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Abstract— This paper tackles spacecraft optimal control
problems in which the cost function is defined by a sum of
vector norms, in order to optimize fuel consumption while
achieving sparse actuation. An MPC strategy is devised for
such type of problems, accounting for different spacecraft
maneuvering modes. Closed-loop stability is guaranteed bya
conic Lyapunov function, which is employed as a terminal
cost in the formulation. A systematic method to construct such
function is presented. The proposed design is compared to a
standard quadratic MPC scheme on a long-range rendez-vous
mission.

I. I NTRODUCTION

Model Predictive Control (MPC) has a tremendous poten-
tial to shape the future of aerospace control systems. This
observation is supported by a number of factors including,
first and foremost, the ability to systematically handle con-
straints and to optimize relevant performance indexes, see,
e.g., [1] and references therein.

Spacecraft maneuvering problems are different from pro-
cess control problems for which MPC was originally con-
ceived, mainly because fuel consumption often represents
the most important performance metric. Although this is an
obvious notion in astrodynamics, most often the spacecraft
maneuvering objective is still cast in terms of a quadratic cost
function in the aerospace control literature. The drawbacks
of this approach are suboptimal propellant utilization and
undesirable continuous thrusting. In order to weigh fuel
consumption, the cost function should instead be specified
as a sum of vectorp-norms. Values ofp = 2 or p = 1 are
of interest in aerospace applications [2]. Whenp = 1 and
the dynamics are linear, the optimal control problem can
be cast as a linear programming (LP) problem. LP-based
MPC has been studied extensively, see, e.g., [3], [4], [5]. In
these papers, input sparsity has been reported as a prominent
control feature. Indeed, it has been recently shown in [6], [7]
that, under certain assumptions on the system structure, the
optimization of a linear cost gives the sparsest admissible
control.

Vector norm regularized MPC has been also investigated
thoroughly in the literature, with the aim of promoting
control sparsity. In [8], [9], the standard quadratic cost is
augmented with a sum of 1-norms, so as to decrease the
number of active control input channels. A drawback of
this method is the requirement to tune the regularization
parameter empirically. In order to overcome this issue,ℓ0-
constrained quadratic MPC has been proposed in [10], [11].
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Unfortunately, this approach leads to a nonconvex optimiza-
tion problem.

A fundamental issue in MPC design is how to guarantee
closed-loop stability. A simple method is to constrain the
terminal state to be exactly equal to zero [12]. However, this
usually sacrifices performance and raises feasibility issues. A
less conservative approach is to embed a stabilizing terminal
state penalty in the MPC cost function [13]. Most of the
stability results within this setting consider a quadraticcost.
In the LP formulation, stability is achieved by adopting a
suitable polyhedral Lyapunov function as a terminal cost.
Polyhedral Lyapunov functions provide a powerful and flex-
ible tool for stability analysis [14], [15]. However, with
the exception of few specific results (see, e.g., [16]), they
are difficult to compute. It is known, for instance, that
their complexity may grow indefinitely when the system
eigenvalues approach the unit circle [17].

In this paper, the sum-of-norms MPC problem is addressed
for spacecraft translational maneuvering. A sum of 2-norms
(p = 2) MPC scheme is developed for applications featuring
thrust vector control. The proposed design guarantees ex-
ponential stability by means of a conic Lyapunov function,
which is employed as a terminal cost in the formulation.
A systematic method to construct this function, from the
solution of a Lyapunov equation, is presented. A terminal
constraint set is included in the formulation, thus avoiding
the issues related to the presence of a terminal equality con-
straint. Such type of construction can be easily generalized
to MPC problems in which the stage cost is specified via a
sum of arbitraryp-norms, such thatp ≥ 1. The casep = 1 is
discussed for spacecraft equipped with orthogonal thrusters.
Contrary to LP-based MPC, the resulting control scheme
does not require the computation of a polyhedral Lyapunov
function. With respect to MPC schemes proposed in the
aerospace literature (e.g., [8], [18], [19]), the main novelty
is the adoption of a sum-of-norms cost function coupled to
a stability proof which does not require a terminal equality
constraint.

The MPC schemes obtained forp = 2 and p = 1 are
demonstrated on a simulation case study of a rendez-vous
mission. It is observed that both controllers achieve finite
time convergence, as well as control sparsity. Moreover, the
resulting fuel consumption is lower than that provided by a
standard MPC scheme employing a quadratic cost.

The paper is organized as follows. The main features of the
spacecraft maneuvering problem are described in Section II,
and the proposed MPC design is presented in Section III.
The rendez-vous case study is discussed in Section IV, and
conclusions are drawn in Section V.



II. PROBLEM SETTING

The focus of this paper is on spacecraft translational ma-
neuvering problems involving linear discrete-time dynamics
of the form

x(k + 1) = Ax(k) +B u(k), (1)

wherex(k) ∈ R
n and u(k) ∈ R

m. More specifically, the
statex(k) is a six-dimensional vector (n = 6) describing the
relative motion between a spacecraft and another orbiting
body, and the dynamics (1) are obtained by linearizing the
relative motion about the equilibrium configurationx = 0.
Several different parameterizations of the relative motion
have been proposed in the literature, using, for instance,
relative orbital elements or relative position and velocity,
see [20]. In this paper, the orbital-element parameterization
in [21] is adopted. A key feature of such parameterization is
that the resulting linearized model accurately describes the
relative motion of two bodies in a circular orbit, even for an
arbitrarily large angular separation.

The control input u = [uR, uT , uN ]T is a three-
dimensional vector (m = 3) which represents the spacecraft
propulsion system thrust vector, expressed in a Radial-
Transversal-Normal (RTN) coordinate frame centered at the
spacecraft. The R-axis lies along the radius vector joining
the spacecraft and central body. The T-axis is tangential to
the orbit and aligned with the spacecraft velocity vector. The
N-axis is normal to the orbital plane and completes a right
handed triad, as shown in Fig. 1. More details about the
system model are given in Section IV.

The maneuvering objective consists of steering system (1)
to the equilibrium pointx = 0, while satisfying predefined
control bounds. Since the amount of propellant carried by
a spacecraft is severely constrained, fuel consumption is the
primary performance metric. Moreover, it is often desired
to keep the thruster usage at minimum, since thrusting
can interfere with the functioning of onboard sensors. The
following control modes can be adopted, depending on the
mission design [2]:
(A) Thrust vectoring: maneuvering is achieved by firing

a single thruster and steering the thrust vector via
attitude control. In this approach,‖u(k)‖2 is the thruster
command while the azimuth and elevation angles of the
thrust vector (see Fig. 1) are reference commands fed to
the attitude control system. Constraints on the maximum
deliverable thrust can be expressed as‖u(k)‖2 ≤
1. The thruster fuel consumption is proportional to
∑

k ‖u(k)‖2.
(B) Orthogonal thrusters: maneuvering is achieved by using

a set of six identical thrusters aligned to the RTN axes
(two for each axis in opposite directions). In this setting,
the control bounds can be modeled as‖u(k)‖∞ ≤ 1.
The fuel consumption of the propulsion system is pro-
portional to

∑

k ‖u(k)‖1, i.e., to the sum of the fuel
consumption of each individual thruster (thrusters in
opposite directions are never fired in pairs).

Notice that, in the considered framework, both the system
state and the input variables are quantities normalized by
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Fig. 1. Spacecraft control modes in the RTN frame.

the maximum control magnitude, which allows the input
constraints to be expressed as in points (A)-(B). Moreover,
the translational dynamics (1) are decoupled from rotational
(attitude) dynamics. This is a reasonable assumption in
practice, because the attitude control authority has typically
a far higher bandwidth than the translational one [22].

The above control specifications naturally lead to the
formulation of a constrained optimal control problem, in
which the cost function is defined by a sum of norms. Such
control problem is solved according to the receding horizon
principle to yield a stabilizing MPC law, as discussed next.

III. MPC DESIGN

The optimal control problem addressed in this work is as
follows

min
ûk

N−1
∑

j=0

[

‖Qx̂k(j)‖p + ‖ûk(j)‖p
]

+ V (x̂k(N)) (2)

s.t. x̂k(j + 1) = Ax̂k(j) +Bûk(j) (3)

x̂k(0) = x(k) (4)

‖ûk(j)‖q ≤ 1 j = 0 . . .N − 1 (5)

x̂k(N) ∈ S (6)

whereN is the prediction horizon,‖ · ‖p denotes the vector
p-norm,Q is a full rank weighting matrix,V (·) is a positive
definite function, andS is a terminal set. The control
sequence to be optimized iŝuk = {ûk(0), . . . , ûk(N − 1)}.
The cost function (2), besides the fuel consumption term
∑

j ‖ûk(j)‖p, contains a term
∑

j ‖Qx̂k(j)‖p weighting
the state transient and a terminal costV (x̂k(N)) which
is instrumental for stability analysis. MatrixQ allows one
to trade-off the relative influence of fuel consumption and
state regulation. The two different control modes outlined
in Section II are recovered by setting eitherp = 2, q = 2
(thrust vectoring) orp = 1, q = ∞ (orthogonal thrusters) in
(2) and (5). The MPC strategy amounts to solving problem
(2)-(6) at each discrete time stepk and applying the control
input

u(k) = ûk(0) (7)

to system (1).
The following result [13] is used to enforce closed-loop

stability of the control system (1)-(7).



Lemma 1: Let system (1) be stabilizable under state feed-
back andK be a feedback gain, such thatAcl = (A−BK)
is Schur stable. Moreover, let the setD of initial conditions
x(0) for which problem (2)-(6) is feasible be nonempty.
Assume that the two conditions below are satisfied:

(i) There existsV (·) such that the Lyapunov inequality

V (Aclx) − V (x) ≤ −‖Qx‖p − ‖Kx‖p (8)

is satisfied for allx ∈ S.
(ii) S is a positively invariant set for systemx(k + 1) =

Acl x(k), and such that‖Kx‖q ≤ 1 for all x ∈ S.

Then, the equilibrium pointx = 0 of the closed-loop system
(1)-(7) is exponentially stable with domain of attractionD.

Clearly, V (·) is a Lyapunov function for the closed-loop
systemx(k + 1) = Acl x(k). Since the right hand side
of (8) is upper and lower bounded by linear functions of
‖x‖p, Lemma 1 rules out the possibility of takingV (·) as a
quadratic form (in which case,V (Aclx)−V (x) is sublinear
nearx = 0). Instead,V (·) can be defined in terms of a vector
norm. In this paper, the weighted 2-norm

V (x) = ‖Wx‖2 (9)

is preferred to a polyhedral function (e.g., of the form
‖Wx‖1 or ‖Wx‖∞) for ease of computation. Notice that,
for the choice (9) and the considered thrusting modes, (2)-
(6) is a convex optimization problem that can be cast as a
second order cone program (SOCP). In the following, it is
shown how to satisfy the two conditions of Lemma 1 within
this setting.

A. Thrust vectoring

In the thrust vectoring scenario, one has thatp = 2 in
equation (8). Then, (8)-(9) result in

‖WAclx‖2 − ‖Wx‖2 ≤ −‖Qx‖2 − ‖Kx‖2. (10)

Let the matrixP be the positive definite solution to the
Lyapunov equation

AT
clPAcl − P + C = 0, (11)

whereC is a symmetric positive definite matrix. In this paper,
the terminal weightW in (10) is parameterized as follows

W = αY, (12)

whereα > 0 is a scaling parameter, andY is given by the
Cholesky decomposition ofP = Y TY .

The following results characterize two possible choices of
the scaling parameterα, guaranteeing that (10) is satisfied
for all x ∈ R

n.
Proposition 1: Let

α =
(‖Q‖2 + ‖K‖2)(‖Y Acl‖2 + ‖Y ‖2)

λmin(C)
(13)

where‖ · ‖2 denotes the induced matrix 2-norm andλmin(·)
indicates the minimum eigenvalue of a matrix. Then,W
defined by (11)-(13) satisfies (10).

Proof: Equation (11) implies

xT (AT
clY

TY Acl)x− xTY TY x = −xTCx. (14)

Equation (14), in turn, can be rewritten as

‖Y Aclx‖2 − ‖Y x‖2 =
−xTCx

‖Y Aclx‖2 + ‖Y x‖2
. (15)

Taking into account (12), and using a standard upper bound
for the expression on the right hand side of (15), one gets

‖WAclx‖2 − ‖Wx‖2 ≤− α
λmin (C) ‖x‖22

(‖Y Acl‖2 + ‖Y ‖2)‖x‖2
= −α

λmin (C)

‖Y Acl‖2 + ‖Y ‖2
‖x‖2.

(16)

Substituting (13) into (16) gives

‖WAclx‖2 − ‖Wx‖2 ≤ −(‖Q‖2 + ‖K‖2)‖x‖2, (17)

which, being (‖Q‖2 + ‖K‖2)‖x‖2 ≥ ‖Qx‖2 + ‖Kx‖2,
indicates that (10) is satisfied.

An alternative characterization, which is inspired by the
results in [4], [16], can be given as follows.

Proposition 2: Let

α =
‖QY −1‖2 + ‖KY −1‖2

1− ‖H‖2
(18)

whereH = Y AclY
−1. Then,W defined by (11)-(12) and

(18) satisfies (10).
Proof: By definition Y Acl = HY . Then, by (12),

WAcl = HW . Condition (10) can be rewritten as

‖HWx‖2 − ‖Wx‖2 + ‖QY −1Y x‖2 + ‖KY −1Y x‖2 ≤ 0.
(19)

An upper bound for the expression on the left hand side of
(19) is given by

(‖H‖2−1)‖Wx‖2+(‖QY −1‖2+‖KY −1‖2)‖Y x‖2. (20)

Substituting (12) into (20) gives
[

(‖H‖2 − 1)α+ ‖QY −1‖2 + ‖KY −1‖2
]

‖Y x‖2. (21)

The above expression is equal to zero whenα is set as
in (18). BeingP = Y TY a solution to (11), one has that
‖H‖2 < 1 (see [16]) and thereforeα > 0. Hence, it follows
that (19) and, equivalently, (10) are satisfied.

It is not difficult to verify that, for scalar control systems
(n = m = 1), Propositions 1 and 2 give the sameα. This
does no longer hold for multivariable systems, as it will be
shown in Section IV.

Now, consider point (ii) of Lemma 1. Beingq = 2, one
has to find a positively invariant setS in which ‖Kx‖2 ≤ 1.
To this aim, letZTZ be the positive definite solution to the
Lyapunov equation

AT
clZ

TZAcl − ZTZ +D = 0, (22)



whereD is a symmetric positive definite matrix. Then,S
can be taken as the largest sublevel set of‖Zx‖2 in which
‖Kx‖2 ≤ 1, i.e. [23, Sec. 8.4.2]

S =

{

x : ‖Zx‖2 ≤
1

‖KZ−1‖2

}

. (23)

Notice thatC in (11) andD in (22) can be chosen indepen-
dently. In other words, the computation ofW is decoupled
from that ofS.

B. Orthogonal thrusters

In the case of orthogonal thrusters, one has thatp = 1 in
equation (8) of Lemma 1. Hence, (8)-(9) result in

‖WAclx‖2 − ‖Wx‖2 ≤ −‖Qx‖1 − ‖Kx‖1. (24)

Similarly to (12), the terminal weight is parameterized as

W = β Y, (25)

whereY is obtained from the solutionP = Y TY to (11).
The following result characterizes a possible choice ofβ,
guaranteeing that (10) is satisfied for allx ∈ R

n.
Proposition 3: Let

β =
√
γ α (26)

whereγ = max(n,m) andα is specified by Proposition 1
or 2. Then,W defined by (25)-(26) satisfies (24).

Proof: According to Propositions 1 and 2, one has

‖αY Aclx‖2 − ‖αY x‖2 ≤ −‖Qx‖2 − ‖Kx‖2, (27)

By using norm inequalities

√
γ(‖Qx‖2 + ‖Kx‖2) ≥ ‖Qx‖1 + ‖Kx‖1, (28)

and therefore

‖√γαY Aclx‖2 − ‖√γαY x‖2 ≤
−√

γ(‖Qx‖2 + ‖Kx‖2) ≤ −‖Qx‖1 − ‖Kx‖1,
(29)

which, being
√
γαY = W , concludes the proof.

Concerning point (ii) of Lemma 1 withq = ∞, one has
to guarantee that‖Kx‖∞ ≤ 1 within a positively invariant
terminal setS. To this aim, S can be selected as [23,
Sec. 8.4.2]

S =







x : ‖Zx‖2 ≤ 1

max
i

‖(KZ−1)i‖2







, (30)

where(·)i denotes thei−th row of a matrix andZ is given
by (22).

The results presented in this section can be extended to
MPC problems including state constraints by definingS as
the largest sublevel set of‖Zx‖2 in which both state and
input constraints are met.

IV. A PPLICATION TO SPACE RENDEZ-VOUS

The proposed MPC design is demonstrated on a circular
rendez-vous mission, in which a spacecraft is required to
intercept another orbiting body. A discretized linear time-
invariant model, based on relative orbital elements, has been
derived for this problem in [21] and is given by (1) with

A =















1 ts 0 0 0 0
0 1 0 0 0 0
0 0 cos(ts) − sin(ts) 0 0
0 0 sin(ts) cos(ts) 0 0
0 0 0 0 cos(ts) − sin(ts)
0 0 0 0 sin(ts) cos(ts)















B =















−2ts −

3

2
t2s 0

0 −3ts 0
cos(ts)− 1 2 sin(ts) 0
sin(ts) 2(1− cos(ts)) 0

0 0 1

2
sin(ts)

0 0 1

2
(1− cos(ts))















,

where ts is the sampling interval. The dimensional unit of
ts is radians per sample, where2π radians corresponds to
a full orbital period. A value ofts = π/32 is selected in
this study. Notice that all the eigenvalues ofA lie on the
unit circle. According to the setting in Section II, the three
columns ofB model the influence of radial, tangential and
normal thrust inputs on the system dynamics.

The first component of the state vectorx ∈ R
6 in (1)

describes the relative phase angle between the two orbiting
bodies, and is proportional to the along-track separation.The
second component indicates the relative angular velocity,
which corresponds to the radial separation. The third and
the fourth components are defined in terms of the relative
eccentricity vector, which is close to zero for circular orbits.
The last two components are proportional to the inclina-
tion vector and hence to the cross-track separation. Such
parameterization allows one to effectively deal with large
along-track separations. All state variables are normalized
by a maximum control acceleration of8 · 10−4 m/s2. The
(normalized) initial condition for the maneuver is given by
x(0) = [157, 0, 0, 0, 1, 0]T , which corresponds to an along-
track separation of110 km and a cross-track separation of
1.4 km. These are consistent with long-range rendez-vous
applications.

The auxiliary feedback gainK in Lemma 1 is chosen as
the LQR state feedback matrixK = (BTΨB+I)−1BTΨA,
whereΨ is the solution to the discrete-time ARE

Ψ = ATΨA−ATΨB(I+BTΨB)−1BTΨA+QTQ. (31)

Notice thatΨ also solves the Lyapunov equationAT
clΨAcl−

Ψ + QTQ + KTK = 0. The terminal setS is chosen as
in (22)-(23) withD = QTQ+KTK, which corresponds to
S being a sublevel set ofxTΨx. This leaves the control
horizon N , as well asQ in (2) and C in (11) as the
degrees of freedom available for control tuning. The choice
of N is a compromise between computational complexity
and optimality, while the state weighting matrixQ allows
one to trade off fuel consumption with tracking performance.
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The tuning of the matrixC, which determines the sta-
bilizing terminal weightW via Propositions 1-3, is more
involved. Ideally,W should be made as small as possible
(in norm) so as to favour fuel efficiency. To this aim, one
can take the smaller of the two scalingsα provided by
Propositions 1 and 2. Nevertheless,W depends onC in a
complex and nonintuitive manner. In particular, it should be
noticed from (12)-(13) and (18) that scalingC by a scalar
positive factor does not affectW . Hence, only a change
in the structure ofC may lead to a different result. To
better illustrate this point,W is computed according to both
Propositions 1 and 2, by setting

Q = 10−2 · diag([1, 1, 1, 1, 2, 2]) (32)

and using two different choices for theC matrix: C = I
andC = QTQ +KTK. The obtained results are displayed
in Table I. It can be seen that constructing the terminal cost
from the solution to the ARE (31) does not necessarily result
in a smallerW (see the third column of Table I). Moreover,
either of the two propositions may provide a smallerα,
depending on the choice ofC. In what follows, it is assumed
that C = I and thatα is specified via Proposition 1. A
systematic method for exploiting the degrees of freedom
provided byC for performance optimization is the subject
of current investigation.

The rendez-vous maneuver is simulated numerically for
k = 450 samples. The two MPC schemes detailed in Section
III, hereafter denoted by 2-MPC (thrust vectoring mode)
and 1-MPC (orthogonal thrusters mode), are compared to
a standard MPC scheme based on a quadratic cost function,
referred to as Q-MPC. The Q-MPC scheme is obtained by

TABLE I

TERMINAL WEIGHT MAGNITUDE

Type C = I C = QTQ+KTK

Prop. 1 ‖W‖2 = 157.1 ‖W‖2 = 1190

Prop. 2 ‖W‖2 = 249.3 ‖W‖2 = 692.8
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Fig. 3. 2-norm of the control input signals (thrust vectoring mode).
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replacing (2) with the quadratic cost function

N−1
∑

j=0

[

x̂T
k (j)Q

TQx̂k(j) + ûT
k (j)ûk(j)

]

+ x̂T
k (N)Ψx̂k(N)

and considering both casesq = 2 and q = ∞ in the input
constraints (5). The weighting matrixQ is set as in (32) for
all controllers. In order to find a suitable horizon lengthN ,
the fuel consumption of the control system over the entire
simulation has been computed for different values of this
parameter. It is observed that fuel consumption decreases
with increasing values ofN until N = 180, while it remains
stationary for larger values ofN . Based on this result, a
value ofN = 192 has been selected, corresponding to three
orbital periods. Such a long horizon does not pose particular
computational challenges, because the considered dynamics
are relatively slow (the sampling time is in the order of
minutes). Indeed, the MPC optimization problems, solved



TABLE II

FUEL CONSUMPTION

Control mode 2-MPC Q-MPC (q = 2)
Thrust vectoring 87.2 93.1

Control mode 1-MPC Q-MPC (q = ∞)
Orthogonal thrusters 105.3 114

using the package CVX [24] and the commercial solver
Gurobi, require a computation time of approximately 0.5 s on
a 2.6 Ghz CPU. The 2-norm of the state trajectories resulting
from the simulation is depicted in Fig. 2. It can be seen
that both the 2-MPC and 1-MPC schemes, whose transient
response is very similar, achieve finite time convergence.
This is a feature which is often observed for MPC laws
based on a nonsmooth performance index. On the other
hand, the Q-MPC scheme achieves only asymptotic tracking.
Moreover, it presents some slowly damped oscillations about
the set-point. These can be attributed to the fact that the
quadratic cost flattens out near the origin.

The 2-norm of the Q-MPC and 2-MPC input signals are
displayed in Fig. 3, for the thrust vectoring scenario. As op-
posed to Q-MPC, the 2-MPC design results in a sparse con-
trol input 2-norm, which represents the actual thrust in this
scenario. As shown in Fig. 4, the 1-MPC scheme achieves
sparsity on each individual input channel, which represents
the actual thrust of each engine in the case of orthogonal
thrusters. The fuel consumption (measured as

∑

k ‖u(k)‖2
or

∑

k ‖u(k)‖1, depending on the control mode) is compared
in Table II. As expected, the 2-MPC and 1-MPC schemes
deliver the highest fuel efficiency when measured by the
2-norm and the 1-norm, respectively. Remarkably, this is
achieved in spite of a faster transient response compared
to that of Q-MPC, see Fig. 2. The obtained results clearly
demonstrate the suitability of 2-MPC and 1-MPC techniques
for spacecraft maneuvering applications. Since the resulting
input signal profile is almost on-off, the proposed design
may also be exploited for the synthesis of efficient pulse-
width-modulation controllers, using, for instance, the method
in [25]. This is relevant to the considered problem because
many spacecraft engines cannot be throttled.

V. CONCLUSIONS

Two vector norm based predictive control schemes have
been derived for spacecraft translational maneuvering. The
proposed design allows one to trade off the fuel consumption
of the propulsion system with tracking performance, in
two different spacecraft maneuvering modes. The resulting
closed-loop system response shows both finite time conver-
gence and control sparsity, which are two desirable properties
in this class of applications. A more thorough theoretical
characterization of these properties is the subject of ongoing
research. The optimization of the control design parameters
is also under investigation.

REFERENCES
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