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Despite the interest in formation flying and cubesats over something like the last decade
or so, close controlled formation flying of two cubesat size spacecraft has not been achieved.
Similarly, despite the growing interest in propulsion systems for cubesats, there are very few
commercially available and flight ready systems. If these are coupled with the realization
that formation flying could be an enabling technology for cubesats [1] enhancing capabilities
and opening up possibilities for new types of missions, it seemed timely to revisit the
problem of rendezvous and docking for cubesats to examine what might be possible with
a pulsed propulsion system based on a pulsed plasma thruster(PPT) that is close to flight
qualification [2].

The approach taken was to build on previous work [3,4] which developed a universal
adaptive control system for formation flying by adding contraints on the actuators in terms
of their pulsed nature and also actual performance characteristics. The formalism and
theory to solve this problem has been achieved but due to numerical problems in solving
the equations, there are no results as yet. However, another simpler approach has been
applied and some preliminary results are presented.

I. Introduction

Future applications of cubesats, such as drag make-up, de-orbit, plane changes, formation flying and
rendezvous and docking, will require a propulsion subsystem [1]. Because of the severe volume, power and
mass requirements imposed on even a 3U configuration, the performance and lifetime of the propulsion
subsystem are challenging. Several possible options exist, including cold gas, micro-resistojet, micro-colloid,
VATs and pulsed plasma thrusters (PPTs). But in terms of flight readiness, few systems are currently
available.

The paper addresses the suitability of a miniaturized PPT, called PPTCUP [2], which is very close to
being flight qualified, having recently completed 1 million shots in a life testing campaign. Using a set of
typical requirements for orbit control for a cubesat mission that would involve both formation flying the
ability of a cluster of these thrusters is investigated from a control perspective ie can the thrusters meet all
the control requirements given the constraints not only on controllability but mass, volume, power, number
of thrusters and their location.

The control systems used in small spacecraft lead to a possible conflict between the control signals required
by the model to achieve the performance objectives and the safe operating ranges of the actuators. In such
cases, a constrained control design is required. Both input and output constraints. One option is to use
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model predictive control, based on computing the optimal controls over a finite number of future sampling
instances under a receding horizon strategy.

Modeling the future control trajectory is a critical task. The traditional approach is to embed an inte-
grator in the design and the incremental control trajectory is then directly computed within an optimization
window. The main drawback is the requirement to optimize a large number of parameters if fast sampling
is required and/or the system has a relatively complex dynamic response.

Fast sampling is typically required for mechanical and electro-mechanical systems because the time
constants arising in the various sub-components can vary in duration and a smaller sampling interval is
required to capture the effects of the smaller of these. One approach [3] to reduce the number of parameters
requiring optimization on-line is to parameterize the future trajectory of the filtered control signal using a
set of Laguerre functions, where a scaling factor is used to reflect the time scale of the predictive control
system.

This setting extends naturally to include, with particular relevance to the application area in this paper,
input amplitude. The control design problem then is to minimize a cost function subject to linear inequality
constraints. This approach to design poses three major challenges when the solution uses quadratic pro-
gramming, the first of which is the lack of a guarantee for the existence of a constrained optimal solution.
For example, if both the input and output constraints are violated they will be in conflict and the quadratic
programming solution becomes infeasible. Secondly, since the solution is computed in real-time and involves
an iterative computation, the algorithms used must be sufficiently fast to enable computation within one
sampling period. This is one of the main reasons why model predictive control finds many applications in
process control where the sampling period can be of the order of minutes. In contrast, for electro-mechanical
systems such as the robotic system considered in this paper, the sampling period is much less than a second.
Thirdly, as for all other engineering applications, there must be safety protection mechanisms in place to
ensure stability of the controlled system in the event that the quadratic programming algorithm fails to
reach a constrained optimal solution. The quadratic programming algorithm used in this paper has features
suitable for real-time computation of this constrained optimal problem in terms of these challenges.

This paper will give the underlying theory of a detailed simulation-based assessment of the performance
achievable under this design as applied to the problem of formation flying of cubesat size spacecraft. The
approach can be extended to the control of rendezvous and docking of similar size spacecraft which will
include attitude as well as orbit control.

II. The thruster

The PPT thruster chosen is the PPTCUP developed by Mars Space Ltd, Clyde Space Ltd and the
University of Southampton [5]. This thruster is a side-fed ablative PPT using Teflon as propellant and has
been specifically designed for application to cubesats. A 3-D schematic of the thruster is shown in Figure 1.
The design of this thruster, which is an EM model, incorporates some significant changes from the baseline
PPTCUP breadboard( designated PPTCUP-BB and developed and tested in 2011(42,58sctransfer)) to not
only meet the stringent mass, volume and power constraints for cubesat applications but to meet lifetime and
flight qualification requirements. Two particular problems have been solved to meet the lifetime of 1 million

Figure 1. 3-D diagram of the PPTCUP Engineering Model.

shots, carbonization of the back plate and spark plug lifetime. As can been seen from Figure 1 a series of
lateral grooves on the sidewalls have been introduced to prevent electrode shorting and not visible in Figure
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1 but equally important a second back plate or shield to protect the back-plate from deposits of carbon. To
increase the spark plug longevity, changes have been made in the propellant or insulating material across
which the spark is discharged. In addition the electrode shape has been changed for performance reasons
and since the nozzle divergence angle has remained the same this has the added benefit of creating a gap
between the electrodes and sidewalls which also helps prevent shorting due to carbonisation. Other changes
have been made to the materials used for manufacturing [5]. Table 1 shows the key charactersitics of the
thruster system.

Table 1. PPT specifications

Mass 210 g

Dimensions 90.17 x 95.89 x 31 mm

Impulse Bit 38.2 µNs

Total Impulse 42 Ns

Specific Impulse 608 s

Power 0.3-4W

Thrust to power ratio 20 µN/W

Figures 2, 3 and 4 show the thruster board assembly, thruster in its box and mounted within a cubesat
structure, respectively.

Figure 2. PPTCUP-QM board, discharge chamber and electronics (blue box) assembly.

Figure 3. Thruster in its box.
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Figure 4. PPTCUP assembly within cubesat structure.

III. Preliminary and expected results

Preliminary results for the application of PPT technology have been obtained for a sample rendezvous and
docking mission, accomplished by two small satellites flying in close formation at low altitudes. The leader
satellite is passive, while the follower actively controls its relative position with respect to the leader to achieve
the desired formation configuration. Both satellites are characterized by identical physical parameters. The
total mass of each one is 3 kg. The bus size is 30X10x10 cm and the cross-sectional area is 10X10. The
satellite shape can be well-approximated by a rectangular cuboid layout model. At the beginning of the
operative phase, the satellites are flying in a near circular polar orbit. The orbit altitude is around 450 km,
which corresponds to an orbital period of approximately 94 minutes. The considered formation is separated
by a short distance in the along-track direction. The follower spacecraft is required to track the leader
spacecraft and to dock it, using a set of two opposite PPT’s per axis to control its position.

A. Formation flying control

The formation flying model state includes the leader position and velocity vectors (rL, vL), and the follower
ones (rF , vF ). The equations which describe evolution of the state vector in the ECI frame are:

ṙL = vL (1)

v̇L = − µ

r3L
rL + aL (2)

ṙF = vF (3)

v̇F = − µ

r3F
rF + aF , v+

F = v−
F +∆vu (4)

where µ is the gravitational parameter of the Earth, aL and aF are the environmental perturbations and
eq.(4) accounts for the impulsive change ∆vu of the follower velocity due to PPT operation. The calculation
of disturbance accelerations is based on the main orbital perturbations acting on spacecraft at low altitudes:

• Earth’s non-spherical gravity field: A spherical harmonic expansion [EGM96] up to degree and order
9 is considered.

• Aerodynamic drag: The [Jacchia-71] model is employed to approximate the atmospheric density. The
drag force acting on the satellite is calculated using a mean cross-sectional area.

• Solar radiation pressure: A Cannonball model is employed for the calculation of the solar radiation
force, which takes into account eclipse conditions.

• Luni-solar attraction: Disturbance accelerations due to point-mass lunar and solar gravity field are
considered. The position of the Sun and Moon is obtained through precise ephemerides.
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A simple proportional-derivative (PD) control law is considered for formation flying control. In order
to dock the leader, the follower spacecraft must drive its relative position and velocity to zero. Reference
smoothing is not addressed in this work, so the tracking error can be expressed in a local coordinate frame
frame (LVLH, see Fig. 5) as

δr = RI
F (rL − rF ) (5)

δv = δṙ = RI
F (vL − vF ) + [ωLV LH×]RI

F (xL − xF ) (6)

XLV LH
YLV LH

ZLV LH

Figure 5. LVLH reference frame

where the coordinate transformation between the inertial frame and the local frame is expressed by the
matrix RI

F and [ωLV LH×] is the skew-symmetric matrix of the LVLH rate ωLV LH . The commanded thrust
is calculated as

u = Kr δr+Kv δv (7)

where Kr e Kv are the gain matrices of the controller. The gain matrices have the following structure

Kr =






Kr 0 0

0 Kr 0

0 0 Kr




 Kv =






Kv 0 0

0 Kv 0

0 0 Kv




 (8)

An integral pulse frequency modulator is used to translate the continuous command signal into discrete
pulses, as required for operation of PPT’s. The modulator commands a pulse whenever the integral of the
commanded thrust is greater or equal than the impulse bit ∆uM of the thrusters. Subsequently, the integral
of the commanded thrust is set to zero to avoid integral wind-up. For each component ui of the commanded
thrust, we have that

∆ui(tk) = ∆ui(tk−1) +

∫ tk

tk−1

ui dt (9)

where tk − tk−1 is equal to the modulator step size. The modulator output is calculated as:

pi(tk) =







∆uM sgn(∆ui(tk)) if |∆ui(tk)| ≥ ∆uM

0 if |∆ui(tk)| < ∆uM

(10)

If |∆ui(tk)| ≥ ∆uM , ∆ui(tk) is set to zero for the calculation of ∆ui(tk+1). The impulsive velocity change,
expressed in the inertial frame, is given by

∆vu = RF
I

p

mF

(11)

where mF is the mass of the follower spacecraft, RF
I = (RI

F )
T and p = [px, py, pz]

T .
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B. Simulation results

A nonlinear simulation model has been developed, using MATLAB, for the considered formation flying
scenario. The model includes the leader and follower perturbed translational dynamics as well as the control
system of the follower spacecraft. The most relevant simulation parameters are reported in Table 2.

Altitude 450 km

Simulation time 5000 s

Proportional gain Kr 7.5 · 10−5

Derivative gain Kv 0.05

Modulator frequency 1 Hz

Impulse bit ∆uM 40 µNs

Table 2. Simulation parameters

The proportional and derivative gains have been chosen through numerical simulations to obtain a system
response with almost no position overshoot in the along-track direction.

At the beginning of the simulation, the formation is separated 12 m in the along-track direction. The
follower spacecraft actively controls its position to dock the leader. The performance of the control system
is reported in Figures 6 and 7, in terms of position and velocity tracking errors. It can be seen that the
follower spacecraft succeeds in docking the leader, since both the relative position and velocity at the end
of the simulation are near zero, for all axes. In particular, the final separation between the leader and the
follower is just 3.5 mm. The control profile, reported in Fig. 8 for all axes, is compatible with the considered
PPT technology.
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Figure 6. Relative position tracking error.

The applicability range of the Proportional plus Derivative Controller is limited by its structure but
it provides a benchmark for comparison with other designs. It this application area, constrained control
systems design is an obvious area for further investigation. One method that would enable constraints to be
placed on inputs outputs and their rates of change is to use Model Predictive Control (MPC). Of the many
algorithms available under this class of control algorithms, this work will first consider a design based on
receding horizon control with a linearized model of the dynamics about an operating point.

Suppose that for some operating point, the linearized dynamics can be represented by the state-space
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Figure 7. Relative velocity tracking error.
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Figure 8. PPT impulse profile.

model

ẋm(t) = Amxm(t) +Bmu(t) + ε

y(t) = Cmxm(t) (12)

where xm(t) is the state vector, u(t) is the input vector, y(t) the output vector, Am, Bm and Cm are matrices
with constant entries and compatible dimensions, and ε is a vector representing disturbances on the state
dynamics.

This future research will consider discrete model based MPC and hence (12) is discretized with sampling
period Ts using a zero-order hold, resulting in the discrete state-space model

xm(k + 1) = Adxm(k) +Bdu(k) + dε

y(k) = Cdxm(k) (13)
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where

dε =

∫ Ts

0

eAmτ εdτ, Ad = eAmTs , Bd =

∫ Ts

0

eAmτBm dτ, Cd = Cm

and dε is assumed to have constant entries. The MPC design used in this paper is that used in [4], which
gives references to the tools used, where experimental verification on a robotic system is also reported, and
the following is a summary of the main steps, for an m-input, q-output, n-state model.

In common with a PI control scheme, an integrator is embedded in the MPC design, which is also used for
the following purposes: i) elimination of the vector dε in (13), or ε in (12), which contains motor parameters
that have a certain degree of uncertainty associated with them in applications, and ii) removal of the load
disturbance torque which is assumed to be an unknown constant. This is the first step and once complete
the MPC design is undertaken using the incremental model where the defining vectors are the differences
between the state, input and output vectors, respectively, for any two successive sample instants. Therefore,
when the operating conditions change it is only necessary to update the set-point signals to reflect this change
and the other steady-state values for the state variables are not required. However, the parameters in the
system matrices (13) depend on the operating conditions and if these undergo a drastic change, parameter
updating may be required, resulting in a gain scheduled predictive controller.

Let ∆xm(k) = xm(k) − xm(k − 1) and ∆u(k) = u(k) − u(k − 1) denote the incremental state and
input vectors, respectively, computed from the corresponding vectors in (12). Then, since the vector dε has
constant entries, the state dynamics in the incremental model are described by

∆xm(k + 1) = Ad∆xm(k) +Bd∆u(k) (14)

Also

y(k + 1)− y(k) = Cd(xm(k + 1)− xm(k)) = Cd∆xm(k + 1)

= CdAd∆xm(k) + CdBd∆u(k)

or
y(k + 1) = CdAd∆xm(k) + y(k) + CdBd∆u(k) (15)

and the augmented state-space model for design is

x(k + 1) = Ax(k) +B∆u(k)

y(k) = Cx(k) (16)

where

x(k) =

[

∆xm(k)

y(k)

]

, A =

[

Ad 0

CdAd I

]

, B =

[

Bd

CdBd

]

, C =
[

0 I
]

and for the remainder of this paper 0 and I, respectively, denote the zero and identity matrices of compatible
dimensions. One immediate advantage of this incremental description of the dynamics is that the constant
vector dε has been removed from the design.

The MPC design requires the predicted future outputs for a number of steps ahead, where these are
generated from the state-space model at the current sampling instant. Let x(k + i|k), ∆u(k + i|k) and
y(k + i|k) denote the corresponding vectors in (16) at sample instant k + i given them at sample instant k.
Then the state dynamics NP sampling instants ahead of k are given by







x(k + 1|k) = Ax(k) +B∆u(k)

x(k + 2|k) = A2x(k) +AB∆u(k) +B∆u(k + 1)
...

x(k +Np|k) = ANpx(k) +ANp−1B∆u(k)

+ANp−2B∆u(k + 1)

+ · · ·+ANp−NcB∆u(k +Nc − 1)

(17)

where Np and Nc are termed the prediction and control horizons, respectively. Also the choice Nc ≤ Np

assumes that the incremental control ∆u has reached the steady-state after Nc instants, that is, after Nc
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samples the incremental control is assumed to be zero and Nc is a tuning parameter that decides the number
of future control inputs to be included in the optimization. The predicted output vectors for the next Np

instants can be written in the compact form:

Y = Fx(k) + Φ∆U (18)

where

Y =
[

yT (k + 1) yT (k + 2) . . . yT (k +Np)
]T

∆U =
[

∆uT (k) ∆uT (k + 1) . . . ∆uT (k +Nc − 1)
]T

F =
[

(CA)T (CA2)T . . . (CANp)T
]T

Φ =









B 0 · · · 0

CAB CB · · · 0
...

...
. . . 0

CANp−1B CANp−2B · · · CANp−NcB









Let r(k) be the reference that is assumed to have constant entries within the prediction horizon and

introduce Rs = R̄sr(k) =

q×Np

︷ ︸︸ ︷
[

I I . . . I
]T

r(k). Then cost function used for the MPC design has the

structure.
J = (Rs − Y )TQ(Rs − Y ) + ∆UT R̄∆U (19)

where Q is a (q ×Np)× (q ×Np) symmetric positive semi-definite matrix and R̄ is a (m×Nc) × (m×Nc)
symmetric positive definite matrix. Of particular interest in the current application is the case when Q is a
block diagonal matrix with diagonal block entries Qid and Qω and the structure

Q =
















Qid 0 0 · · · · · · 0

0 Qω 0
. . . · · ·

...

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
...

. . .
. . . Qid 0

0 · · · · · · 0 0 Qω
















and R̄ has the structure

R̄ =
















rw 0 0 · · · · · · 0

0 rw 0
. . . · · ·

...

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
...

. . .
. . . rw 0

0 · · · · · · 0 0 rw
















where rw > 0 is a scalar weighting. Note also that the structure of these weighting matrices is non-unique
and application dependent. The choices given here are for illustrative purposes only.

Under the receding horizon principle, the control vectors for the next Nc sampling instants are obtained
by minimizing the cost function (19) but only the first of these is applied to the plant. In the absence of
constraints the global optimal solution is given by

∂J

∂∆U
= 0
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and solving this equation gives the global optimal control sequence as

∆U = (ΦTQΦ+ R̄)−1ΦTQ(R̄sr(k) − Fx(k))

Moreover, the control vector to be applied at the next sampling instant occurs when

∆u(k) =
[

I 0 · · · 0
]

∆U

or
∆u(k) = Kyr(k) −Kxx(k) (20)

where Ky is formed by the first m rows of (ΦTQΦ+ R̄)−1ΦTQR̄s and Kx by the first m rows of (ΦTQΦ+
R̄)−1ΦTQF.

The matrix R̄s forms the last q columns of the matrix F due to the special structure of the augmented
state-space model matrices C and A. Consequently, Ky is given by the last q columns of the matrix Kx

and, by using the relationship between Kx and Ky, the control law (20) can be written as

∆u(k) = Kyr(k) −Kx

[

∆xm(k)

y(k)

]

= −Kx

[

∆xm(k)

y(k)− r(k)

]

(21)

Hence the control law to be applied is

u(k) = u(k − 1) + ∆u(k) (22)

and in this constraints-free case, Kx can be computed off-line and u(k) computed online using (21) and (22).
Many different types of operational constraints often arise in the application of control algorithms to

physical systems. In the case of a PMSM, the two input voltages to the motor, vd and vq, respectively, are
limited by the d.c. bus voltage. Moreover, the maximum voltage that can be modulated by the Space Vector
Pulse Width Modulator (SVPWM) is Vdc/

√
3. In the PI control structure, an anti-windup scheme is usually

employed to compensate for constraints, but the success of MPC with constraints in, for example, process
control applications makes it a natural alternative to be considered, particularly in the case of more than
one input and output.

The cost function of the previous section was optimized with respect to ∆U. Hence any constraints on,
for example, the control inputs must first be translated into constraints on the incremental control vector
∆u.

Consider first constraints on the amplitudes of the d and q-axis voltages and their incremental changes
and let Ns(≤ Nc) denote the number of future sampling instants within the control horizon Nc where these
are imposed. Then one form for them is

C1(umin − u(k − 1)) ≤ C2∆U ≤ C1(umax − u(k − 1)) (23)

C1∆umin ≤∆U ≤ C1∆umax (24)

where C1 and C2 are matrices of dimensions (Ns ×m) ×m) and (Ns × m) × (Nc ×m), respectively, with
the structure

C1 =
[

I I . . . I
]T

, C2 =









I 0 . . . 0

I I . . . 0
...

...
. . .

...

I I . . . I









If all future control signals were constrained by choosing Ns = Nc, the computational load would increase
and could become prohibitively expensive. Hence it is preferable in practical applications that the parameter
Ns is treated as a tuning parameter depending on the sampling time of the micro-controller employed.

In the case of the q-axis current iq(k) consider

iq(k + 1) = iq(k) + ∆iq(k + 1)
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with
∆iq(k + 1) =

[

0 1 0 0 0
]

(Ax(k) +B∆u(k))

where the system matrices A and B are from incremental system state-space model (16). The constraint on
the next sample instant prediction of this current considered in this work takes the form

imin
q ≤ iq(k) +

[

0 1 0 0 0
]

(Ax(k) +B∆u(k)) ≤ imax
q (25)

where imin
q and imax

q are the specified limits. Moreover, iq(k) and x(k) are measured quantities and hence
all terms in (25). Hence ∆u(k) is formulated as linear inequality constraint in a similar manner to that on
u(k).

The constraints considered in this paper can be expressed in the compact form as

M∆U ≤ γ (26)

and the constrained optimization problem can be solved by Quadratic Prograaming, that is, minimize the
cost function (19) subject to a set of linear inequality constraints of the form given above. One of the
methods available is based on an on-line search of the active constraints using Hildreth’s QP algorithm.
This method uses Lagrange multipliers, in the form of a vector λ ≥ 0, as the decision variables and the
constrained optimization problem solved is

min
λ≥0

(
1

2
λTHλ+ λTK + constant) (27)

where H = M(ΦTQΦ + R)−1MT and K = γ + M(ΦTQΦ + R)−1F . Once λ is obtained the optimal ∆U
vector is

∆U = (ΦTQΦ+R)−1ΦTQ(Rsr(k) − Fx(k))

− (ΦTQΦ+R)−1MT
actλact (28)

where Mact and λact denote the active linear constraint matrix and Lagrange multiplier vector, respectively,
formed from M and λ in (26).

IV. Conclusions

In this paper, the applicability of a propulsion system based on PPT to cubesat size spacecraft has
been investigated for a sample formation flying mission. To this purpose, a recent development of the PPT
architecture, which is close to be flight-qualified and fully compatible with spacecraft of limited sizes, has
been adopted. Preliminary simulations of a benchmark Proportional Derivative control law demonstrate the
feasibility of the proposed approach for rendez-vous and docking of spacecraft flying in close formation. It
is worth remarking that, in the general case, the limitations dictated by the thruster technology should be
taken into account in the design of the control law. In this respect, the formalism and theory to solve an MPC
problem within a receding horizon formulation is provided. A detailed simulation of such control scheme is
the subject of current research activities. Further investigations will also include attitude estimation and
control.
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