COMPITO DI FONDAMENTI DI AUTOMATICA 05.09.2007

Studente: _____ N. Matricola: _____

Esercizio 1.

E' dato il sistema lineare stazionario a tempo continuo descritto dall'equazione differenziale

$$\ddot{y}(t) - \dot{y}(t) - 2y(t) = u(t).$$

1. Calcolare la risposta y(t) del sistema con condizioni iniziali $\dot{y}(0) = 0$, y(0) = 1, e ingresso $u(t) = e^{-t} \mathbf{1}(t)$, dove $\mathbf{1}(t)$ è la funzione gradino unitario.

Esercizio 2.

Sia dato il sistema stazionario a tempo discreto:

$$x_1(k+1) = -\frac{3}{2}x_1(k) + 2x_2(k)$$

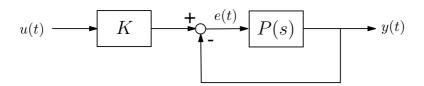
$$x_2(k+1) = -\frac{1}{2}x_1(k) + x_2(k) + \alpha x_1^2(k) x_2(k),$$

dove $\alpha \in \mathbb{R}$ è un parametro.

- 1. Posto $\alpha = 0$, studiare la stabilità e i modi del sistema.
- 2. Posto $\alpha = 1$, studiare la stabilità dei punti di equilibrio del sistema.

Esercizio 3.

E' dato il sistema lineare stazionario a tempo continuo rappresentato in figura:



dove $P(s) = \frac{s+20}{s(s+1)}$ e K è un guadagno costante.

- 1. Scrivere la funzione di trasferimento S(s) da u(t) a e(t).
- 2. Determinare il valore di K in maniera tale che la risposta a regime permanente $e_p(t)$ corrispondente all'ingresso $u(t) = \sin(2t)$, se esiste, abbia ampiezza uguale a 1.
- 3. Tracciare i diagrammi di Bode di modulo e fase della funzione di risposta armonica $S(j\omega)$, determinando <u>esattamente</u> in quale intervallo di frequenze si ha attenuazione.