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The key role of autonomous systems in future space missions has made model pre-

dictive control a very attractive guidance and control technique. However, the ca-

pability of low-power spacecraft processors to handle the real-time computational

load of this technique still needs to be fully established, especially for complex con-

trol problems. This paper introduces a method to improve thecomputational ef-

ficiency of model predictive control when applied to the problem of autonomous

rendezvous and proximity maneuvering using low-thrust propulsion. To ensure

safe trajectories in this scenario, a long control horizon is required and the control

problem must be solved at a relatively fast sampling rate. The proposed design

addresses such requirements by parameterizing the thrust profile with a set of La-

guerre functions. In this setting, the number of control variables can be made

significantly smaller than the length of the control horizon, as opposed to standard

design methods. By exploiting this property in combinationwith multi-parametric

programming techniques, an explicit control law is derivedthat is suitable for real-

time implementation on simple hardware. The performance ofthis approach is

demonstrated on a small spacecraft mission and compared with that of other con-

trol techniques.
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I. Introduction

The development of guidance and control techniques for spacecraft formation flying is the subject

of significant research efforts, due to the key role of such problems in many present and future

space missions. Examples include technology demonstrators like PRISMA [1] and PROBA-3 [2],

the space interferometer DARWIN [3], the Mars sample return scientific mission [4], and on-orbit

servicing projects such as the Automated Transfer Vehicle [5] or the orbital life extension vehicle

SMART-OLEV [6].

Of particular interest in this field is the optimization of low-thrust formation flying trajectories,

motivated by the application of miniaturized or high-efficiency propulsion technologies [7–10].

When two or more spacecraft in a formation are required to operate in close proximity, these

trajectories must be safe with respect to collisions and other possible anomalies [11]. This gener-

ally leads to complex trajectory optimization problems, subject to both thrust magnitude and path

constraints. Due to the increasing level of autonomy of future space applications, it is critical to

compute the solution to these problems in real-time and to design a control system tracking the

resulting trajectories [12,13]. To this purpose, efficient guidance and control algorithms have to be

devised. More specifically, this paper tackles the problem of developing an optimal guidance and

control scheme for autonomous rendezvous and proximity maneuvering using low-thrust propul-

sion, in the presence of collision avoidance, thruster plume impingement and line of sight (LoS)

constraints.

A wide variety of open-loop guidance techniques have been proposed in the literature for the

design of low-thrust rendezvous trajectories, based on either direct or indirect optimization meth-

ods [14–16]. These techniques are known to provide accurate numericalsolutions, but they cannot

cope with the high degree of autonomy required by applications in which disturbance rejection and

robustness with respect to perturbations are of primary concern. To circumvent this issue, feed-

back guidance and control algorithms, with the ability to systematically handle thrust magnitude

and path constraints, are commonly used. In particular, model predictive control (MPC), based
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on computing the optimal control sequence over a finite number of future sampling instances, is

becoming increasingly attractive [17–20]. In low-thrust problems, however, a long control horizon

is needed to guarantee adequate performance, due to the limited control authority provided by the

actuators. During close proximity operations, this is coupled with the requirement to use a small

discretization step, to avoid the violation of path constraints between discrete time samples. In

such cases, the main drawback of MPC is the requirement to solve a trajectory optimization prob-

lem with a large number of decision variables at each time sample, which may make this method

too computationally intensive to be implemented on-line onlow-power spacecraft processors [21].

A possible way of enhancing MPC to overcome this last difficulty is to parameterize the control

sequence with a set of Laguerre functions, where the poles ofthese functions are used to reflect the

time scale of the control system, see, e.g., [22]. In this setting, which belongs to the family of direct

optimization methods, the number of decision variables canbe made significantly smaller than the

length of the control horizon, while path constraints can still be enforced over a sufficiently fine

discretization grid.

Another important factor, which may prevent the implementation of the MPC design methods

discussed so far, is the requirement to embed a control solver with guaranteed runtime on board

the spacecraft. This requirement can be avoided by solving the control problem explicitly, i.e.

by finding off-line a feedback control law defined on a partition of the state space [23]. In the

standard MPC framework, however, this is generally feasible only for low-dimensional problems,

due to the exponential growth of the number of regions in the partition with the length of the

control sequence [24]. An alternative approach, based on the explicit solution of a quadratically

constrained linear quadratic regulator (LQR) problem, hasbeen recently proposed in [25] for a

rendezvous problem with thrust constraints, which confirmsthe need for computationally efficient

feedback control methods specifically tailored to the considered application area.

The contribution of this paper is twofold. First, a low-complexity MPC scheme is developed

for the low-thrust rendezvous and proximity maneuvering problem. In the derivation of the control

algorithm, the trajectory optimization problem is reformulated by parameterizing the control se-

quence by a set of Laguerre functions, which allows a long control horizon to be realized without
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using a large number of decision variables. Then, an explicit control law is derived by exploit-

ing this new algorithm in combination with multi-parametric programming techniques. Such de-

sign provides a trade-off between feasibility and performance of the guidance and control system.

Since on-line optimization is not required, the novel control law is especially suitable for real-

time implementation on board small spacecraft with limitedcomputational capabilities. A detailed

simulation-based assessment of the performance achievable with this design is given for an ex-

ample cubesat mission using a miniaturized electric propulsion system, in comparison to standard

MPC and LQR techniques.

The paper is organized as follows. In sectionII , proximity operations, including terminal

rendezvous and docking, are briefly described. SectionIII then details the main features of the

control problem and presents the novel control law, and Section IV illustrates the formation flying

model used to validate the proposed approach. The performance of the control law is evaluated

through numerical simulations in SectionV. SectionVI gives some concluding remarks.

II. Problem Setting

The considered problem is that of autonomous rendezvous andproximity operations between two

spacecraft in a leader-follower formation, where the attitude of both spacecraft is actively con-

trolled and the leader is not maneuvering. Based on relativeposition measurements from dif-

ferential global positioning system (GPS) and optical sensors, the follower spacecraft is required

to maintain visual contact and dock with the leader, using low-thrust propulsion. The control

objective is to minimize a combination of the fuel expenditure and the time of flight of the maneu-

ver [26], subject to the following requirements to ensure safe trajectories [11].

• Collision avoidance: the spacecraft must not collide witheach other.

• LoS: the relative motion must be confined within a certain region of the state space (a cone)

to maintain visual contact.

• Plume impingement: the magnitude and/or the amount of thruster firings directed towards

the leader must be minimized during the final phase of the approach.
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In addition, thrust magnitude and direction constraints must be taken into account in the control

problem.

In this paper, vector and matrices are denoted by boldface symbols and1 denotes a vector

whose components are all equal to 1, the identity matrix is denoted byI and the symbol0 denotes

the null matrix or vector of compatible dimensions. The symbol ⊕nA denotes a block-diagonal

matrix withn diagonal blocks, each equal toA and the norm of a vector is denoted by‖ · ‖n, where

the∞, 1 and 2-norms are used. Moreover, the relative motion of theformation is expressed in

a rotating local-vertical-local-horizontal (LVLH) framecentered at the leader spacecraft center of

mass. TheZ axis points towards the Earth’s center of mass, theY axis is aligned with the negative

orbit normal and theX axis completes an orthogonal right-handed coordinate system, as illustrated

in Fig. 1. In a circular orbit, theX axis is aligned with the spacecraft velocity vector. TheX, Y and

Z directions are referred to as the along-track, cross-trackand radial directions respectively. The

XY and theXZ planes are referred as the horizonal-plane and the in-planeand the relative position

vector is denoted by

δr = [x y z]T, (1)

wherex, y andzare the along-track, cross-track and radial components respectively.

The following assumption are made on the configuration of theformation: (i) the leader orbit

is nearly circular, (ii) the distance between the two spacecraft is small compared to the orbit radius

and (iii) differential perturbations are negligible. Under these assumptions, the relative motion

dynamics are well approximated by the linearized Hill-Clohessy-Wiltshire (HCW) equations [27]

ẍ = 2ω ż+
u1

m

ÿ = −ω2 y+
u2

m

z̈ = 3ω2 z− 2ω ẋ+
u3

m
,

(2)

whereu1, u2 andu3 are the control forces of the follower, expressed in the LVLHframe,m is the

mass of the spacecraft, andω is the LVLH rate.
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Figure 1. LVLH reference frame.

Moreover, it is assumed that: (iv) both the leader and follower spacecraft are three-axis sta-

bilized to maintain the LVLH attitude, (v) the docking port is located behind the leader and (vi)

the propulsion system of the follower can produce thrust only in the along-track and cross-track

directions. The position of the docking port can be expressed in terms of relative states as

δrd = [xd 0 0]T , (3)

wherexd ≤ 0 is fixed. Since radial thrust is not available,u3 = 0 in (2) and the input vector is

defined as

u = [u1 u2]
T . (4)

In this setting, any arbitrary initial stateδr (t0) can be steered toδrd, since the in-plane motion in (2)

is controllable with the scalar inputu1 [28]. The tracking error is denoted by

x= [x1 . . . x6]
T
= [(δr − δrd)

T (δṙ − δṙd)T ]T . (5)

whereδṙd = 0, sinceδrd is fixed according to (3).
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III. Formation Control

Let U be an admissible input set,X an admissible subset of the state space defined by path con-

straints andJ(x, u) a given cost function, defined over the time intervalt ∈ [t0, t f ]. In the con-

sidered problem, the input set is bounded by the maximum thrust uM that can be delivered by the

propulsion system, as

U = {u : ‖u(t)‖∞ ≤ uM } . (6)

Collision avoidance and LoS requirements can be expressed as the path constraints

X =

{

x : x1(t) ≤ 0,
√

x2(t)2 + x3(t)2 ≤ −x1(t) tan(θ/2)
}

, (7)

whereθ is the field of view of the optical sensor on board the followerspacecraft. For rendezvous

and docking of a leader-follower spacecraft pair, a relevant cost function is

J(x, u) = α
∫ t f

t0

‖u(t)‖1 dt+ (1− α)
∫ t f

t0

1 dt+ β
∫ t f

t0

ǫ(t) dt, (8)

where the final timet f is free,α ∈ [0, 1] is a relative weight on the fuel consumption (first term)

and the maneuver time (second term), andβ≥0 is a weight on the functionǫ, which accounts for

plume impingement effects. If (7) is satisfied, the thruster plume impingement function can,as

justified in [29], be taken as

ǫ(t) =































u−1 (t) if − x1(t) ≤ xǫ1, |x2(t)| ≤ xǫ2 and|x3(t)| ≤ xǫ3

0 otherwise,

(9)

whereu−1(t) is the negative part of the along-track thrust andxǫ1, xǫ2 andxǫ3 are predefined positive

constants.
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Givenx(t0), the formation control problem can be stated as

min
u

J(x, u)

s.t. (2)

x ∈ X, u ∈ U

x(t f ) = 0.

(10)

The problem defined by (10) does not admit a closed-form solution and must be solved numerically.

Moreover, it consists of a nonlinear nonsmooth optimization problem, whose on-line solution on

board spacecraft with limited computational capabilitiesmay not be possible. For this reason, a

number of suboptimal policies have been considered in the literature [17–20,25,30,31].

MPC is an attractive design method for the problem describedabove, since it enables con-

straints to be enforced on the system state and on the controlinputs. Moreover, the resulting

control law can be explicitly parameterized in feedback form. In linear MPC, the endpoint equal-

ity constraintx(t f ) = 0 is typically replaced by a weightW f on the terminal state of the system,

the setX is approximated by a polyhedral setX̄, and the problem is solved over a finite horizon

Tp = (t f − t0). Following this approach, problem (10) is reformulated as

min
u

Jc(x, u) = ‖W f x(t f )‖nn +
∫ t f

t0

‖W x(t)‖nn + ‖K u (t)‖nn dt

s.t. (2)

x ∈ X̄, u ∈ U,

(11)

whereW f , W andK are square weighting matrices,K is nonsingular, and values ofn=1 or n=2

are considered. Problem (11) is solved under the receding horizon principle to yield a feedback

control law which renders the equilibrium pointx = 0 asymptotically stable [32]. To ensure

an acceptable computational complexity, the non-convex plume impingement function (9) is not

included in (11). This approximation turns out to be reasonable for a quadratic performance index

(n=2), since in this case the thrust magnitude vanishes close tothe steady state, but not for a linear

one (n = 1), due to the bang-bang structure of the corresponding optimizer [33]. Hence, in the
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following it is assumed thatn=2.

A low-complexity, explicit solution to problem (11) is sought. It is known that, in the worst

case, the number of state space regions over which an explicit control law is defined grows expo-

nentially with length of the input sequence [24]. On the other hand, a short input sequence can

lead to poor performance or even unfeasibility. A trade-offbetween computational burden and

performance requirements can be made by parameterizing theinput sequence via a set of Laguerre

functions [22,34], as described next.

A. MPC design

Using the linearized HCW equations (2), the tracking error dynamics are represented by the state

space model

ẋ = Ac x + Bc u , (12)

with

Ac =





























































































0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2ω

0 −ω2 0 0 0 0

0 0 3ω2 −2ω 0 0





























































































(13)

and

Bc =























0 0 0 1/m 0 0

0 0 0 0 1/m 0























T

. (14)

For digital implementation of the control law, the system isdiscretized with a sampling periodTs

using a zero-order hold, resulting in the discrete state space model

x(k+ 1) = A x(k) + B u(k), (15)
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where

A = eAcTs, B =
(∫ Ts

0
eAcτ dτ

)

Bc. (16)

The MPC design requires the predicted future states for a number of steps ahead, where these

are generated from the state space model (15) at the current sampling instant based on the current

state and the computed input sequence. Letu(k + j) denote the input to be computedj sampling

steps ahead from the current sampling instantk. The basic idea underpinning Laguerre MPC

(LMPC) is to parameterizeu(k+ j) using a set of discrete Laguerre polynomials, as

u(k + j) =























u1(k+ j)

u2(k+ j)























≈























lT1 ( j) 0

0 lT2 ( j)













































η1

η2























= L ( j) η, (17)

where l i( j) is the Laguerre function vector andη, which represents the new decision vector, is

termed the coefficient vector.

The Laguerre function vector satisfies the difference equation

l i ( j + 1) =











































































ai 0 . . . . . . 0

bi ai
. . .

... 0

−aibi bi
. . . 0 0

...
...

.. . . . . 0

−aNi−2
i −aNi−3

i bi . . . bi ai











































































l i ( j) (18)

with

l i (0) =
√

bi

[

1 −ai a2
i −a3

i . . . (−1)Ni−1aNi−1
i

]T

, (19)

wherebi = (1− a2
i ), Ni is the number of terms in the expansion andai ∈ [0, 1] is the scaling factor

of the Laguerre network for inputui. Bothai andNi are fixed design parameters. Settingai = 0 in

(18) and (19), and using (17), give that

lTi ( j) ηi =































ui(k + j) ∀ j ∈ {0 . . .Ni}

0 ∀ j > Ni ,

(20)
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which corresponds to the standard MPC design with control horizon Ni . Choosingai > 0 allows a

trade-off to be made between the accuracy the approximation(17) and the time scale of the control

trajectory, i.e.,lTi ( j) ηi exponentially decays to zero instead of being identically zero for j > Ni.

This is especially relevant when the number of decision variablesNi is selected to be small to keep

the computation feasible and then the truncated parametrization given by (20) cannot adequately

describe the future input trajectory. Substituting (17) into (15), the state dynamicsNp sampling

instants ahead ofk are given by



























































x(k+1|k)=A x(k)+BL (0)η

x(k+2|k)=A2x(k)+(ABL (0)+BL (1))η
...

x(k+Np|k)=ANpx(k)+(ANp−1BL (0)+· · ·+BL (Np−1))η .

(21)

where the prediction horizonNp is unrelated to the number of components ofη, which is equal to

(N1 + N2).

The prediction model can be written in the compact form

X = F x(k) +Φ η , (22)

where

X =
[

xT(k+ 1|k) xT(k + 2|k) . . . xT(k+ Np|k)
]T

F =
[

(A)T (A2)T . . . (ANp)T

]T

(23)

Φ =



























































BL (0) 0 · · · 0

ABL (0) BL (1) · · · 0
...

...
. .. 0

ANp−1BL (0) ANp−2BL (1) · · · BL (Np − 1)



























































.
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Moreover, the cost function (11) is discretized forn = 2 andNp = Tp/Ts, to give

Jd = XTQ X + ηTR η , (24)

where for the remainder of this paperW f = W, Q=⊕NpTs WTW is a 6Np× 6Np matrix and

R = TsMT
u (⊕NpK TK )Mu is a (N1+ N2) × (N1+ N2) matrix, with

Mu =

[

LT(0) LT(1) . . . LT(Np − 1)
]T

. (25)

Hence, the minimization of (24) can be equivalently rewritten as

min
η

η
T
Ω η + 2xT(k)ΨT

η , (26)

whereΩ = (ΦTQΦ + R) andΨ = ΦQ F.

In the absence of constraints, the global minimum of problem(26) is attained (assuming the

required matrix inverse exists) at

η
∗(k) = −Ω−1

Ψ x(k) . (27)

According to the receding horizon principle, only the first element of the optimal input sequence

is applied to the plant, so that

u(k) = L (0)η∗(k). (28)

Input and state constraints are included in the MPC design toaccount for the operating range

of the actuators and to ensure safe proximity operations. Unlike the unconstrained case, the con-

strained MPC problem does not admit an analytic solution andmust be solved numerically. For a

given set of samplesMu, on which input constraints are enforced, (6) can be rewritten as

− uM1 ≤ L ( j) η ≤ 1uM ∀ j ∈ Mu ⊆ {0, . . . ,Np − 1}. (29)

To reduce the sensitivity of the control system to measurement noise, one possibility is to introduce

a slack variables1 ≥ 0, which weights the variation of the control input, and penalize it in the cost
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function. The value ofs1 is obtained from the following linear inequalities:

−s11 ≤ L (0)η − u(k − 1) ≤ 1s1 j = 0

−s11 ≤ (L ( j) − L ( j − 1))η ≤ 1s1 ∀ j ∈ {1, . . . ,Np − 1},
(30)

whereu(k − 1) is treated as an additional input to the optimization problem. The nonlinear path

constraints (7) are approximated by the following linear inequalities:

C x(k+ j|k) ≤ 1s2 + d ∀ j ∈Mx ⊆ {1, . . . ,Np}

C =











































































1 0 0 0 0 0

tan(θ/2)/
√

2 1 0 0 0 0
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d =
[

d1 1Tε
]T
,

(31)

whered1, ε ≥ 0 are given tolerances ands2 ≥ 0 is a slack variable which relaxes the formulation

in the∞-norm sense, to retain the feasibility of the problem against possible conflicts between

input and state constraints. Assumings2 = 0, ε > 0 andd1 <
√

2ε/ tan(θ/2), (31) represents the

polyhedral approximation of the LoS cone depicted in Fig.2 , for the set of samplesMx.

X
Y

Z

X

X̄

Figure 2. LoS cone approximation.
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LetηC = [ηT s1 s2]T
= [ηT sT ]T be the augmented decision vector andxC(k)= [xT(k) uT(k−1)]T

the augmented input in the constrained optimization problem and assume, for notational simplicity,

that (29) and (31) are defined for all samples. Then, the constraints (29), (30) and (31) can be

written in the compact form
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, (32)

whereF andΦ are given by (23), CN = ⊕NpC, dN = [dT . . .dT ]T and

M∆ =

[

LT(0) LT(1)− LT(0) . . . LT(Np − 1)− LT(Np − 2)
]T

U∆ =
[

I 0 . . . 0
]T (33)

The constrained LMPC problem of the form (26) to be solved is

min
ηC

η
T
C























Ω 0

0 Rs























ηC + 2xT
C(k) [Ψ 0]T

ηC

s.t. (32)

(34)

whereRs is a 2× 2 positive definite diagonal matrix which heavily penalizesthe slack vectors.

Problem (34) is solved at each sampling instantk, yielding η∗C(k), and the first element of the

control sequence is applied to the plant via (28).

B. Explicit Laguerre MPC

Even if the optimization problem (34) can be solved efficiently using existing quadratic program-

ming (QP) algorithms, the required computations may not be feasible for spacecraft with low pro-

cessing power. Moreover, the execution time of QP solvers isin general not guaranteed, whereas
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the reliability of the control system is a primary concern for space applications. In this respect, one

possibility is to use explicit MPC.

Before proceeding, it is useful to rewrite the constrained LMPC problem in terms of the sim-

plified notation

min
ηC

η
T
CH ηC + 2xT

C(k) G ηC

s.t. M ηC ≤ D + E xC(k),

(35)

where the matricesH, G, M , D andE are obtained from (32) and (34). By introducing the vector

z , ηC + H−1GTxC(k), (36)

problem (35) can be transformed by completing squares into the equivalent multi-parametric quadratic

program

min
z

z H z

s.t. M z ≤ D + (E +M H −1GT) xC(k),
(37)

wherex(k), which appears only in the right hand side of the equation, is treated as a parameter

vector.

Problem (37) can be solved explicitly for all the parametersxC(k) inside a given polyhedral set

X̄C, as described in, for example, [23]. For the proposed MPC design, it is beneficial to consider a

region of additional sizeds ≥ 0 with respect to the set defined by (31), together with the maximum

excursion of the control. Since the resulting set is not bounded, auxiliary bounds are specified for
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the along-track position and the velocity tracking errors using

Ca x(k) =


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, (38)

wherexM is the maximum feasible along-track separation between thetwo spacecraft,εa ≥ 0 is a

specified tolerance andk1, k2 andk3 are positive slopes. The final form of the parameter space is

X̄C =
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. (39)

The solutionz∗(xC(k)) of (37) is a piece-wise affine linear function defined over a polyhedral

partition of X̄C, which can be stored in look-up table form. At each sampling instant, the thrust

command is

u(k) =
[

L (0) 0
]

(

z∗(xC(k)) − H−1GTxC(k)
)

, (40)

where the on-line computational load is limited to a piece-wise affine function evaluation. This

requirement consists of locating the state space region andhence the look-up table entry that con-

tains the pre-computed control law for a givenxC(k), through the solution of a set-membership

problem.

IV. Reference Mission

A possible scenario for the application of the LMPC design developed in this paper is a low Earth

orbit formation flying mission performed by two cubesat sizespacecraft, where the relative dy-
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Table 1. PPT specifications

Mass 180 g (wet mass) + 90 g (electronics)
Dimensions 90.17 x 95.89 x 31 mm
Impulse Bit 40µNs

Pulse frequency ≤ 1 Hz
Total Impulse 42 Ns

Specific Impulse 608 s
Power 0.3-4W

Misalignment 1◦ per axis
Noise (std. dev.) 5% of the nominal impulse
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Figure 3. Standard deviation of the measurement uncertainty.

namics are controlled by means of a miniaturized electric propulsion system. At the beginning

of the operative phase, the spacecraft are flying in a near circular polar orbit, at an altitude of ap-

proximately 450 km. The leader and follower spacecraft haveidentical physical parameters: the

total mass of each of them is 3 kg, the bus size is 30× 10× 10 cm3 and the cross-sectional area

is 10× 10 cm2. The electric propulsion system considered in this work is aset of pulsed plasma

thrusters (PPT) specifically designed for application to cubesats, as described in [35]. Table1 gives

the characteristics of the PPT model.

The relative position measurement model is based on the specifications of differential GPS

and optical sensors [36, 37], where the field of view of the optical sensor is assumed to beθ =

30◦. The standard deviation of the measurement uncertainty is given, as a function of the along-

track separation between the two spacecraft, in Fig.3. Relative velocity is estimated from relative

position measurements by using a symmetric finite impulse response filter of order 8. Based on
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these data, the follower spacecraft is required to dock withthe leader whilst satisfying LoS and

input constraints, using two pairs of opposite PPTs alignedwith the along-track and cross-track

directions.

A high-accuracy nonlinear simulation model has been developed for the considered scenario.

The state vector of the model includes the position and velocity vectors for the leader (r L, vL) and

the follower (r F, vF). The equations which describe the evolution of the state vector in the Earth

centered inertial (ECI) frame are

ṙ L = vL (41)

v̇L = −
µ

r3
L

r L + aL (42)

ṙ F = vF (43)

v̇F = −
µ

r3
F

r F + aF , v+F = v−F + ∆vF, (44)

whereµ is the gravitational parameter of the Earth and (44) accounts for the impulsive change∆vF

of the follower velocity due to PPT operation. The calculation of the disturbance accelerationsaL

andaF is based on the main orbital perturbations acting on spacecraft at low altitudes. A spherical

harmonic expansion up to degree and order 9 is used for the Earth’s gravity field [38]. The drag

force is calculated using a drag coefficient of 2.5 and the Jacchia-71 model to approximate the

atmospheric density [39]. A cannonball model is employed for the calculation of the solar radiation

force, taking into account eclipse conditions. Disturbance accelerations due to the point-mass lunar

and solar gravity fields are also considered, where the position of the Sun and Moon is obtained

through precise ephemerides. True relative position and velocity are expressed in the LVLH frame

as

δr = RI
L(r F − r L) (45)

δṙ = RI
L(vF − vL) − [ω×]RI

L(r F − r L), (46)

whereRI
L is the matrix that represents the coordinate transformation between the inertial and LVLH

18 of 28

American Institute of Aeronautics and Astronautics



frames and [ω×] is the skew-symmetric matrix ofω = [0 ω 0]T . The LVLH rate is given by

ω = −
√

µ

‖r L‖32
. (47)

An integral pulse frequency modulator is used to convert thecontinuous control signal from

the control algorithm into discrete pulses of fixed magnitude, as required by PPT operation. The

modulator delivers a pulsepi, on input channeli, whenever the integral of the commanded thrust

Ui(t) is greater than or equal to the impulse bitUM of the thrusters. For each component of the

inputu, one has

pi(tk) =































UMsgn(Ui(tk)) if |Ui(tk)| ≥ UM

0 if |Ui(tk)| < UM ,

(48)

where

Ui(tk) = Ui(tk−1) +
ui(tk−1) + ui(tk)

2
∆t − pi(tk−1), (49)

∆t = tk − tk−1 andi = 1, 2. Under the assumption that the attitude of the spacecraft is controlled to

match the orientation of the LVLH frame, the impulsive velocity change, expressed in the inertial

frame, is given by

∆vF = RL
I δR

p + w
m
, (50)

whereRL
I = (RI

L)T , p = [p1 p2 0]T , δR denotes the thruster alignment error andw = [w1 w2 0]T

represents the thruster noise.

V. Simulations

In this section, the results from a simulation case study of the performance of the proposed de-

sign are given, including a comparison with standard MPC andLQR techniques and a feasibility

assessment for the reference mission. The control law is tuned to trade-off between the maneu-

ver time and the fuel consumption. Notice that, since the error system (12) is null controllable

with vanishing input energy [28, 40], the solution to (26) approaches the minimum fuel solution

for a sufficiently long prediction horizon and a relatively small state weight compared to the input

weight.
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Table 2. LMPC tuning parameters

State weight W = diag(1, 0, 1, 105, 3 · 105, 105)
Input weight K = I · 2 · 1010

Slack weight Rs = diag(1014, 105)
Sampling time Ts = 10 sec

Prediction horizon Np = 1000
Laguerre terms N1 = N2 = 4
Scaling factor a1 = a2 = 0.67

Input constraint uM = 40µN, Mu = {0}
State constraint d1 = ε = 2 cm, Mx = {1, 150}

Table 3. Parameters of explicit LMPC

Max. feasible separationxM = 350 m
Additional LoS region ds = [0.1, 10, 10, 10, 10]T m

Velocity slopes k1 = 0.002,k2 = k3 = 0.001
Velocity tolerance εa = 0.5 mm/s

The elimination of radial thrust, which is an underlying assumption of this work, has proven to

be effective in improving the fuel efficiency of control lawsbased on quadratic performance indices

[41]. Since the cross-track motion is a simple undamped oscillatory motion which is decoupled

from the rest of the system, pure derivative control can be applied on this axis to provide adequate

damping [42]. Hence, the cross-track position weighting is set to zero in (24). The other tuning

parameters are selected with a trial-and-error procedure based on numerical simulations. Table2

summarizes the parameters of the controller.

An explicit control law is computed off-line by solving the multi-parametric quadratic program

(37) for the parameter space defined by (39) and the quantities in Table3. The solution is a

polyhedral partition of the parameter space defined by 946 regions in 8 dimensions (6 states for

the relative motion plus 2 inputs). The real-time computation of the control law on board the

spacecraft is conveniently reduced to a set-membership evaluation and the step size of the integral

pulse frequency modulator is taken as∆t = 1s, according to the thruster specifications in Table1.
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A. Control law comparison

In this section the LMPC control law is compared to an LQR and astandard MPC law with equal

state and input weights, by application to the linearized HCW model (2). In this study, the standard

MPC formulation is recovered from the LMPC scheme by settingthe scaling factorsa1, a2 of the

Laguerre function network to zero.

Figure4 gives the results for the three controllers in terms of the magnitude of the tracking

error for a sample rendezvous and docking maneuver. As expected, the fastest convergence is

achieved by the LQR controller, which does not enforce inputand state constraints. Moreover,

the LMPC scheme shows a much better transient response than the standard MPC scheme. In

particular, the former avoids the oscillatory behavior displayed by the latter (which is due to a

“myopic” parametrization of the input sequence). The superior performance of the LMPC scheme

is supported by the fact that the explicit solution to the standard MPC problem is defined on a

larger number of regions (1015). The horizontal-plane and the in-plane motions are shown in

Fig. 5, together with the sections of the pyramid that approximatethe LoS cone. Evidently the

LQR controller is unable to keep the radial tracking error within the LoS constraints.

Figure6 gives the thrust profiles calculated by each control law. During the initial phase of the

maneuver, the along-track LQR command exceeds the maximum thrust which can be delivered by

the propulsion system. Since the magnitude of the input is hard-constrained in the model predictive

framework, both the MPC and the LMPC commands do not exceed the maximum operating range

of the actuators. The thrust profiles calculated from noisy measurements (see Fig.3) are reported in

Fig. 7. Comparing these results with those in Fig.6, it is evident that the use of Laguerre functions

in combination with an appropriate weight on the input variation provides the lowest sensitivity
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Figure 4. Tracking performance.
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Figure 7. Thrust profile from noisy measurements.
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with respect to measurement noise. This is confirmed by Table4, which reports the total impulse

delivered by the control system with and without noise. The increase of the total impulse due to

noise is in the order of 60% for both the LQR and the standard MPC schemes, but just 31% for the

LMPC design.

Table 4. Total impulse sensitivity to noise

Type LQR MPC LMPC
Without noise 0.146 Ns 0.330 Ns 0.121 Ns

With noise 0.2420 Ns 0.5320 Ns 0.1591 Ns
+65% +62% +31%

B. Docking maneuver simulation

A number of docking maneuvers have been simulated using the nonlinear formation flying model

(41)-(44), which includes the PPT model, in combination with the observation model in Fig.3 and

the LMPC control law. The set of initial conditions for whichthe relative motion lies near the

edge of the LoS region has been identified as the worst-case simulation scenario. Two represen-

tative simulation cases are reported, with equal along-track initial separation and opposite initial

conditions for the cross-track and radial components of therelative position vector. The initial

conditions of Case 1 are the same as those used for the comparison of control laws.

Figures8 and9 show that the LMPC control law is able to drive the follower spacecraft to

the docking position while satisfying the LoS constraints in both cases. The magnitude of the

relative position vector at the end of the simulation is equal to 9 mm for Case 1 and 4 cm for

Case 2. The good agreement of the Case 1 results with those for the linear simulations (Figs.4

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

20
40
60
80

100
120
140

D
is
ta

n
ce

(m
)

Time (s)

 

 
Case 1
Case 2

Figure 8. LMPC tracking performance.
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and5) suggests an appreciable robustness of the control system with respect to perturbations. The

PPT pulse profile is reported in Fig.10, together with the LMPC command, for Case 1 (similar

results were obtained for Case 2). These results show almostno impulses are commanded in the

negative along-track direction during the final phase of theapproach, which indicates that plume

impingement is avoided (see (9)).

As a final comparison, the results presented is this section are evaluated against the fuel-

optimal, open-loop solution of problem (10) (obtained forα = 1 andβ = 0 in (8)). To enable

this comparison, the final timet f in (10) is set equal to the settling time of the LMPC scheme.

Problem (10) is solved with the commercial package DIDO, based on pseudospectral (PS) meth-
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ods [15]. The total impulse (i.e., the fuel consumption) required by the maneuver and the CPU time

needed by the solver (on a 2 Ghz, single-core CPU) are reported in Table5 for the two approaches.

It can be seen that the total impulse commanded by the LMPC scheme can be more than two times

higher than the one provided by the fuel optimal, open-loop solution PS. According to Table4, a

significant part of this mismatch is due to measurement noise(which does not affect the PS solu-

tion), while the rest arises from the approximations made inthe design of the LMPC scheme. On

the other hand, the explicit LMPC solution is computed approximately 400 times faster than the

PS solution.

Based on these data, and in view of the high specific impulse ofthe PPT technology, it can be

concluded that the new design provides a reasonable trade-off between the performance and the

computational burden of the control law.

Table 5. Open-loop (PS) and feedback solution (LMPC)

Type Case 1 Impulse Case 2 Impulse CPU time
PS 0.09 Ns 0.11 Ns ∼ 20 s

LMPC 0.16 Ns 0.25 Ns ∼ 0.05 s
+77% +127% 1/400

VI. Conclusions

This paper has demonstrated that the use of Laguerre functions in combination with multi-parametric

programming techniques can be effective in improving the computational efficiency of model pre-

dictive control when applied to the problem of low-thrust spacecraft rendezvous and proximity

operations. The new design is general enough to systematically handle path constraints, as well as

thrust magnitude and rate constraints. By use of the Laguerre parametrization of the input trajec-

tories, an explicit controller featuring a long control horizon has been derived, thus circumventing

the need of a dedicated solver on board the spacecraft. Simulation results show that the achievable

performance, in terms of control accuracy and propellant usage, is suitable for autonomous ren-

dezvous and docking between small three-axis stabilized spacecraft using electric propulsion. The

applicability of the new design to more complex scenarios, such as circumnavigation and docking
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with a tumbling target, still needs a deeper investigation.
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