LEO orbit, a quite high

value of the frequency ωL of the disturbance has been considered. For disturbances with a

very low frequency, e.g. solar radiation pressure torques in GEO, a better tracking accuracy

of the MS+C2 scheme can be expected. Nevertheless, the extension of this control scheme

to the case of time-varying disturbances is an important topic that remains to be addressed.



Chapter 7

Conclusions and Future Work

This final chapter contains a summary of the thesis contributions and a discussion of the

achieved results and of future research directions.

7.1 Summary of contributions

The contributions of this thesis can be divided into three categories: orbit control techniques,

attitude control techniques, validation of the proposed techniques on EP-based missions.

Orbit control techniques

An orbital element control scheme has been derived for autonomous station-keeping of low

Earth orbiting spacecraft. The proposed design relies on a continuous thrust control strat-

egy, providing asymptotic tracking of the desired in-plane motion, by means of an efficient

rejection of atmospheric drag, and an impulsive control scheme, which compensates for mi-

nor cross-track perturbations, by using small velocity increments of fixed magnitude.

An LMPC scheme has been developed for the autonomous rendezvous and docking prob-

lem. The proposed design is general enough to handle path constraints, as well as thrust

magnitude and rate constraints. By exploiting the use of Laguerre functions, in combina-

tion with multi-parametric programming techniques, the optimal control problem is solved

explicitly, which allows for the implementation of the control law on simple hardware.

Attitude control techniques

The minimum fuel and minimum switching control problem has been addressed for systems

of coupled double integrators, in the context of precise attitude control with on/off actua-

tors. Two suboptimal control strategies have been derived, providing upper bounds on the

minimum switching frequency required to satisfy given state constraints, while rejecting a

persistent disturbance with the minimum propellant consumption.

An MPC scheme, based on the linearized model of the attitude error dynamics, has been

derived. The proposed methodology allows the designer to explicitly take into account both

the fuel consumption and the number of actuator switching cycles, providing a suitable way

to trade-off these objectives by means of a scalar parameter. The approach is general enough
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to be applied also in the case of nonsymmetric thruster configurations, and in the presence

of angular rate constraints.

Validation of the proposed techniques on EP-based missions

A simulation software has been implemented in MATLAB, including an accurate dynamic

model of the spacecraft, as well as a GNC module based on the proposed control techniques

and the developed EKF schemes. The simulation software can be used to design and analyze

the principal classes of Earth orbit missions with electric propulsion.

The proposed control techniques have been validated on different mission scenarios. A LEO

mission has been simulated to demonstrate the effectiveness of the orbital element control

system. The performance of the LMPC design has been compared to standard MPC and

LQR techniques on a formation flying mission, in terms of propellant consumption, maneu-

ver completion time and safety of operation. The performance of the attitude control laws

has been evaluated on GEO and LEO scenarios, in terms of fuel consumption and thruster

switching frequency.

7.2 Discussion of the results

The autonomous station-keeping problem has been addressed for spacecraft with electric

propulsion. By using the proposed control scheme in combination with an Hall effect

thruster, it has been shown that the effect of atmospheric drag on spacecraft flying at very

low altitudes can be compensated for sufficiently long mission lifetimes. The control scheme

permits to compensate also the cross-track perturbations, by using a low power resistojet

which is fed by the same xenon tank used by the Hall thruster. This provides a suitable

trade-off between thrust efficiency and power requirements of the propulsion subsystem.

The results from a case study of a small satellite LEO mission demonstrate the viability of

the proposed solution, in terms of control accuracy and performance of the propulsion sys-

tem. It is believed that this technology will play a key role in a number of future low-cost

missions for remote sensing and Earth observation.

Concerning the autonomous rendezvous and docking problem, it has been shown that

the use of Laguerre functions can be effective in improving the computational efficiency of

model predictive control. The proposed controller accounts for the low thrust level delivered

by the EP technology, while guaranteeing safe proximity operations. Moreover, it does not

require a dedicated solver onboard the spacecraft thanks to the explicit formulation, whose

implementation boils down to the evaluation of a piecewise affine state feedback control law.

The results from the simulation case study of a cubesat formation flying mission indicate that

the achievable performance, in terms of control accuracy and propellant usage, is compatible

with the specifications of a PPT system that is close to flight qualification. Moreover, the

required computations are found to be feasible on low-power hardware, within the sampling

interval of the control system.
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The attitude control problem has been studied for spacecraft equipped with on/off re-

action control systems. The proposed control techniques allow one to confine the attitude

tracking errors within prescribed bounds, while at the same time satisfying the constraints

imposed by the technological limitations of the actuators, and are general enough to be

employed in the presence of coupled dynamics. This is the case, for instance, whenever

non-orthogonal thruster configurations are adopted for maximizing the generated torque

or satisfying constraints coming from the spacecraft layout. The results from a simulation

case study of an all-electric mission show that the additional propellant mass required by

the considered attitude control system, based on small EP thrusters, is balanced by the ben-

efits of removing momentum/reaction wheels from the ACS design, in terms of enhanced

reliability and pointing stability.

From the comparison of the control laws (see Section 6.4), it can be concluded that,

at the current status of the design, both the minimum switching schemes (MS+C1 and

MS+C2) are well-suited for applications in which the disturbance torque is approximately

constant or varies very slowly. However, the MS+C2 scheme is affected by a degradation of

the tracking performance in the case of time-varying torques. In this case, the presence of

many local minima in the objective function that is optimized, at each time step, in order to

compute the reference phase signals, renders the control scheme highly sensitive to noise.

In fact, the MS+C1 law, which does not rely on the optimization of the relative phases, is

not affected by this problem. Moreover, the parameters of both the MS+C1 and MS+C2

schemes have to be scaled in order to cope with angular rate constraints. Alternatively,

the proposed MPC design allows one to optimize the fuel consumption and the number of

actuator switching cycles, while accounting in a systematic way for attitude and angular rate

constraints, as well as for arbitrary thruster configurations. However, it is worth remarking

that the mixed integer optimization problem involved in the computation of the MPC law

is quite challenging. The computational burden is heavily affected by the length of the

control horizon. The latter, in turns, depends on the pointing requirements and has an

impact on the control performance. For the considered GEO mission, it turns out that the

required processing power is compatible with state-of-the-art flight qualified CPUs. On the

other hand, for more general cases (e.g. the LEO scenario in Section 6.4.2), it has not been

possible to obtain a satisfactory performance of the MPC scheme, without compromising the

feasibility of its online implementation.

7.3 Future research directions

The results obtained are by no means exhaustive and there are many aspects of the consid-

ered problems that still remain to be investigated.

A continuous/impulsive control scheme has been developed in Section 3.2 for the station-

keeping problem. Although the stability of the closed-loop system has been shown under

simplifying assumptions on the system structure, the provided results do not extend to the

fully interconnected dynamical system. Therefore, a formal stability proof of the overall

design wold be a valuable add-on to the theoretical analysis presented in this thesis. In this
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respect, the application of backstepping techniques can be envisaged.

An explicit LMPC design has been developed in Section 3.3, for the rendezvous and

docking problem. An underlying assumption in the derivation is that the attitude of the tar-

get spacecraft is aligned to the LVLH frame orientation and that the spacecraft have similar

physical properties. However, this is only true for spacecraft formations which are specifi-

cally designed to satisfy these requirements. In the case of rendezvous and docking with a

tumbling, noncooperative target, e.g. repairing and refueling of defunct satellites, or space

debris removal, the applicability of the explicit controller might be limited, due to the pres-

ence of time-varying constraints. From a theoretical viewpoint, it will be interesting to see

how the MPC and LMPC schemes compare under a dual-mode formulation of the corre-

sponding control problems.

Concerning the attitude control problem, in Chapter 4, it is worth remarking that the op-

timization of the relative phases of the attitude error oscillations gives a conservative upper

bound on the minimum actuator switching frequency. In fact, we have found empirically

that periodic trajectories with a lower switching cost do indeed exist. Moreover, it is still

not clear how to tackle the minimum switching problem without enforcing the constraint

that the periodic solution of each state variable must take the same form as the optimal

solution for the single-axis case. For instance, one could consider periodic trajectories hav-

ing asymmetric amplitudes or different periods along different state components. Another

important aspect for future investigations is the possibility to extend the obtained results to

the case of time varying torques and angular rate constraints, as well as for other classes of

multivariable linear dynamic systems. In this respect, developing methods for improving the

computational efficiency of the mixed-integer MPC algorithm may play a significant role.
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Appendix

For completeness, the proofs of Propositions 3.2.1, 3.2.2, 3.2.4 and 3.3.2 are reported next.

Proof of Proposition 3.2.1

Proof. For system (3.15)-(3.16), a candidate Lyapunov function is

V =
1

2
δoT1 K1δo1, (A.1)

which is positive definite. The time derivative of (A.1) is

V̇ = δoT1 K1δȯ1 = −δoT1 K1b1b
T
1 K1δo1 (A.2)

which is negative semidefinite. Consequently, δo1, a = ā + δa, and hence b1 from (3.17)

are bounded. To prove asymptotic stability, we use Barbalat’s lemma. Let x = K1δo1. Then

V̇ = −xTb1b
T
1 x and its time derivative is given by

V̈ = −2xT ḃ1b
T
1 x− 2xTb1b

T
1 ẋ, (A.3)

which is bounded because x = K1δo1 and ẋ = −K2
1 b1δo1 are bounded, and ḃ1 is bounded

for a > 0. Then,

lim
t→∞

V̇ (t) = 0.

Notice that bT1 K1δo1 = 0 in (A.2) implies u = 0 in (3.16) and therefore δȯ1 = 0 in (3.15).

Combining this observation with the fact that, due to the presence of the time-varying

term νl(t) in (3.17), the vector b1(t) spans the whole R
3 space over time, one has that

lim
t→∞

V̇ (t) = 0 implies lim
t→∞

x(t) = 0. Hence, lim
t→∞

δo1(t) = 0, which concludes the proof.

Proof of Proposition 3.2.2

Proof. Define z̃ = (KIz + d). System (3.12), with the control law (3.18), can be rewritten

as
δȯ1 = −b1b

T
1 K1δo1 + b1z̃

˙̃z = −K2
I b

T
1 δo1.

(A.4)

For system (A.4), a candidate Lyapunov function is

V =
1

2
δoT1 K1δo1 +

1

2K2
I

z̃ 2, (A.5)
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which is positive definite. The time derivative of (A.5) is

V̇ = δoT1 K1δȯ1 +
1

K2
I

z̃ ˙̃z = −δoT1 K1b1b
T
1 K1δo1 = −xTb1b

T
1 x, (A.6)

which is negative semidefinite. By using the same arguments as in the proof of Theo-

rem 3.2.1, one has that

lim
t→∞

V̇ (t) = 0, (A.7)

which implies that, for t→ ∞,

δȯ1 → b1z̃

˙̃z → 0.
(A.8)

Notice that, with the same reasoning as in Theorem 3.2.1, the only solution to (A.4) satis-

fying (A.8) is the trivial one (δo1, z̃) = (0, 0). Then, lim
t→∞

δo1(t) = 0, which concludes the

proof.

Proof of Proposition 3.2.4

Proof. By substituting (3.21) in (3.14), one gets

δν̇l =

∣∣∣∣−
√
µKν δνl +

√
µ

ā3

∣∣∣∣−
√
µ

ā3
,

where δνl ∈ (−π, π]. Then, for 0 < Kν ≤ 1

πā
3

2

,

δν̇l = −√
µKν δνl,

and therefore lim
t→∞

δνl = 0, which concludes the proof.

Proof of Proposition 3.3.2

Proof. Under the assumptions of Proposition 3.3.2, (3.59) boils down to

min
η

J = ηTΩη + 2xT (k)Ψη

s.t. (3.58), s2 = 0, x(k +Np|k) = 0.
(A.9)

Let J∗(k) and J∗(k + 1) denote the optimal value functions for problem (A.9) at sampling

times k and k + 1. Moreover, denote by

U∗(k) = {L(0)η∗(k), . . . ,L(Np − 1)η∗(k)}

the optimal input sequence at time k. Because the problem is feasible at each time sample,

a feasible input sequence a time k + 1, starting from x(k + 1) = x(k + 1|k), is

U(k + 1) = {L(1)η∗(k), . . . ,L(Np − 2)η∗(k), 0},



135

corresponding to the cost J(k + 1). By definition, one has that J∗(k + 1) ≤ J(k + 1) and

therefore

J∗(k + 1)− J∗(k) ≤ J(k + 1)− J∗(k). (A.10)

Because J(k+1) and J∗(k) share the same control and state sequences for the set of samples

k + 1, . . . , k +Np − 1, and x(k +Np|k) = 0, it can be verified that

J(k + 1)− J∗(k) = −x(k + 1)TQd x(k + 1)− u(k)TRd u(k). (A.11)

where the matrices Qd = TsQ
T
c Qc and Rd = TsR

T
c Rc are assumed positive definite. By

using (A.11) in (A.10), it follows that

J∗(k + 1)− J∗(k) < 0,

for x 6= 0, u 6= 0, which concludes the proof.
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Abstract of the thesis: 

Electric propulsion represents nowadays a solid established technology 

which can provide benefits over a large number of space missions and 

enable new challenging applications, as it allows for significant 

propellant mass savings and hence for reduced satellite launch costs. 

However, the application of this technology cannot rely on the impulsive 

control strategies established for the traditional chemical propulsion, 

calling for a re-design of the spacecraft control system. This thesis tackles 

the design problem by developing low-thrust attitude and orbit control 

techniques, tailored to station-keeping, formation flying and precision 

pointing of Earth orbiting spacecraft driven by electric propulsion. 

Numerical simulations of state-of-the-art dynamic models of the 

spacecraft demonstrate the effectiveness of the proposed techniques, 

within an autonomous guidance, navigation and control system. 
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