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1 The SLAM problem

The Simultaneous Localization and Mapping (SLAM) problem is a popular challenge in

mobile robotics. The SLAM problem has been intensively studied in the last 40 years.

Although a number of different solutions have been devised for the wide variety of al-

ternative settings proposed in the literature, such solutions are not yet a ready-to-use

technology. This means that the available techniques and algorithms must be carefully

tailored to the specific setup, which is defined by the sensors of the robot, its motion

model, the type of map to be constructed and several other factors. For a comprehensive

review of the many approaches to the SLAM problem, see [1].

In the SLAM problem, a mobile robot is placed at an unknown location in an unknown

environment. The robot must incrementally build a consistent map of this environment

while simultaneously determining its pose (position and orientation) within this map. In

this project, we will consider the following setup:

• the environment is a 2D planar surface;

• the robot motion model is a unicycle, whose driving inputs are its forward and

angular velocity;

• the robot is equipped with a Lidar (Laser imaging detection and ranging) scanning

sensor, which measures distances with respect to objects or surfaces, on a set of

predefined directions (angle range);

• the map consists of a set of landmarks, which are distinguished points in the

environment, such as corners or poles.

Figure 1 shows a simulated experiment in which the robot travels through a corridor of

the S.Niccolò building, while scanning the surrounding environment with the Lidar sensor

(dashed rays).
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Figura 1: A mobile robot exploring a 2D environment

A single Lidar scan is reported in Figure 2. The maximum range is equal to 10m, while

the angle resolution is 1 deg, from −90o to 90o. For example, the detection of corners can

be performed by extracting the local minima of the Lidar scan (with some special care:

not all minima are equal...), which correspond to the red points in Figure 2. The detected

landmarks are reported in red on the map, in Figure 3.

1.1 Robot motion model

The mobile robot moves in a 2D environment, described by a Cartesian (x, y) reference

frame. The robot pose at time t = 0, 1, . . . is defined by its coordinates x(t), y(t) (expressed

in meters) and by its orientation θ(t) with respect to the x axis (expressed in radians).

The unicycle motion model is described by the discrete-time equations

x(t + 1) = x(t) + Tsuf(t) cos θ(t)

y(t+ 1) = y(t) + Tsuf(t) sin θ(t)

θ(t + 1) = θ(t) + Tsua(t)
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Figura 2: Range measurements with corner detection (red points).
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Figura 3: The detected landmarks (red points) extracted from the Lidar scan (dashed

lines), assuming to know the robot pose (black dot).

where uf(t) is the forward velocity of the robot at time t, ua(t) is the angular velocity of

the robot at time t, and Ts is the sampling time.

The odometry of the robot returns the measured values of the forward and angular ve-

locity of the robot, hereafter denoted by ûf(t) and ûa(t). In practice, the odometric



measurements are corrupted by encoder errors, wheels slippage, terrain unevenness and

other noise sources. In this work, it is assumed that such errors just add up to the nominal

values, i.e.

ûf(t) = uf(t) + wf(t)

ûa(t) = ua(t) + wa(t)

where the vector w(t) = [wf(t) wa(t)]
′ is modeled as a white process, with zero mean and

(possibly time-varying) covariance matrix

Q(t) =





σ2
f (t) 0

0 σ2
a(t)



 .

1.2 Lidar sensor model

The Lidar sensor scans the environment, collecting range measurements at predefined an-

gles in clockwise sense. The center of the angle span coincides with the robot orientation.

Let Sα and rα be the angle span and resolution, respectively. Then, the set of Nr =
Sα

rα
+1

angles at which measurements are taken (with respect to the positive x axis) is

αk(t) = θ(t) +
Sα

2
− (k − 1)rα , k = 1, . . . , Nr.

The range distance corresponding to angle αk(t) is denoted by ρk(t). The maximum range

detected by the Lidar is ρmax, so that 0 ≤ ρk(t) ≤ ρmax, ∀t, k. Figure 4 shows a single

range-angle pair (ρk(t), αk(t)) measured by the robot.

The Lidar measurements are corrupted by additive noise, which means that the available

range measurements can be written as

mρk(t) = ρk(t) + vρk(t)

mαk
(t) = αk(t) + vαk

(t)

for k = 1, . . . , Nr, where the vector vk(t) = [vρk(t) vαk
(t)]′ is modeled as a white process,

with zero mean and covariance matrix

R =





σ2
ρ 0

0 σ2
α



 .
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Figura 4: A single range-angle pair (ρk(t), αk(t)) measured by the robot.

2 Project organization

This project work is divided in four challenges, corresponding to formulations of the SLAM

problems with increasing difficulty.

(A) SLAM with simulated range measurements with respect to point landmarks and

known data association.

(B) SLAM with simulated range measurements with respect to point landmarks and

unknown data association.

(C) SLAM with simulated Lidar measurements on a real-world map.

(D) SLAM with Lidar measurements taken from a real robot, in a real-world experiment.

The challenges will be assigned sequentially to each group, whenever the group has solved

the previous one. At the end of the challenges, each group must deliver a unique report

explaining the techniques employed and the results obtained in each challenge.



(A) SLAM with simulated range measurements with respect to

point landmarks and known data association

In this first challenge, it is assumed that the environment is populated by point land-

marks, whose number Nland is known a priori. The landmarks are uniquely identified

when they are detected by the robot sensor. This means that whenever a landmark

Lj ∈ IR2, j ∈ {1, . . . , Nland}, is within distance ρmax from the robot, the sensor returns

the pair of measurements mρj (t), mαj
(t), which is associated to the distance and an-

gle bearing of landmark Lj = [Lj,x Lj,y]
′ with respect to the current pose of the robot

z(t) = [x(t) y(t) θ(t)]′. The measurement model is given by

mρj (t) =
√

(Lj,x − x(t))2 + (Lj,y − y(t))2 + vρj (t) (1)

mαj
(t) = atan2{Lj,y − y(t), Lj,x − x(t)} − θ(t) + vαj

(t) (2)

Concerning the robot motion model, it is assumed that the uncertainty affecting the

odometry is larger when the robot turns. In particular, the following model is adopted

for the covariance of the process disturbance w(t)

Q(t) =







Q if |ûa(t)| ≤ ωt

Qturn if |ûa(t)| > ωt

where ωt is a suitable threshold on the angular velocity and the variance σ2
a is typically

much larger in Qturn than in Q.

Objective

Design and implement an Extended Kalman Filter providing an estimate of the robot pose

and landmark positions, at every time t, based on the range measurements mρj (t), mαj
(t)

and odometric data ûf(t), ûa(t). Denote the state vector of the EKF as

z(t) = [x(t) y(t) θ(t) L1,x L1,y . . . LNland,x LNland,y]
′ ∈ IR3+2Nland

=
[

zu(t) | zl(t)
]

′

where zu(t) ∈ IR3 contains the robot pose and zl(t) ∈ IR2Nland the landmark coordinates.

For a meaningful comparison with the ground truth, assume the initial condition of the



EKF equal to the true initial robot pose. Pick any reasonable initial value for the landmark

positions (e.g., Lj = [0 0]′, ∀j). This amounts to choose

ẑ(0| − 1) = [x(0) y(0) θ(0) | 01×2Nland
]′.

For the initial covariance matrix, a reasonable choice is

P (0| − 1) =





P u(0| − 1) 0

0 P l(0| − 1)





where P u(0|−1) = diag([λ1 λ2 λ3]), with λi, i = 1, 2, 3, sufficiently small (recall the initial

pose is assumed to be known), and P l(0| − 1) = ηI2Nland×2Nland
, with η sufficiently large

to cover the entire environment. In order to avoid large linearization errors due to wrong

landmark initialization, the first time a landmark is detected it is advisable to insert in

the state vector the landmark coordinates inferred from the range measurement and the

robot pose, before performing the correction step associated to the corresponding range

measurement.

Data files

The files data point land 1.npz and data point land 2.npz contain data from two

simulated experiments in the same environment. The only difference between the two

experiments is the maximum range of the Lidar sensor, which is ρmax = 10m in the first

experiment and ρmax = 5m in the second.

The files contain the following data (all arrays and matrices are in numpy format).

• The Python dictionary Meas contains the measurements collected by the Lidar.

Specifically:

– the array Meas[’range’][t] contains the range measurements mρj (t);

– the array Meas[’angle’][t] contains the angles mαj
(t) at which range mea-

surements are taken with respect to the robot pose;

– the array Meas[’land’][t] contains the landmark indexes j corresponding to

the range and angle measurements mρj (t), mαj
(t), collected at time t (landmark

indexes j range from 1 to Nland).



• The arrays Uf and Ua contain the sequences of measured robot velocities ûf(t), ûa(t)

returned by the odometry of the robot.

• The scalars Ts and Nland, for the sampling time Ts and number of ladmarks Nland.

• The matrices Q, Qturn and R, corresponding to the covariances Q, Qturn and R,

respectively. The scalar wturn contains the threshold ωturn.

• The ground truth data, to be used only for comparison purposes. In particular:

– the matrix Pose, whose columns contain the sequences x(t), y(t) and θ(t) of

the robot pose;

– the matrix Landmarks, in which each row contains the x − y coordinates of a

landmark (since in Python row numbers start from 0, the i-th row corresponds

to the identification number i+1 of the landmark, returned in Meas[’land’]).

Report

Compare the estimated robot trajectory and orientation with the ground truth (true

robot pose) and with the corresponding estimates obtained by integrating the (noisy)

robot odometry.

Verify the consistency of the estimates by checking if the pose estimation errors lie in-

side the corresponding 3σ confidence intervals. For the landmarks, check if at the final

time instant the true landmark position belongs to the corresponding confidence ellipses,

defined as

Ej = {Lj ∈ IR2 : (Lj − L̂j)
′P−1

j (Lj − L̂j) < rχ}

where L̂j is the estimate of the j-th landmark location at the end of the simulation,

Pj ∈ IR2×2 is the corresponding covariance matrix returned by the EKF, and rχ is the

value of the inverse χ2 cumulative distribution function corresponding to the desired

confidence level (e.g., for a 99% probability level, rχ = 9.21).

Compare the results obtained from the two data sets. In the second experiment, what

happens when the robot returns to its initial position? How can it be explained?



(B) SLAM with simulated range measurements with respect to

point landmarks and unknown data association

A key problem in robot navigation based on landmarks is to uniquely identify a perceived

landmark. Artificial landmarks can be designed in order to make this identification easy

(like QR codes, AprilTags, etc.). However, in natural environment commonly employed

landmarks, like corners or furnitures, are often indistinguishable. Therefore, it is impor-

tant to: (i) establish if a detected landmark is a new element to be added to the map or

it is among those already present in the map; (ii) in the latter case, correctly associate

the detected landmark to the existing one. Making errors in this case can dramatically

deteriorate the performance of the SLAM algorithm. If associations are not detected, the

map will be populated of many spurious landmarks and the robot will eventually be una-

ble to correct the odometry errors using the environmental measurements. On the other

hand, wrong associations will generate incorrect map estimates, with respect to which it

will be impossible to localize the robot. Hence, data association is a crucial task that

must be performed carefully.

Data association with Mahalanobis distance

A common method for performing data association is based on maximum likelihood. The

idea is to compute, for each pair of range-angle measurements at time t, the likelihood

that such measurements are associated to one of the previously detected landmarks. If

the resulting maximum likelihood is above a certain threshold, it will be associated to the

corresponding landmark. Conversely, if all likelihoods are below another threshold, the

measurement is used to insert a new landmark in the map. Notice that when the maximum

likelihood lies between the two thresholds, the measurement is simply discarded. In fact,

it is better to avoid processing a measurement when its data association has a significant

probability to be incorrect.

Consider a vector x ∈ IRn and a Gaussian distribution in IRn with mean µ and covariance

matrix P . Then, by observing that P−1/2(x − µ) is a standard Gaussian vector (with

zero mean and unitary covariance), one has that d = (x− µ)′P−1(x− µ) is a χ2 random



variable with n degrees of freedom. The variable d is also called the Mahalanobis distance

of vector x from the distribution N (µ, P ).

By using the above idea, we can compute the Mahalanobis distance of the measurements

mρj (t), mαj
(t) from its predicted distribution at time t provided by the EKF, assuming

the measurement is associated to landmark Lk. This amounts to

dj,k(t) = δj,k(t)
′[Hk(t)P (t|t− 1)H ′

k(t) +R]−1δj,k(t)

where

δj,k(t)=





mρj (t)−
√

(L̂k,x(t|t− 1)− x̂(t|t− 1))2 + (L̂k,y(t|t− 1)− ŷ(t|t− 1))2

mαj
(t)− atan2{L̂k,y(t|t− 1)− ŷ(t|t− 1), L̂k,x(t|t− 1)− x̂(t|t− 1)}+ θ̂(t|t− 1)



,

P (t|t − 1) is the predicted covariance matrix of the EKF, and Hk(t) is the Jacobian

matrix of the nonlinear measurement model (1)-(2), computed in the predicted state

values x̂(t|t− 1), ŷ(t|t− 1), θ̂(t|t− 1), L̂k,x(t|t− 1), L̂k,y(t|t− 1).

Now, let

d∗j = min
k

dj,k

where the minimum is taken with respect to all landmark indexes k that are present in

the map at time t− 1. Then, by choosing two suitable thresholds τ1 < τ2, corresponding

to the probability levels for association to an existing landmark and generation of a new

landmark, respectively, one has that

• if d∗j < τ1, the measurement mρj (t), mαj
(t) is associated to landmark Lk∗j

, where

k∗

j = argmin
k

dj,k

• if d∗j > τ2, the measurement mρj (t), mαj
(t) is associated to a new landmark to be

inserted in the map. The predicted state vector is augmented by inserting the new

landmark position

L̂x = x̂(t|t− 1) +mρj (t) cos
(

mαj
(t) + θ̂(t|t− 1)

)

L̂y = ŷ(t|t− 1) +mρj (t) sin
(

mαj
(t) + θ̂(t|t− 1)

)



while the covariance matrix P (t|t − 1) is augmented by inserting the covariance

matrix of the new landmark (usually chosen as λI2×2, with λ a sufficiently large

value).

Finally, in both cases the measurement mρj (t), mαj
(t) is processed in the correction step

of the EKF, with the established landmark association. The procedure is repeated for

every measurement pair mρj (t), mαj
(t), j = 1, . . . , ℓt, where ℓt is the number of landmarks

detected by the Lidar at time t.

As an example, the values of the thresholds can be chosen as τ1 = 5.9915 and τ2 =

13.8155, corresponding respectively to the 95% and the 99.9% confidence levels of the χ2

distribution with 2 degrees of freedom. This means that when a new landmark is inserted

in the map, there is a probability of about 0.1% that the considered measurement refers

to an existing landmark. Different thresholds can be chosen by using the inverse χ2

distribution (in Python, use function chi2.ppf from scipy.stats.distributions).

Objective

Design and implement an Extended Kalman Filter providing an estimate of the robot pose

and landmark positions, at every time t, based on the range measurements mρj (t), mαj
(t)

and odometric data ûf(t), ûa(t). Insert the landmarks progressively into the state vector,

when they are detected for the first time. For comparison with the ground truth, assume

the initial condition of the EKF equal to the true initial robot pose.

Data files

Use the same data files as in challenge (A).

Report

Report the same comparisons as in challenge (A). Annotate if there are significant diffe-

rences between the results obtained in challenges (A) and (B).



(C) SLAM with simulated Lidar measurements on a real-world

map

In the third challenge of this project work, measurements are provided by a Lidar sensor.

The Lidar model is the one described in Section 1.2. At each time t, a set of range-angle

pairs [mρk(t) mαk
(t)]′, with k = 1, . . . , Nr, is available. In order to apply the EKF-based

SLAM algorithm developed for challenge (B), it is necessary to extract the range-angle

measurements that correspond to a potential landmark in the map. This, in turn, requires

to define the types of landmarks that it is useful to place in the map. In particular, one

should prefer landmarks that are clearly identifiable, so that they can be easily recognized

and distinguished from the other landmarks, every time they are detected.

Landmark extraction

In this project, we aim at extracting range measurements corresponding to sharp corners

in the map. By looking at Figures 2 and 3, it is apparent that one way to detect corners is

to look for local minima in the range measurements plot. This can be done, for example, by

using the Python function scipy.signal.find peaks. The relevance of a local minimum

can be evaluated in terms of the “prominence” parameter. The command

scipy.signal.find peaks(-ranges, prominence=prom)

finds all the local minima in the function taking the values ranges, whose prominence

is larger than prom. The minus sign is due to the fact that scipy.signal.find peaks

returns local maxima. The prominence of a minimum measures how much the minimum

stands out from the surrounding signal and is defined as the vertical distance between the

minimum and its highest contour line. Figure 5 shows an example of prominence for a

local minimum.

Care must be taken to consider only local minima corresponding to corners in the map. In

fact, there may be local minima in the range plot which come from the scan of a straight

wall (in this case, the local minimum does not correspond to a corner but to to the point
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Figura 5: A function with two minima. The local minimum in x = 1 has prominence 2.

in the wall which is closest to the robot). One aim of this challenge is to find a meaningful

way to discard such spurious local minima.

Objective

First, write a function taking as inputs the range measurements of a single Lidar scan

and producing as outputs the measurements corresponding to a landmark (a corner in

the map). Suitably tune the prominence parameter to avoid the detection of spurious

landmarks. Find a meaningful way to skip local minima not corresponding to corners.

Then, exploiting the code developed for challenge (B), design and implement a EKF

providing an estimate of the robot pose and landmark positions, at every time t, based

on the Lidar measurements and odometric data. Initialize the EKF as in the previous

challenges (in particular, set the initial robot pose equal to the true one, for the sake of

comparison with the ground truth). If necessary, tune the data association thresholds τ1,

τ2 in order to promote a correct landmark matching.

Data files

The files data sim lidar 1.npz and data sim lidar 2.npz contain data from two si-

mulated experiments within a portion of the San Niccolò building. The two experiments

differ for the level of noise in the Lidar measurements.

The files contain the following data.

• The matrix noisyRangeData contains the range measurements collected by the Li-

dar. The entry noisyRangeData(j,t) contains the range measurement mρj (t).



Ranges exceeding the maximum distance ρmax detectable by the Lidar are set to

−1.

• The vector angles contains the angles spanned by the Lidar. The entry angles(j)

contains the angle mαj
(t) (it is assumed that angles are the same at every time t).

• The vectors Uf, Ua, the matrices Q, Qturn and R, the scalars Ts, wturn, and the

matrix Pose, contain the same quantities as in the data files for challenges (A) and

(B).

• In order to compare the estimated map with a ground truth description of the

environment, the array Obstacles contains a description of the San Niccolò map

which can be plotted by the command PlotMapSN(Obstacles) (function PlotMapSN

is provided along with the data files). Moreover, matrix trueMap contains an ideal

representation of the obstacles in the map extracted from a noiseless version of the

Lidar measurements and robot trajectory. It can be plotted by using the command

ply.plot(trueMap[:,0],trueMap[:,1],’.r’).

Report

Report the same comparisons as in challenges (A) and (B). Moreover, compare the ground

truth maps of the environment described above with those obtained by plotting all the

noisy Lidar scans from: (a) the estimated robot pose; (b) the robot pose obtained by

integrating the robot odometry.
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Neira, Ian Reid, and John J Leonard. Past, present, and future of simultaneous

localization and mapping: Toward the robust-perception age. IEEE Transactions on

robotics, 32(6):1309–1332, 2016.


