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Abstract— This paper tackles spacecraft optimal control Unfortunately, this approach leads to a nonconvex optimiza
problems in which the cost function is defined by a sum of tion problem.

vector norms, in order to optimize fuel consumption while . . L
achieving sparse actuation. An MPC strategy is devised for A fundamental issue in MPC design is how to guarantee

such type of problems, accounting for different spacecraft closed-loop stability. A simple method is to constrain the
maneuvering modes. Closed-loop stability is guaranteed by  terminal state to be exactly equal to zero [12]. Howeves thi
conic Lyapunov function, which is employed as a terminal syally sacrifices performance and raises feasibilityeissA

cost in the formulation. A systematic method to construct sah . : e .
function is presented. The proposed design is compared to a less conservative approach is to embed a stabilizing talmin

standard quadratic MPC scheme on a long-range rendez-vous Staté penalty in the MPC cost function [13]. Most of the
mission. stability results within this setting consider a quadratst.

In the LP formulation, stability is achieved by adopting a
. INTRODUCTION suitable polyhedral Lyapunov function as a terminal cost.

- Polyhedral Lyapunov functions provide a powerful and flex-
Model Predictive Control (MPC) has a tremendous pOter“ble tool for stability analysis [14], [15]. However, with

tial to shape_ the future of aerospace control systems. .Tt}ﬁe exception of few specific results (see, e.g., [16]), they
observation is supported by a number of factors |nclud|n%re difficult to compute. It is known, for instance, that

first and foremost, the ability to systematically handle-contheir complexity may grow indefinitely when the system
straints and to optimize relevant performance indexes, Sequenvalues approach the unit circle [17]

e.g., [1] and references therein. _ i
Spacecraft maneuvering problems are different from pro- | this paper, the sum-of-norms MPC problem is addressed

cess control problems for which MPC was originally Ccm_for spacecraft translational maneuvering. A sum of 2-norms

ceived, mainly because fuel consumption often represer{@: 2) MPC scheme is developed for apphcatlons featuring
the most important performance metric. Although this is afl'fust vector control. The proposed design guarantees ex-
obvious notion in astrodynamics, most often the spacecraﬁpr_‘em_'al stability by means Of a conic I__yapunov functl_on,
maneuvering objective is still cast in terms of a quadraigtc WNich is employed as a terminal cost in the formulation.
function in the aerospace control literature. The drawback® sy_stematlc method to cons_truct_ this function, from _the
of this approach are suboptimal propellant utilization angelution of a Lyapunov equation, is presented. A terminal
undesirable continuous thrusting. In order to weigh fueq:on_Str"’“”t set is included in the formula'uon_, thus avqudln
consumption, the cost function should instead be specifiélae ISsues related to the presence ofa termlngl equality con
as a sum of vectop-norms. Values ofy — 2 or p — 1 are straint. Such type pf copstrucnon can be gasny g.e.neldil]ze
of interest in aerospace applications [2]. When- 1 and to MPC prpblems in which the stage cost is specmed_ via a
the dynamics are linear, the optimal control problem cafum Of arbitrary-norms, such that > 1. The case = 1 is

be cast as a linear programming (LP) problem. L P-baséiiscussed for spacecraft equipped with prthogonal thrsiste
MPC has been studied extensively, see, e.g., [3], [4], [5]. |Contrary to LP-based MPC, the resulting control scheme

these papers, input sparsity has been reported as a prdmirf&es_ hot fequ"e the computation of a polyhedral Lyapunov
control feature. Indeed, it has been recently shown in [g], [ function. With respect to MPC schemes proposed in the
that, under certain assumptions on the system structuge, fierospace literature (e.g., [8], [18], [19]), the main rigve

optimization of a linear cost gives the sparsest admissibl the _a_doptlon of a sum-of-norms CO_St functmn coupled_to
control. a stability proof which does not require a terminal equality

Vector norm regularized MPC has been also investigatecdjnStramt' _
thoroughly in the literature, with the aim of promoting The MPC schemes obtained for= 2 andp = 1 are
control sparsity. In [8], [9], the standard quadratic cast idemonstrated on a simulation case study of a rendez-vous
augmented with a sum of 1-norms, so as to decrease tf@ssion. It is observed that both controllers achieve finite
number of active control input channels. A drawback ofime convergence, as well as control sparsity. Moreover, th
this method is the requirement to tune the regularizatioi@sulting fuel consumption is lower than that provided by a
parameter empirically. In order to overcome this isstie, Standard MPC scheme employing a quadratic cost.
constrained quadratic MPC has been proposed in [10], [11]. The paper is organized as follows. The main features of the
spacecraft maneuvering problem are described in Sectjon I
The authors are with the Dipartimento di Ingegneriagnd the proposed MPC design is presented in Section lIl.
dell'Informazione e Scienze Matematiche, Universita dend, Siena, : . . .
ltaly.  Email:  {leomanni,giannibi,garulli,giannitrapgr@dii.unisi.it, The ren_dez-vous case .StUdy IS discussed in Section 1V, and
renato.quartullo@gmail.com. conclusions are drawn in Section V.



Thrust vectoring

Il. PROBLEM SETTING

The focus of this paper is on spacecraft translational ma-
neuvering problems involving linear discrete-time dynesni
of the form

x(k+1) = Az(k) + Bu(k), (1)

wherez(k) € R™ and u(k) € R™. More specifically, the
statex(k) is a six-dimensional vectorn(= 6) describing the
relative motion between a spacecraft and another orbiting
body, and the dynamics (1) are obtained by linearizing the R
relative motion about the equilibrium configuratian= 0. Orthogonal thrusters
Several different parameterizations of the relative mmwotio
have been proposed in the literature, using, for instance,
relative orbital elements or relative position and velgcit

see [20]. In this paper, the orbital-element parameteaaat the maximum control magnitude, which allows the input
in [21] is adopFed. A key feature of such parametenz_atlon I8onstraints to be expressed as in points (A)-(B). Moreover,
that the resulting linearized model accurately describes the transiational dynamics (1) are decoupled from rotafion
relative motion of two bodies in a circular orbit, even for aNattitude) dynamics. This is a reasonable assumption in
arbitrarily large angular separation. o practice, because the attitude control authority has &jyic
_The control inputu = [up,ur,uny]” is @ three- 4 far higher bandwidth than the translational one [22].

dimensional vectorrt = 3) which represents the spacecraft The apove control specifications naturally lead to the
propulsion system thrust vector, expressed in a Radigtrmylation of a constrained optimal control problem, in
Transversal-Normal (RTN) coordinate frame centered at thgnich the cost function is defined by a sum of norms. Such
spacecraft. The R-axis lies along the radius vector joiningoniro| problem is solved according to the receding horizon

the spacecraft and central body. The T-axis is tangential {inciple to yield a stabilizing MPC law, as discussed next.
the orbit and aligned with the spacecraft velocity vectdre T

Fig. 1. Spacecraft control modes in the RTN frame.

N-axis is normal to the orbital plane and completes a right [1l. MPC DESIGN
handed triad, as shown in Fig. 1. More details about the The optimal control problem addressed in this work is as
system model are given in Section IV. follows

The maneuvering objective consists of steering system (1) N—1
to the equilibrium pointz = 0, while satisfying predefined min 1Qx(Nlp + llik()lp| + V(Ee(N))  (2)
control bounds. Since the amount of propellant carried by “ =
a spacecraft is severely constrained, fuel consumptiolneis t st @n(j + 1) = Adn(j) + Bin(j) 3)
primary performance metric. Moreover, it is often desired .
to keep the thruster usage at minimum, since thrusting 1(0) = z(k) )
can interfere with the functioning of onboard sensors. The (g <1 j=0...N—1 (5)
following control modes can be adopted, depending on the #(N)eS (6)

mission design [2]:

(A) Thrust vectoring maneuvering is achieved by firing
a single thruster and steering the thrust vector vi
attitude control. In this approachw(k)||» is the thruster
command while the azimuth and elevation angles of t
thrust vector (see Fig. 1) are reference commands fed
the attitude control system. Constraints on the maximu

<
(1tl.el[}/ﬁ;al?:]eiu;f:;l;s;ug?rloziu;xp[?[irsrs]siesd ;l?g;czlﬁonal tOis instrumental for s'FabiI_ity analysis. Matrig aIIows_one
to trade-off the relative influence of fuel consumption and

u(k 2. . . .
®) (XJ:rIEr!Lg(orZ!ll thrustersnaneuvering is achieved by usingstate regulation. The two different control modes outlined
in Section Il are recovered by setting either= 2, ¢ = 2

a set of six identical thrusters aligned to the RTN axe . .
9 thrust vectoring) op = 1, ¢ = oo (orthogonal thrusters) in

(two for each axis in opposite directions). In this settlng(z) and (5). The MPC strategy amounts to solving problem

the control bounds can be modeled |agk)||oc < 1. . X :
The fuel consumption of the propulsion system is pr0$2)—(6) at each discrete time stépand applying the control

portional to )", |lu(k)|:, i.e., to the sum of the fuel Input

consumption of each individual thruster (thrusters in

opposite directions are never fired in pairs). to system (1).
Notice that, in the considered framework, both the system The following result [13] is used to enforce closed-loop
state and the input variables are quantities normalized Isgability of the control system (1)-(7).

whereN is the prediction horizon| - ||, denotes the vector
-norm, @ is a full rank weighting matrix}/(-) is a positive
efinite function, andS is a terminal set. The control
equence to be optimized dg, = {4 (0),...,ur(N —1)}.
e cost function (2), besides the fuel consumption term
() lps cpntains a termzj 1Qzx ()l Weight_ing
the state transient and a terminal cdsfz,(N)) which

u(k) = ik (0) ()



Lemma 1: Let system (1) be stabilizable under state feed-  Proof: Equation (11) implies
back andK be a feedback gain, such that; = (A — BK) o o .
is Schur stable. Moreover, let the $tof initial conditions v (AyY YAg)z —2" Y Yo =—2 Cz.  (14)
x(0) for which problem (2)-(6) is feasible be nonempty.
Assume that the two conditions below are satisfied:

i) There existsV' (-) such that the Lyapunov inequali —2TCx
O Y yapunovneaualy v aall - ¥l = 1 T
V(Aqx) —V(z) < _HQpr - ”Kx”p (8) el ?

Equation (14), in turn, can be rewritten as

(15)

. - Taking into account (12), and using a standard upper bound
__ Is satisfied for allz € S. for the expression on the right hand side of (15), one gets
(i) S is a positively invariant set for system(k + 1) =

Aq z(k), and such thaff Kz||, < 1 forall z € S. Amin (C) ||2]|3

IWAazlls — [Wel2 < -«

Then, the equilibrium point = 0 of the closed-loop system (Y Acillz + [[Y]l2)[[2]]2
(1)-(7) is exponentially stable with domain of attractitn _ . Amin (C) ||
Clearly, V(-) is a Lyapunov function for the closed-loop 1Y Aalla + Y]

systemz(k + 1) = A x(k). Since the right hand side
of (8) is upper and lower bounded by linear functions Ogubstituting (13) into (16) gives
|z|,, Lemma 1 rules out the possibility of takirig(-) as a

quadratic form (in which casé/(A.x) — V (z) is sublinear W Aqz|l2 — [Wzllz < —(|Qll2 + || K|2)||z]l2, (A7)
nearz = 0). Instead)/ (-) can be defined in terms of a vector
norm. In this paper, the weighted 2-norm which, being ([ Q[l2 + [[Kl2)[lz]l2 > [Qz[l2 + [|Kz|2,
indicates that (10) is satisfied. [ |
Viz) = W2 ©) An alternative characterization, which is inspired by the

pfesults in [4], [16], can be given as follows.

is preferred to a polyhedral function (e.g., of the for .
Proposition 2: Let

[Wz||1 or |Wz|«) for ease of computation. Notice that,
for the choice (9) and the considered thrusting modes, (2)- QY ~1|s + | KY 1,

(6) is a convex optimization problem that can be cast as a o= 1— | H] (18)
second order cone program (SOCP). In the following, it is

shown how to satisfy the two conditions of Lemma 1 withinvhere H = Y A, Y. Then, W defined by (11)-(12) and

this setting. (18) satisfies (10).

. Proof: By definition YA, = HY. Then, by (12),
A. Thrust vectoring WA, = HW. Condition (10) can be rewritten as

In the thrust vectoring scenario, one has that 2 in
equation (8). Then, (8)-(9) result in [HWz|2 = [Wel2 + |QY Y2 + [[KYYa|s <0.
(19)
W Aqz|lz — [[Wallz < —[|Qzllz — || K2 (10)  An upper bound for the expression on the left hand side of

Let the matrix P be the positive definite solution to the (19) is given by
Lyapunov equation (= DI+ QY [+ K Y~ l2) [ Y. (20)

T —
AqPAa —P+C =0, (11) Substituting (12) into (20) gives

whereC' is a symmetric positive definite matrix. In this paper,

1 1
the terminal weigh#¥ in (10) is parameterized as follows (HHll2 = Da+ QY 2 + [KY ™ lo| Y[l (21)

W =ay, (12) The above expression is equal to zero wherns set as
) ) o in (18). BeingP = YTY a solution to (11), one has that
wherea > 0 is a scaling parameter, and is given by the | 7)1, < 1 (see [16]) and therefore > 0. Hence, it follows
Cholesky decomposition aP = YY" that (19) and, equivalently, (10) are satisfied. [
The following results characterize two possible choices of |1 is not difficult to verify that, for scalar control systems
the scaling parameter, guaranteeing that (10) is satisfied(n — m = 1), Propositions 1 and 2 give the same This

for all - € R™. does no longer hold for multivariable systems, as it will be
Proposition 1. Let shown in Section IV.
(1Qllz + 1K ||2)(|Y Aatll2 + ||V ||2) Now, consider point (ii) of Lemma 1. Being = 2, one
- Amin (C) (13)  hasto find a positively invariant sétin which || Kz|, < 1.

) ) To this aim, letZ7 Z be the positive definite solution to the
where|| -||; denotes the induced matrix 2-norm akgin(-)  Lyapunov equation

indicates the minimum eigenvalue of a matrix. Thé,
defined by (11)-(13) satisfies (10). ALZTZAy - ZTZ + D =0, (22)



where D is a symmetric positive definite matrix. TheS, IV. APPLICATION TO SPACE RENDEZVOUS
can be taken as the largest sublevel sef 8| in which

IKz|> < 1, ie. [23, Sec. 8.4.2] The proposed MPC design is demonstrated on a circular

rendez-vous mission, in which a spacecraft is required to
1 intercept another orbiting body. A discretized linear time
§= {x N Zz|2 < m} : (23)  invariant model, based on relative orbital elements, has be
? derived for this problem in [21] and is given by (1) with
Notice thatC' in (11) andD in (22) can be chosen indepen-

dently. In other words, the computation @f is decoupled (1) tf 8 8 8 8
from that of S. A= | 0 0 cos(t:) —sin(ts) 0 0
“ |1 0 0 sin(ts) cos(ts) 0 0
B. Orthogonal thrusters 0 0 0 0 cos(ls)  —sin(ts)
0 0 0 0 sin(ts)  cos(ts)
In the case of orthogonal thrusters, one has that1 in -
equation (8) of Lemma 1. Hence, (8)-(9) result in —(Q)ts —gfs 8
ts) —1 2sin(ts 0
IWAaalla = [Welz < —|Qulr — Kl 4)  B=| <5l 2ot i ,
imilarl h inal weiaht i ized 0 0 1 sin(t)
Similarly to (12), the terminal weight is parameterized as 0 0 1(1 = cos(ts))
W =pY, (25) wheret, is the sampling interval. The dimensional unit of

. . _ ts is radians per sample, wheter radians corresponds to
whereY is obtained from the solutio® = Y”Y" to (11). a full orbital period. A value oft, = x/32 is selected in

The following result characterizes a possible choice3of this study. Notice that all the eigenvalues dflie on the

guaranteeing that (10) is satisfied for alkc R™. unit circle. According to the setting in Section II, the tare
Proposition 3: Let columns of B model the influence of radial, tangential and
normal thrust inputs on the system dynamics.
B=Vra (26) The first component of the state vecterc RS in (1)

describes the relative phase angle between the two orbiting
bodies, and is proportional to the along-track separafibe.
second component indicates the relative angular velocity,
which corresponds to the radial separation. The third and
the fourth components are defined in terms of the relative
eccentricity vector, which is close to zero for circularitsb
The last two components are proportional to the inclina-
tion vector and hence to the cross-track separation. Such

JAIQzll2 + | Kzl2) > |Qell + | Kz|,, (28) Parameterization allows one to effectively deal with large
along-track separations. All state variables are norredliz

where~y = max(n, m) and « is specified by Proposition 1
or 2. Then,IW defined by (25)-(26) satisfies (24).
Proof: According to Propositions 1 and 2, one has
laY Aaz|ls — oY 22 < —[Qzl2 — [Kzl2,  (27)

By using norm inequalities

and therefore by a maximum control acceleration &f- 10~* m/s. The
(normalized) initial condition for the maneuver is given by
VraY Aazlls — [[y/raYe|z < (29) x(0) = [157,0,0,0,1,0]”, which corresponds to an along-

—A1Qz2 + | Kx|l2) < —||Qx|1 — || Kzl|1, 29 track separation o110 km and a cross-track separation of
1.4 km. These are consistent with long-range rendez-vous
which, being,/7aY = W, concludes the proof. B applications.
Concerning point (ii) of Lemma 1 witly = oo, one has  The auxiliary feedback gaifk in Lemma 1 is chosen as
to guarantee thafKz|/.. < 1 within a positively invariant the LQR state feedback matrix = (BYWB+1)"'BTV A,
terminal setS. To this aim, S can be selected as [23, whereW is the solution to the discrete-time ARE

Sec. 8.4.2] o . . - .
U=A"VA-A"YB(I+B'¥B) "B 'VA+Q" Q. (31)

1 , (30) Notice that¥ also solves the Lyapunov equatiaf, VA, —
m‘}XH(KZ_l)iH? U+ QTQ + KTK = 0. The terminal setS is chosen as
in (22)-(23) withD = QTQ + K™ K, which corresponds to
where(-); denotes thé—th row of a matrix andZ is given S being a sublevel set of” Uz, This leaves the control
by (22). horizon N, as well as@ in (2) and C in (11) as the
The results presented in this section can be extended degrees of freedom available for control tuning. The choice
MPC problems including state constraints by definkh@s of N is a compromise between computational complexity
the largest sublevel set dfZx|2 in which both state and and optimality, while the state weighting matr@} allows
input constraints are met. one to trade off fuel consumption with tracking performance

S=cx:||Zz|2 <
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Fig. 2. 2-norm of the system state trajectories. Fig. 3. 2-norm of the control input signals (thrust vectgrimode).
1-MPC
The tuning of the matrixC, which determines the sta- 1F ' ' ' C
bilizing terminal weightWW via Propositions 1-3, is more =

involved. Ideally, W should be made as small as possible
(in norm) so as to favour fuel efficiency. To this aim, one : : : :
can take the smaller of the two scalings provided by 0 100 200 300 400
Propositions 1 and 2. Neverthele$®, depends orC in a - - - -
T . . 1 1
complex and nonintuitive manner. In particular, it shoued b —‘
noticed from (12)-(13) and (18) that scalirg by a scalar =
positive factor does not affedd’. Hence, only a change
in the structure ofC may lead to a different result. To 0 100 200 300 400
better illustrate this poinfi}” is computed according to both

Propositions 1 and 2, by setting 1F ' ' ' ' ]
Q =102 diag([1,1,1,1,2,2]) (32) " p HHJ |

and using two different choices for th€ matrix: ' = I 0 100 200 300 400
andC = QTQ + KT K. The obtained results are displayed k
in Table I. It can be seen that constructing the terminal cost
from the solution to the ARE (31) does not necessarily resuff'®
in a smallerlV (see the third column of Table I). Moreover,
either of the two propositions may provide a smalter
depending on the choice 6f. In what follows, it is assumed
that C = I and thata is specified via Proposition 1. A ! IV PPN PP o A
systematic method for exploiting the degrees of freedomz {xk (NQ" Qix(j) + Uy (J)“km} + &y, (N) g (N)
provided byC for performance optimization is the subject 7=°
of current investigation. and considering both cases= 2 andg = ~o in the input

The rendez-vous maneuver is simulated numerically faronstraints (5). The weighting matri@ is set as in (32) for
k = 450 samples. The two MPC schemes detailed in Secticall controllers. In order to find a suitable horizon length
lll, hereafter denoted by 2-MPC (thrust vectoring modejhe fuel consumption of the control system over the entire
and 1-MPC (orthogonal thrusters mode), are compared simulation has been computed for different values of this
a standard MPC scheme based on a quadratic cost functipayameter. It is observed that fuel consumption decreases
referred to as Q-MPC. The Q-MPC scheme is obtained byith increasing values oWV until N = 180, while it remains
stationary for larger values oN. Based on this result, a
value of N = 192 has been selected, corresponding to three
orbital periods. Such a long horizon does not pose particula

1
L o
—

UN
o

. 4. Control inputs provided by 1-MPC (orthogonal therstmode).

replacing (2) with the quadratic cost function

TABLE |
TERMINAL WEIGHT MAGNITUDE

Type cC=1 C=QTQ+KTK computational challenges, because the considered dysamic
Prop. I| W12 =157.1 | W]z = 1190 are relatively slow (the sampling time is in the order of
Prop. 2| W]z =249.3 | [W]l2 = 692.8 minutes). Indeed, the MPC optimization problems, solved




TABLE Il
FUEL CONSUMPTION

Control mode 2-MPC | Q-MPC (g =2)
Thrust vectoring 87.2 93.1

Control mode 1-MPC | Q-MPC (g = o0)
Orthogonal thrustery 105.3 114

(2]
(31

(4

5

using the package CVX [24] and the commercial solver
Gurobi, require a computation time of approximately 0.5 s on
a 2.6 Ghz CPU. The 2-norm of the state trajectories resulting[fs]
from the simulation is depicted in Fig. 2. It can be seen
that both the 2-MPC and 1-MPC schemes, whose transiert!
response is very similar, achieve finite time convergence.
This is a feature which is often observed for MPC laws
based on a nonsmooth performance index. On the othd#l
hand, the Q-MPC scheme achieves only asymptotic tracking.
Moreover, it presents some slowly damped oscillations eiboygj

the set-point. These can be attributed to the fact that
guadratic cost flattens out near the origin.

the
[10]

The 2-norm of the Q-MPC and 2-MPC input signals are
displayed in Fig. 3, for the thrust vectoring scenario. As op

posed to Q-MPC, the 2-MPC design results in a sparse cop;

trol input 2-norm, which represents the actual thrust irs thi
scenario. As shown in Fig. 4, the 1-MPC scheme achieves

sparsity on each individual input channel, which represent, ,,

the actual thrust of each engine in the case of orthogonal

thrusters. The fuel consumption (measureddas ||u(k)||2

or >, |lu(k)||1, depending on the control mode) is compare

in Table Il. As expected, the 2-MPC and 1-MPC schemes
deliver the highest fuel efficiency when measured by the
2-norm and the 1-norm, respectively. Remarkably, this g4l
achieved in spite of a faster transient response compargé

to that of Q-MPC, see Fig. 2. The obtained results clea
demonstrate the suitability of 2-MPC and 1-MPC techniqu

i

for spacecraft maneuvering applications. Since the riegult
input signal profile is almost on-off, the proposed desight7]
may also be exploited for the synthesis of efficient pulse-

width-modulation controllers, using, for instance, thetimogl

(18]

in [25]. This is relevant to the considered problem because

many spacecraft engines cannot be throttled.

V. CONCLUSIONS

[19]

Two vector norm based predictive control schemes have
been derived for spacecraft translational maneuvering. Tr[120]
proposed design allows one to trade off the fuel consumption

of the propulsion system with tracking performance,

in

two different spacecraft maneuvering modes. The resultir}gl]
closed-loop system response shows both finite time conver-
gence and control sparsity, which are two desirable prazert

in this class of applications. A more thorough theoretica[b]
characterization of these properties is the subject of imggo
research. The optimization of the control design parareeter

is also under investigation.
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