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The key role of autonomous systems in future space missionas made model pre-
dictive control a very attractive guidance and control techmique. However, the ca-
pability of low-power spacecraft processors to handle theaal-time computational
load of this technique still needs to be fully established,specially for complex con-
trol problems. This paper introduces a method to improve thecomputational ef-
ficiency of model predictive control when applied to the prollem of autonomous
rendezvous and proximity maneuvering using low-thrust prgulsion. To ensure
safe trajectories in this scenario, a long control horizons required and the control
problem must be solved at a relatively fast sampling rate. Tk proposed design
addresses such requirements by parameterizing the thrustrpfile with a set of La-
guerre functions. In this setting, the number of control varables can be made
significantly smaller than the length of the control horizon, as opposed to standard
design methods. By exploiting this property in combinationwith multi-parametric
programming techniques, an explicit control law is derivedthat is suitable for real-
time implementation on simple hardware. The performance ofthis approach is
demonstrated on a small spacecraft mission and compared witthat of other con-

trol techniques.
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. Introduction

The development of guidance and control techniques foregpatt formation flying is the subject
of significant research efforts, due to the key role of suablgms in many present and future
space missions. Examples include technology demonstrigiterPRISMA [1] and PROBA-3 ],
the space interferometer DARWIIS]| the Mars sample return scientific missigi,[and on-orbit
servicing projects such as the Automated Transfer Vehigler{the orbital life extension vehicle
SMART-OLEV [6].

Of particular interest in this field is the optimization oflghrust formation flying trajectories,
motivated by the application of miniaturized or high-efficcy propulsion technologie3-10].
When two or more spacecraft in a formation are required taaipan close proximity, these
trajectories must be safe with respect to collisions andrgblossible anomalie4 []. This gener-
ally leads to complex trajectory optimization problemdyjsat to both thrust magnitude and path
constraints. Due to the increasing level of autonomy ofrieigpace applications, it is critical to
compute the solution to these problems in real-time and sigdea control system tracking the
resulting trajectoriesl2,13]. To this purpose, efficient guidance and control algorghrave to be
devised. More specifically, this paper tackles the probléaegeloping an optimal guidance and
control scheme for autonomous rendezvous and proximityeonaaring using low-thrust propul-
sion, in the presence of collision avoidance, thruster glimpingement and line of sight (LoS)
constraints.

A wide variety of open-loop guidance techniques have beepqgsed in the literature for the
design of low-thrust rendezvous trajectories, based dwedirect or indirect optimization meth-
ods [L4-16]. These techniques are known to provide accurate numesadations, but they cannot
cope with the high degree of autonomy required by applioatio which disturbance rejection and
robustness with respect to perturbations are of primargeon To circumvent this issue, feed-
back guidance and control algorithms, with the ability tetsynatically handle thrust magnitude

and path constraints, are commonly used. In particular,einpidictive control (MPC), based
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on computing the optimal control sequence over a finite nurob&uture sampling instances, is
becoming increasingly attractivé7-20]. In low-thrust problems, however, a long control horizon
is needed to guarantee adequate performance, due to thedicointrol authority provided by the
actuators. During close proximity operations, this is dedvith the requirement to use a small
discretization step, to avoid the violation of path constsabetween discrete time samples. In
such cases, the main drawback of MPC is the requirementye adfrajectory optimization prob-
lem with a large number of decision variables at each timepsamvhich may make this method
too computationally intensive to be implemented on-linéaynpower spacecraft processo?d].

A possible way of enhancing MPC to overcome this last difficid to parameterize the control
sequence with a set of Laguerre functions, where the polémeé functions are used to reflect the
time scale of the control system, see, e 2¢].[In this setting, which belongs to the family of direct
optimization methods, the number of decision variablestsamade significantly smaller than the
length of the control horizon, while path constraints calh ls¢ enforced over a sufficiently fine
discretization grid.

Another important factor, which may prevent the implemaataof the MPC design methods
discussed so far, is the requirement to embed a controlrseitle guaranteed runtime on board
the spacecraft. This requirement can be avoided by solViagcontrol problem explicitly, i.e.
by finding off-line a feedback control law defined on a paotitiof the state spacy. In the
standard MPC framework, however, this is generally feasilly for low-dimensional problems,
due to the exponential growth of the number of regions in taeiton with the length of the
control sequence2fl]. An alternative approach, based on the explicit solutiba quadratically
constrained linear quadratic regulator (LQR) problem, Ib@sn recently proposed i24] for a
rendezvous problem with thrust constraints, which confittmesneed for computationally efficient
feedback control methods specifically tailored to the ader@d application area.

The contribution of this paper is twofold. First, a low-coeity MPC scheme is developed
for the low-thrust rendezvous and proximity maneuverirgbgem. In the derivation of the control
algorithm, the trajectory optimization problem is reforated by parameterizing the control se-

guence by a set of Laguerre functions, which allows a longrobhorizon to be realized without
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using a large number of decision variables. Then, an exmlantrol law is derived by exploit-
ing this new algorithm in combination with multi-parametgrogramming techniques. Such de-
sign provides a trade-off between feasibility and perfarogaof the guidance and control system.
Since on-line optimization is not required, the novel cohtaw is especially suitable for real-
time implementation on board small spacecraft with limitechputational capabilities. A detailed
simulation-based assessment of the performance acheéewabl this design is given for an ex-
ample cubesat mission using a miniaturized electric pgpunlsystem, in comparison to standard
MPC and LQR techniques.

The paper is organized as follows. In sectibnproximity operations, including terminal
rendezvous and docking, are briefly described. Sedilothen details the main features of the
control problem and presents the novel control law, andi@ety illustrates the formation flying
model used to validate the proposed approach. The perfaenainthe control law is evaluated

through numerical simulations in Sectidh SectionVI gives some concluding remarks.

[I.  Problem Setting

The considered problem is that of autonomous rendezvoupraxdnity operations between two
spacecraft in a leader-follower formation, where the it of both spacecraft is actively con-
trolled and the leader is not maneuvering. Based on relgdgtion measurements from dif-
ferential global positioning system (GPS) and optical sesisthe follower spacecraft is required
to maintain visual contact and dock with the leader, usingtlorust propulsion. The control
objective is to minimize a combination of the fuel expenditand the time of flight of the maneu-

ver [26], subject to the following requirements to ensure safettayries [L1].
* Collision avoidance: the spacecraft must not collide witich other.

» LoS: the relative motion must be confined within a certagioe of the state space (a cone)

to maintain visual contact.

* Plume impingement: the magnitude and/or the amount okthrdirings directed towards

the leader must be minimized during the final phase of thecambr.
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In addition, thrust magnitude and direction constraintsnie taken into account in the control
problem.

In this paper, vector and matrices are denoted by boldfaceels andl denotes a vector
whose components are all equal to 1, the identity matrix motkrl byl and the symbadD denotes
the null matrix or vector of compatible dimensions. The spird’A denotes a block-diagonal
matrix with n diagonal blocks, each equalfoand the norm of a vector is denoted|py]||,,, where
the oo, 1 and 2-norms are used. Moreover, the relative motion ofdhmation is expressed in
a rotating local-vertical-local-horizontal (LVLH) franmeentered at the leader spacecraft center of
mass. The& axis points towards the Earth’s center of massMlais is aligned with the negative
orbit normal and th& axis completes an orthogonal right-handed coordinatesysds illustrated
in Fig. 1. In a circular orbit, theX axis is aligned with the spacecraft velocity vector. e and
Z directions are referred to as the along-track, cross-taackradial directions respectively. The
XY and theXZ planes are referred as the horizonal-plane and the in-plachéhe relative position

vector is denoted by

or=[xy 7, 1)

wherex, y andz are the along-track, cross-track and radial componenpectisely.

The following assumption are made on the configuration ofdhmation: (i) the leader orbit
is nearly circular, (ii) the distance between the two speafets small compared to the orbit radius
and (iii) differential perturbations are negligible. Umdbese assumptions, the relative motion

dynamics are well approximated by the linearized Hill-@ssy-Wiltshire (HCW) equation&7]
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whereu,, U, andug are the control forces of the follower, expressed in the LMt&ine, mis the

mass of the spacecraft, ands the LVLH rate.
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Leader

Follower /

Figure 1. LVLH reference frame.

Moreover, it is assumed that: (iv) both the leader and fodlogpacecraft are three-axis sta-
bilized to maintain the LVLH attitude, (v) the docking postlocated behind the leader and (vi)
the propulsion system of the follower can produce thrusy amthe along-track and cross-track

directions. The position of the docking port can be exprégséerms of relative states as
ora=[xs 0 O, 3)

wherexy < 0 is fixed. Since radial thrust is not availabig, = 0 in (2) and the input vector is

defined as

u=[u uy". (4)

In this setting, any arbitrary initial stade(ty) can be steered 1 4, since the in-plane motion ir2)

is controllable with the scalar input [28]. The tracking error is denoted by
X=[X1 ... Xg]" =[(6r =6rg)" (6F —6Fg)"]". (5)

wheresry = 0, sincedr 4 is fixed according to3).
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1.  Formation Control

Let U be an admissible input sef an admissible subset of the state space defined by path con-
straints andJ(x, u) a given cost function, defined over the time interval [ty, t¢]. In the con-
sidered problem, the input set is bounded by the maximunsthguthat can be delivered by the
propulsion system, as

U={u:[ulle <um }. (6)

Collision avoidance and LoS requirements can be expresstgath constraints

X = {x : x(t) <0, Vxa(t)? + x5(t)? < —xa(t) tan@/2) }, (7)

whered is the field of view of the optical sensor on board the follosgacecraft. For rendezvous

and docking of a leader-follower spacecraft pair, a relegast function is

J(x, u) = afto Ul dt + (1—a)ft 1 o|t+ﬁft (1) dt. 8)

where the final times is free,a € [0, 1] is a relative weight on the fuel consumption (first term)
and the maneuver time (second term), g is a weight on the functioa, which accounts for
plume impingement effects. |7} is satisfied, the thruster plume impingement function @an,

justified in [29], be taken as

ur(t) if = xa(t) < X, XDl < X2 and|Xxa(t)] < X
e(t) = 9)

0 otherwise

whereu (t) is the negative part of the along-track thrust apg x., andx.; are predefined positive

constants.
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Givenx(tp), the formation control problem can be stated as

rrLin J(x, u)

st. @ (10)
xeX,uelU
X(tf) =0.

The problem defined byL() does not admit a closed-form solution and must be solvedenigaily.
Moreover, it consists of a nonlinear nonsmooth optimizapooblem, whose on-line solution on
board spacecraft with limited computational capabilitiesy not be possible. For this reason, a
number of suboptimal policies have been considered in theature 1 7-20, 25, 30, 31].

MPC is an attractive design method for the problem descréisle, since it enables con-
straints to be enforced on the system state and on the confais. Moreover, the resulting
control law can be explicitly parameterized in feedbackfoin linear MPC, the endpoint equal-
ity constraintx(t;) = 0 is typically replaced by a weighw/s on the terminal state of the system,
the setX is approximated by a polyhedral St and the problem is solved over a finite horizon

T, = (ts — tp). Following this approach, problem() is reformulated as

te
muin Je(X, u) = W x(te)lln + [ [IWxX(®)In + IKu @)l dt

o

st. @ (11)

xeX, uel,

whereW ¢, W andK are square weighting matricds,is nonsingular, and values o1 orn=2
are considered. Problem) is solved under the receding horizon principle to yield edfeack
control law which renders the equilibrium poirt= 0 asymptotically stable32]. To ensure
an acceptable computational complexity, the non-convermplimpingement functiordf is not
included in (L1). This approximation turns out to be reasonable for a quadvarformance index
(n=2), since in this case the thrust magnitude vanishes clabe tsteady state, but not for a linear

one f = 1), due to the bang-bang structure of the correspondingnager [33]. Hence, in the
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following it is assumed that=2.

A low-complexity, explicit solution to probleml(l) is sought. It is known that, in the worst
case, the number of state space regions over which an exqaidirol law is defined grows expo-
nentially with length of the input sequenc24]. On the other hand, a short input sequence can
lead to poor performance or even unfeasibility. A tradebsfween computational burden and
performance requirements can be made by parameterizimgghesequence via a set of Laguerre

functions P2, 34, as described next.

A. MPC design

Using the linearized HCW equation®)( the tracking error dynamics are represented by the state

space model
X=A:X+B.u, (12)
with ) )
0O O 0 1 0 O
0O O 0 0O 1 O
0O O 0 0O 0 1
Ac= (13)
0O O 0 0O 0 2
0 -w?> 0 O 0 O
|0 0 Ww? 20 0 O |
and

00O012m O O
B: = . (14)

000 O ¥YmO

For digital implementation of the control law, the systendiscretized with a sampling periold

using a zero-order hold, resulting in the discrete stateespzodel

x(k + 1) = Ax(K) + B u(k), (15)
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where

Ts
A=¢evTs, B= ( e dT) Be. (16)
0

The MPC design requires the predicted future states for eoruwf steps ahead, where these
are generated from the state space motig)l &t the current sampling instant based on the current
state and the computed input sequence.u(kt+ j) denote the input to be comput¢dampling
steps ahead from the current sampling instantThe basic idea underpinning Laguerre MPC

(LMPC) is to parameteriza(k + j) using a set of discrete Laguerre polynomials, as

uy(k + )
ua(k + J)

HO) U

N0

utk+j) = =L()n (17)

~
~

UP)

wherel;(]) is the Laguerre function vector ang which represents the new decision vector, is
termed the coefficient vector.

The Laguerre function vector satisfies the difference eqnat

a 0 0
| & 0
i(J+1)=| —ab b .0 o |h() (18)
0
-t - ... b & |
with
1@ =b]1 - @ @ .. (19)

whereb; = (1-a?), N; is the number of terms in the expansion and [0, 1] is the scaling factor
of the Laguerre network for input. Botha andN; are fixed design parameters. Settag O in

(18) and (L9), and using 17), give that

= u(k+j) VYje{0...Nj}
i (D m = (20)
0 VJ >N,
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which corresponds to the standard MPC design with contnazbo N;. Choosingg, > 0 allows a
trade-off to be made between the accuracy the approximéitiQrand the time scale of the control
trajectory, i.e.,IT(j)n, exponentially decays to zero instead of being identicadipZor j > N;.
This is especially relevant when the number of decisioreddeisN; is selected to be small to keep
the computation feasible and then the truncated pararattnezgiven by 20) cannot adequately
describe the future input trajectory. Substitutidg)(into (15), the state dynamichl, sampling

instants ahead dfare given by

x(k+1/K) = A x(K)+BL (0) 5

x(k+2]k) = A2x(k)+ (ABL (0)+BL (1)) (21)

x(k+ NplK) = ANox(K) + (AN-LBL (0)+- - -+ BL (Np—1)) 7.

where the prediction horizoN, is unrelated to the number of componentgp#vhich is equal to
(N1 + N2).

The prediction model can be written in the compact form
X =Fx(k)+®np, (22)

where

- T
X = | xT(k+1k) XT(K+2K) ... xT(k+ Nplk)

T

F = :(A)T (AT ... (AM)T (23)
» BL(0) 0 0 —
o - ABL (0) BL(1) - 0
0
| ANIBL(0) AMT2BL(1) -+ BL(N,—1)
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Moreover, the cost functiori() is discretized fon = 2 andN, = T,/Ts, to give
Jo=X"QX+7n'Ry, (24)
where for the remainder of this pap#/s = W, Q=&"T;WTW is a &N,x 6N, matrix and

R =TM[(@KTK)Mis a N1+ Np) x (N1 + Np) matrix, with

My=|LT(0) LT2) ... LT(N,-1) T. (25)

Hence, the minimization of{) can be equivalently rewritten as
min 'Qn+2x"(KY'n, (26)
n

whereQ = (®@'Q® + R) and¥ = ® QF.
In the absence of constraints, the global minimum of prob(2@) is attained (assuming the
required matrix inverse exists) at

7°(K) = QTP x(K). (27)

According to the receding horizon principle, only the firlgreent of the optimal input sequence
is applied to the plant, so that
u(k) = L(0) 7" (k). (28)

Input and state constraints are included in the MPC desigicd¢ount for the operating range
of the actuators and to ensure safe proximity operationsik&the unconstrained case, the con-
strained MPC problem does not admit an analytic solutionranst be solved numerically. For a

given set of samplell,,, on which input constraints are enforce@) ¢an be rewritten as
—uml<L(j)p<lum Vje Myc{O, ... ,N,—1}. (29)

To reduce the sensitivity of the control system to measuntmase, one possibility is to introduce

a slack variables; > 0, which weights the variation of the control input, and gezeait in the cost
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function. The value 0§, is obtained from the following linear inequalities:

—sil< L(O)p-uk-1) <1s j=0
—s1<(L()-L-)n<ls Vje{l, ...,Ny-1},

(30)

whereu(k — 1) is treated as an additional input to the optimization fgob The nonlinear path

constraints {) are approximated by the following linear inequalities:

Cx(k+jlK) <1s+d VjeMcC{L ... Np

1 0000
tan@/2)/v2 1 0 0 O
C=|tan@/2)/v2-1 0 0 0 (31)
tan@/2)/v2 0 1 0 O

0

| tan@/2)/v2 0-1 0

©O o O o o

d=[d 17|

whered;, e > 0 are given tolerances arsg > 0 is a slack variable which relaxes the formulation
in the co-norm sense, to retain the feasibility of the problem aggnassible conflicts between
input and state constraints. Assumisig= 0, ¢ > 0 andd; < V2¢/tan@/2), (31) represents the

polyhedral approximation of the LoS cone depicted in Bigfor the set of samplesl,.

Figure 2. LoS cone approximation.
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Letne =[n" 51 )" =[n" s']" be the augmented decision vector angk) =[x" (k) u' (k-1)]"
the augmented input in the constrained optimization protded assume, for notational simplicity,
that 29) and @1) are defined for all samples. Then, the constrai8, ((30) and (1) can be

written in the compact form

My, 0 0] [ 1uy o o]
-My, 0 O]|ny luy 0O O
x(K)
My -1 Of|s|<| O |-| 0O -U, : (32)
u(k—1)
M, -1 0| |x 0 0 U,
| Cn®@ 0-1 | | dv | [CWF O
whereF and® are given by 23), Cy = @ C,dy =[d"...d"]" and
.
My = [LT(O) LT(1)-LT(©O) ... LT(Np—1)—LT(Np-2)
T (33)
Up = [I 0o ... O]
The constrained LMPC problem of the for@g] to be solved is
min ¢ nc +2xC(K) [ 01T nc
e 0 Rs (34)
st. (832

whereRgs is a 2x 2 positive definite diagonal matrix which heavily penalizles slack vectos.
Problem 84) is solved at each sampling instagtyielding ¢ (k), and the first element of the

control sequence is applied to the plant \&&)(

B. Explicit Laguerre MPC

Even if the optimization problenBd) can be solved efficiently using existing quadratic program
ming (QP) algorithms, the required computations may noelasible for spacecraft with low pro-

cessing power. Moreover, the execution time of QP solveirs general not guaranteed, whereas
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the reliability of the control system is a primary concerndpace applications. In this respect, one
possibility is to use explicit MPC.
Before proceeding, it is useful to rewrite the constrain®PC problem in terms of the sim-

plified notation

min  pcH pe + 2xC(K) G
Nc (35)
s.t. Mn; <D+ Exc(K),

where the matricel, G, M, D andE are obtained from32) and 34). By introducing the vector
Z2 ne + H'G xc(K), (36)

problem (35) can be transformed by completing squares into the equitadalti-parametric quadratic

program
min zHz
’ (37)
st. Mz<D+ (E+MH™G")xc(K),

wherex(k), which appears only in the right hand side of the equatisritegated as a parameter
vector.

Problem B87) can be solved explicitly for all the parameteaegk) inside a given polyhedral set
Xc, as described in, for exampled). For the proposed MPC design, it is beneficial to consider a
region of additional sizes > O with respect to the set defined 31), together with the maximum

excursion of the control. Since the resulting set is not lolewln auxiliary bounds are specified for
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the along-track position and the velocity tracking erragsg

-1 00000
kk 00100
kk 0 0-1 0 O
Xm
Cax(K)=| k, 0 0 0 1 0|X(k) <da= , (38)
lea
k., 0 0 0-1 O
kk 0 0 0 01
| ks 0 0 0 0-1|

wherexy, is the maximum feasible along-track separation betweetwbespacecrafts, > 0 is a

specified tolerance arld, k, andks are positive slopes. The final form of the parameter space is

cC o0 d+dg
— 0 | luy
Xc = ¢xc(K) : xc(K) < . (39)
0 -l lUM
| Ca O ] | da

The solutionz*(xc(K)) of (37) is a piece-wise affine linear function defined over a polyakd
partition of X¢, which can be stored in look-up table form. At each samplitgiant, the thrust

command is

U = |L(©) 0| (2 (xc(k) ~HG (). (40)

where the on-line computational load is limited to a piegsenaffine function evaluation. This
requirement consists of locating the state space regiomance the look-up table entry that con-
tains the pre-computed control law for a giveg(k), through the solution of a set-membership

problem.

V. Reference Mission

A possible scenario for the application of the LMPC desigvettgoed in this paper is a low Earth

orbit formation flying mission performed by two cubesat sspacecraft, where the relative dy-
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Table 1. PPT specifications

Mass 180 g (wet mass) + 90 g (electronics)
Dimensions 90.17 x 95.89 x 31 mm
Impulse Bit 40 uNs

Pulse frequency <1Hz
Total Impulse 42 Ns
Specific Impulse 608 s
Power 0.3-4W
Misalignment 1° per axis
Noise (std. dev. 5% of the nominal impulse
£ 02 -
£ 0.5} \
S \
"% 0.1 Along-Track N
E ‘
§ 005 —. —. Cross-Track, Radial h N
n ; . i . L~
-100 -80 -60 -40 =20 0

Along-track (m)

Figure 3. Standard deviation of the measurement uncertaint.

namics are controlled by means of a miniaturized electrapplsion system. At the beginning
of the operative phase, the spacecraft are flying in a neaulairpolar orbit, at an altitude of ap-
proximately 450 km. The leader and follower spacecraft hdeatical physical parameters: the
total mass of each of them is 3 kg, the bus size ix3® x 10 cn? and the cross-sectional area
is 10x 10 cn?. The electric propulsion system considered in this work sgteof pulsed plasma
thrusters (PPT) specifically designed for application toasats, as described i8F]. Tablel gives
the characteristics of the PPT model.

The relative position measurement model is based on thefigpéions of differential GPS
and optical sensors3f, 37], where the field of view of the optical sensor is assumed té be
30°. The standard deviation of the measurement uncertaintivéngas a function of the along-
track separation between the two spacecratt, in Eigrelative velocity is estimated from relative

position measurements by using a symmetric finite impulspamse filter of order.8ased on
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these data, the follower spacecraft is required to dock thighleader whilst satisfying LoS and
input constraints, using two pairs of opposite PPTs alignéd the along-track and cross-track
directions.

A high-accuracy nonlinear simulation model has been d@esldor the considered scenario.
The state vector of the model includes the position and wtgleectors for the leader (, v.) and
the follower §, vg). The equations which describe the evolution of the stat¢éoven the Earth

centered inertial (ECI) frame are

f’L:VL (41)
: p
VL:—ErL+a|_ (42)
e = Vg (43)
M -
VF—_r_er+aF’ VE = Vg + AV, (44)

F
whereyu is the gravitational parameter of the Earth aad) @ccounts for the impulsive changer

of the follower velocity due to PPT operation. The calcudatof the disturbance acceleratioms
andar is based on the main orbital perturbations acting on spafteatrlow altitudes. A spherical
harmonic expansion up to degree and order 9 is used for thb'&gravity field [38]. The drag
force is calculated using a drag coefficient 06 2and the Jacchia-71 model to approximate the
atmospheric densitydP]. A cannonball model is employed for the calculation of thiasradiation
force, taking into account eclipse conditions. Disturleaccelerations due to the point-mass lunar
and solar gravity fields are also considered, where theipngf the Sun and Moon is obtained
through precise ephemerides. True relative position alotig are expressed in the LVLH frame
as

or =R (rg =) (45)
or = R:_(VF - V|_) - [a)x]R:_(rF - r|_), (46)

whereR| is the matrix that represents the coordinate transformétiween the inertial and LVLH
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frames andx] is the skew-symmetric matrix @b = [0 w 0]". The LVLH rate is given by

”:_|ﬁ@‘ @
An integral pulse frequency modulator is used to convertcthr@inuous control signal from
the control algorithm into discrete pulses of fixed magretuas required by PPT operation. The
modulator delivers a pulsg, on input channel, whenever the integral of the commanded thrust
Ui(t) is greater than or equal to the impulse Ui, of the thrusters. For each component of the
inputu, one has
UmsgnUi(t)) if Ui(t)l = Uw

pi(te) = (48)
0 if Uil < U,

where
Ui (tk-1) + Ui (t)

Ui(te) = Ui(te-1) + 5

At - pi(teea), (49)

At =t — t,_; andi = 1, 2. Under the assumption that the attitude of the spacesratintrolled to
match the orientation of the LVLH frame, the impulsive vetpchange, expressed in the inertial
frame, is given by

Ave = RE6RP :nw, (50)

whereR} = (R)", p = [p1 p2 0], 6R denotes the thruster alignment error ame= [w; W, 0]

represents the thruster noise.

V. Simulations

In this section, the results from a simulation case studyhefpgerformance of the proposed de-
sign are given, including a comparison with standard MPCILaQR techniques and a feasibility
assessment for the reference mission. The control law edttm trade-off between the maneu-
ver time and the fuel consumption. Notice that, since theresystem {2) is null controllable
with vanishing input energy2p, 40], the solution to 26) approaches the minimum fuel solution
for a sufficiently long prediction horizon and a relativeipall state weight compared to the input

weight.
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Table 2. LMPC tuning parameters

State weight | W =diag(1 0, 1, 10°, 3- 10>, 10°)
Input weight | K =1-2-10%
Slack weight | Rg = diag(164, 10°)
Samplingtime | Tg= 10 sec
Prediction horizon N, = 1000

Laguerreterms | N; =N, =4

Scaling factor | a; = a, = 0.67

Input constraint | uy = 40uN, M, = {0}

State constraint | d; = ¢ = 2 cm, M, = {1, 150

Table 3. Parameters of explicit LMPC

Max. feasible separationxy = 350 m
Additional LoS region | ds = [0.1, 10, 10, 10, 10]" m
Velocity slopes ki = 0.002,k, = k3 = 0.001
Velocity tolerance g2 = 0.5 mm/s

The elimination of radial thrust, which is an underlying@asption of this work, has proven to
be effective inimproving the fuel efficiency of control lalvased on quadratic performance indices
[41]. Since the cross-track motion is a simple undamped osmillamotion which is decoupled
from the rest of the system, pure derivative control can lpdiegh on this axis to provide adequate
damping B2]. Hence, the cross-track position weighting is set to zar(2#). The other tuning
parameters are selected with a trial-and-error procedasedon numerical simulations. Takle
summarizes the parameters of the controller.

An explicit control law is computed off-line by solving theutti-parametric quadratic program
(37) for the parameter space defined [3P)(and the quantities in Tablg. The solution is a
polyhedral partition of the parameter space defined by 9¢®me in 8 dimensions (6 states for
the relative motion plus 2 inputs). The real-time compotatdf the control law on board the
spacecraft is conveniently reduced to a set-membershipati@n and the step size of the integral

pulse frequency modulator is takensts= 1s, according to the thruster specifications in Tahle
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A. Control law comparison

In this section the LMPC control law is compared to an LQR astaadard MPC law with equal
state and input weights, by application to the linearized¥@odel ). In this study, the standard
MPC formulation is recovered from the LMPC scheme by settirggscaling factors,, a, of the
Laguerre function network to zero.

Figure 4 gives the results for the three controllers in terms of thgmtade of the tracking
error for a sample rendezvous and docking maneuver. As teghethe fastest convergence is
achieved by the LQR controller, which does not enforce irgnd state constraints. Moreover,
the LMPC scheme shows a much better transient responsehbatandard MPC scheme. In
particular, the former avoids the oscillatory behaviompthyed by the latter (which is due to a
“myopic” parametrization of the input sequence). The sigpgrerformance of the LMPC scheme
is supported by the fact that the explicit solution to thendead MPC problem is defined on a
larger number of regions (1015). The horizontal-plane dr&lih-plane motions are shown in
Fig. 5, together with the sections of the pyramid that approxintaéeLoS cone. Evidently the
LQR controller is unable to keep the radial tracking erratitwnm the LoS constraints.

Figure6 gives the thrust profiles calculated by each control law. imuthe initial phase of the
maneuver, the along-track LQR command exceeds the maxitmuwstwhich can be delivered by
the propulsion system. Since the magnitude of the inputrd-banstrained in the model predictive
framework, both the MPC and the LMPC commands do not exceeth#ximum operating range
of the actuators. The thrust profiles calculated from noisgsurements (see Fi§).are reported in
Fig. 7. Comparing these results with those in Fgit is evident that the use of Laguerre functions

in combination with an appropriate weight on the input vidoia provides the lowest sensitivity

100 - — — -LQR ]
— el —.— MPC
E 80 LMPC
& 601 S - <. .
g N RN
7 40 ~ . 1
2 ~ e e
a 20 \\\ “.\"-—. N

I I i i = : N
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Figure 4. Tracking performance.
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Figure 7. Thrust profile from noisy measurements.
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with respect to measurement noise. This is confirmed by Fabidich reports the total impulse
delivered by the control system with and without noise. Ti@eaase of the total impulse due to
noise is in the order of 60% for both the LQR and the standar@€M&hemes, but just 31% for the

LMPC design.

Table 4. Total impulse sensitivity to noise

Type LQR MPC LMPC
Without noise| 0.146 Ns| 0.330Ns| 0.121 Ns
With noise | 0.2420 Ns| 0.5320 Ns| 0.1591 Ns

+65% +62% +31%

B. Docking maneuver simulation

A number of docking maneuvers have been simulated usingahknear formation flying model
(41)-(44), which includes the PPT model, in combination with the obsgon model in Fig3 and
the LMPC control law. The set of initial conditions for whithe relative motion lies near the
edge of the LoS region has been identified as the worst-caméation scenario. Two represen-
tative simulation cases are reported, with equal alongktnaitial separation and opposite initial
conditions for the cross-track and radial components ofrétegtive position vector. The initial
conditions of Case 1 are the same as those used for the campaficontrol laws.

Figures8 and 9 show that the LMPC control law is able to drive the followeasecraft to
the docking position while satisfying the LoS constraimsboth cases. The magnitude of the
relative position vector at the end of the simulation is éqa&® mm for Case 1 and 4 cm for

Case 2The good agreement of the Case 1 results with those for tearlisimulations (Figs4

140F 7 ~ T T T T T T
120
100
80
60
40
20

Case 1
+—— Case?2

Distance (m)

Figure 8. LMPC tracking performance.
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Figure 10. PPT pulse profile and commanded thrust for Casé.

andb) suggests an appreciable robustness of the control sysitmespect to perturbations. The
PPT pulse profile is reported in Fig0, together with the LMPC command, for Case 1 (similar
results were obtained for Case 2). These results show almadstpulses are commanded in the
negative along-track direction during the final phase ofapproach, which indicates that plume
impingement is avoided (se8)].

As a final comparison, the results presented is this sectiereealuated against the fuel-
optimal, open-loop solution of problem @) (obtained fore = 1 andg = 0 in (8)). To enable
this comparison, the final timg in (10) is set equal to the settling time of the LMPC scheme.

Problem (0) is solved with the commercial package DIDO, based on psspetiral (PS) meth-
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ods [L5]. The total impulse (i.e., the fuel consumption) requirgdhe maneuver and the CPU time
needed by the solver (on a 2 Ghz, single-core CPU) are repiorfable5 for the two approaches.
It can be seen that the total impulse commanded by the LMPéhseltan be more than two times
higher than the one provided by the fuel optimal, open-ladptgon PS. According to Tablé, a
significant part of this mismatch is due to measurement n@bkeh does not affect the PS solu-
tion), while the rest arises from the approximations madééndesign of the LMPC scheme. On
the other hand, the explicit LMPC solution is computed agpnately 400 times faster than the
PS solution.

Based on these data, and in view of the high specific impulsesoPPT technology, it can be
concluded that the new design provides a reasonable tfatetoveen the performance and the

computational burden of the control law.

Table 5. Open-loop (PS) and feedback solution (LMPC)

Type | Case 1 Impulse Case 2 Impulse CPU time
PS 0.09 Ns 0.11 Ns ~20s
LMPC 0.16 Ns 0.25 Ns ~0.05s

+77% +127% 1/400

VI. Conclusions

This paper has demonstrated that the use of Laguerre fagdéti@ombination with multi-parametric
programming techniques can be effective in improving thepatational efficiency of model pre-

dictive control when applied to the problem of low-thrusasecraft rendezvous and proximity
operations. The new design is general enough to systerihatieadle path constraints, as well as
thrust magnitude and rate constraints. By use of the Laguymrametrization of the input trajec-

tories, an explicit controller featuring a long control izen has been derived, thus circumventing
the need of a dedicated solver on board the spacecraft. &iomulesults show that the achievable
performance, in terms of control accuracy and propellaagesis suitable for autonomous ren-
dezvous and docking between small three-axis stabilizadespaft using electric propulsion. The

applicability of the new design to more complex scenariashsas circumnavigation and docking
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with a tumbling target, still needs a deeper investigation.
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