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Chapter 1

Bayesian Estimation

In this chapter, we introduce the Bayesian estimation framework, which al-

lows one to compute estimators of quantities modeled as random variables,

based on the observations of other quantities, also described by random vari-

ables. First, the minimum mean square error estimator will be derived. The

special class of linear estimators will be also addressed.

1.1 Notation

We start by recalling the main notation adopted in these notes. A random

variable is denoted by a bold letter, while its realization by the corresponding

standard letter (for example, x is a realization of the random variable x). We

will write x ∈ R
m to define the vector of m random variables [x1 x2 . . .xm]

T

(where the superscript T denotes the vector transpose). The probability

density function (pdf) of x is written as fx (x), while fx,y (x, y) is the joint

pdf of the random variables x and y (notice that the same notation is adopted

when x and y are vectors). The conditional pdf of x, given the observation

of y, is defined as

fx|y(x|y) =
fx,y (x, y)

fy (y)
.

The operator E [·] is the expected value, while E [·|y] denotes the conditional
expectation given the observation of y. The notation x ∼ (mx, Px) means

1



2 CHAPTER 1. BAYESIAN ESTIMATION

that x ∈ R
m is a vector random variable with mean mx = E [x] ∈ R

m

and covariance matrix Px = E
[
(x−mx)(x−mx)

T
]
∈ R

m×m. When we

write x ∼ N (mx, Px), we mean that x is a vector of normally distributed

(Gaussian) random variables, with mean mx and covariance Px.

1.2 Problem formulation

In the Bayesian estimation setting, the objective is to estimate a random

variable x ∈ R
m, by using observations of a random variable y ∈ R

n. Clearly,

the complete knowledge on the stochastic relationship between x and y is

given by the joint probability density function (pdf) fx,y (x, y).

In particular, the aim is to find an estimator x̂ = T (y), where

T (·) : Rn → R
m

Definition 1.1. In the Bayesian setting, an estimator T (·) is unbiased if

E [T (y)] = E [x] .

In order to assess the performance of an estimator, it is necessary to

introduce a criterion to evaluate the quality of the estimate.

Definition 1.2. We define Bayes risk function the quantity

Jr = E [d(x, T (y))] =

∫ +∞

−∞

∫ +∞

−∞

d(x, T (y))fx,y (x, y) dxdy

where d(x, T (y)) denotes the distance between x and its estimate T (y),

according to a suitable metric.

Since the distance d(x, T (y)) is a random variable, the estimation prob-

lem can be formulated in terms of the minimization of its expected value.

This boils down to finding the estimator T ∗(·) such that

T ∗(·) = argmin
T (·)

Jr.
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1.3 Minimum Mean Square Error Estimator

A standard choice for the distance d(·) is the quadratic error

d(x, T (y)) = ‖x− T (y)‖2 .

Definition 1.3. The minimum Mean Square Error (MSE) estimator is de-

fined as x̂MSE = T ∗(·), where

T ∗(·) = argmin
T (·)

E
[
‖x− T (y)‖2

]
. (1.1)

Notice that in (1.1), the expected value is computed with respect to both

random variables x and y, and hence it is necessary to know the joint pdf

fx,y (x, y).

The following fundamental result provides the solution to the minimum

MSE estimation problem.

Theorem 1.1. Let x be a random variable and y a vector of observations.

The minimum MSE estimator x̂MSE of x based on y is equal to the condi-

tional expected value of x given y:

x̂MSE = E [x|y] =
∫ +∞

−∞

xfx|y(x|y)dx. (1.2)

Proof

In order to solve problem (1.1), we need to find the estimator T (·) minimizing

E
[
‖x− T (y)‖2

]
=

∫ +∞

−∞

∫ +∞

−∞

‖x− T (y)‖2 fx,y (x, y) dxdy

=

∫ +∞

−∞

∫ +∞

−∞

‖x− T (y)‖2 fx|y(x|y)dxfy(y)dy

=

∫ +∞

−∞

E
[
‖x− T (y)‖2 |y

]
fy(y)dy.

Since both E
[
‖x− T (y)‖2 |y

]
and fy(y) are nonnegative for every y ∈ R

n,

and the latter does not depend on T (·), problem (1.1) boils down to

T ∗(·) = argmin
T (·)

E
[
‖x− T (y)‖2 |y

]
. (1.3)
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Now, by exploiting the fact that E [T (y)|y] = T (y), one has

E
[
‖x− T (y)‖2 |y

]
= E

[
(x− T (y))T (x− T (y))|y

]
=

= E
[
xTx|y

]
− T (y)TE [x|y]−E [x|y]T T (y) + T (y)TT (y) =

= E [‖x‖2|y]− ‖E [x|y] ‖2 + ‖E [x|y]− T (y)‖2

whose minimum is clearly achieved by choosing T (y) = E [x|y]. �

The previous result states that the estimator minimizing the MSE is the

a posteriori expected value of x, given the observation of y, which is indeed

a function of y. Since it is easy to prove that

E [E [x|y]] = E [x] ,

one can conclude that the minimum MSE estimator is always unbiased.

The minimum MSE estimator has other attractive properties. In partic-

ulare, if we consider the matrix

Q(x, T (y)) = E
[
(x− T (y))(x− T (y))T

]
,

it can be shown that:

• x̂MSE is the estimator minimizing (in matricial sense) Q(x, T (y)), i.e.

Q(x, x̂MSE) ≤ Q(x, T (y)), ∀T (y)

• x̂MSE minimizes every monotonically increasing scalar function of ma-

trix Q(x, T (y)), like for example the trace of Q, corresponding to the

MSE, E
[
‖x− T (y)‖2

]
.

The computation of the minimum MSE estimator may be difficult, or

even intractable, in practical problems, because it requires the knowledge of

the joint pdf fx,y (x, y) and the computation of the integral (1.2).

Example 1.1. Consider two random variables x and y, whose joint pdf is

given by

fx,y (x, y) =







−3
2
x2 + 2xy if 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere
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Let us find the minimum MSE estimator of x based on one observation of y.

From Theorem 1.1, we know that

x̂MSE =

∫ +∞

−∞

xfx|y(x|y)dx.

First, we need to compute

fx|y(x|y) =
fx,y (x, y)

fy (y)
.

The marginal pdf of y can be calculated from the joint pdf as

fy (y) =

∫ 1

0

−3
2
x2 + 2xydx

= −x
3

2
+ yx2

∣
∣
∣
∣

x=1

x=0

= y − 1

2
.

Hence, the conditional pdf is given by

fx|y(x|y) =







− 3

2
x2+2xy

y− 1

2

if 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere

Now, it is possible to compute the minimum MSE estimator

x̂MEQM =

∫ 1

0

x
−3

2
x2 + 2xy

y − 1
2

dx

=
1

y − 1
2

(

−3
8
x4 +

2

3
x3y

)∣
∣
∣
∣

x=1

x=0

=
2
3
y − 3

8

y − 1
2

.

△

1.4 Linear Mean Square Error Estimator

We now restrict our attention to the class of affine linear estimators

T (y) = Ay + b (1.4)

in which the matrix A ∈ R
m×n and the vector b ∈ R

m are the coefficients of

the estimator to be determined. Among all estimators of the form (1.4), we

aim at finding the one minimizing the MSE.
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Definition 1.4. The Linear Mean Square Error (LMSE) estimator is defined

as x̂LMSE = A∗y + b∗, where

A∗, b∗ = argmin
A,b

E
[
‖x− Ay − b‖2

]
. (1.5)

Theorem 1.2. Let x be a random variable and y a vector of observations,

such that

E [x] = mx, E [y] = my

E





(

x−mx

y −my

)(

x−mx

y −my

)T


 =

(

Px Pxy

P T
xy Py

)

.

Then, the solution of problem (1.5) is given by

A∗ = PxyP
−1
y ,

b∗ = mx − PxyP
−1
y my.

and hence, the LMSE estimator x̂LMSE of x is given by

x̂LMSE = mx + PxyP
−1
y (y −my).

Proof

First, observe that the cost to be minimized is

E
[
‖x− Ay − b‖2

]
= tr

(
E
[
(x− Ay − b)(x− Ay − b)T

])
.

Since the trace is a monotonically increasing function, solving problem (1.5)

is equivalent to find A∗, b∗ such that

E
[
(x− A∗y − b∗)(x− A∗y − b∗)T

]
≤ E

[
(x− Ay − b)(x− Ay − b)T

]
∀A, b
(1.6)
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Therefore, by denoting the estimation error as x̃ = x−Ay − b, one gets

E
[
x̃x̃T

]
= E [(x−mx − A(y −my) +mx − Amy − b)

× (x−mx − A(y −my) +mx − Amy − b)T
]

= Px + APyA
T − PxyA

T −APyx

+ (mx − Amy − b)(mx − Amy − b)T

= Px + APyA
T − PxyA

T −AP T
xy + PxyP

−1
y P T

xy − PxyP
−1
y P T

xy

+ (mx − Amy − b)(mx − Amy − b)T

= Px − PxyP
−1
y P T

xy +
(
PxyP

−1
y −A

)
Py

(
PxyP

−1
y − A

)T

+ (mx − Amy − b)(mx − Amy − b)T . (1.7)

Observe that the last two terms of the previous expression are positive

semidefinite matrices. Hence, the solution of problem (1.6) is obtained by

choosing A∗, b∗ such that the last two terms are equal to zero, i.e.

A∗ = PxyP
−1
y ;

b∗ = mx − Amy = mx − PxyP
−1
y my.

This concludes the proof. �

The LMSE estimator is unbiased because the expected value of the esti-

mation error is equal to zero. In fact,

E [x̃] = E [x− x̂LMSE] = mx −E
[
mx + PxyP

−1
y (y −my)

]

= mx −mx + PxyP
−1
y E [y −my] = 0.

By setting A = A∗ and b = b∗ in the last expression in (1.7), we can

compute the variance of the estimation error of the LMSE estimator, which

is equal to

E
[
x̃x̃T

]
= Px − PxyP

−1
y P T

xy.

It is worth noting that, by interpreting Px as the a priori uncertainty on x,

Px − PxyP
−1
y P T

xy represents the new uncertainty on x after having observed
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the measurement y. Since the matrix PxyP
−1
y P T

xy is always positive semidef-

inite, the effect of the observations is that to reduce the uncertainty on x.

Moreover, such a reduction depends on the size of Pxy, i.e., on the correla-

tion between the measurement y and the unknown x (notice that there is no

uncertainty reduction when Pxy = 0, as expected).

It is worth stressing that in order to compute the LMSE estimator it is

not necessary to know the joint pdf fx,y (x, y), but only the first and second

order statistics mx, my, Px, Py, Pxy.

An interesting property of the LMSE estimator is that the estimation

error x̃ is uncorrelated to the observations y. In fact, one has

E
[
x̃yT

]
= E

[(
x−mx − PxyP

−1
y (y −my)

)
yT
]

= Pxy − PxyP
−1
y Py = 0.

(1.8)

This result is often known as orthogonality principle. Conversely, it is pos-

sible to show that if a linear estimator satisfies the orthogonality condition

E
[
x̃yT

]
= 0, then it is the LMSE estimator.

Example 1.2. Let y1,y2 be two noisy observations of the scalar random

variable x, having mean mx and variance σ2
x:

y1 = x+ ε1 ,

y2 = x+ ε2 .

Let ε1, ε2 be two independent random variables, with zero mean and variance

σ2
1, σ

2
2, respectively. Under the assumption that x and εi, i = 1, 2, are

independent, we aim at computing the LMSE estimator of x.

Define the vectors y = (y1 y2)
T and ε = (ε1 ε2)

T , and rewrite the

measurement equations in the form

y = 1x+ ε,

where 1 = (1 1)T .

First, let us compute the mean of y

E [y] = E [1x+ ε] = 1mx
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In order to find the estimate x̂LMSE, we have to compute the covariance

matrices Pxy and Py. We get

Pxy = E
[

(x−mx) (1 (x−mx) + ε)T
]

= σ2
x1

T ,

because x and ε are uncorrelated. Moreover,

Py = E
[

(1 (x−mx) + ε) (1 (x−mx) + ε)T
]

= 1 σ2
x 1

T + Pε,

where

Pε =

(

σ2
1 0

0 σ2
2

)

is the covariance matrix of ε. Finally, let us compute the inverse of the

measurement covariance matrix

P−1
y =

[

σ2
x

(

1 1

1 1

)

+

(

σ2
1 0

0 σ2
2

)]−1

=

(

σ2
x + σ2

1 σ2
x

σ2
x σ2

x + σ2
2

)−1

=
1

σ2
x(σ

2
1 + σ2

2) + σ2
1σ

2
2

(

σ2
x + σ2

2 −σ2
x

−σ2
x σ2

x + σ2
1

)

.

Hence, the LMSE estimator is given by

x̂LMSE = mx + PxyP
−1
y (y − 1mx)

= mx + σ2
x1

TP−1
y (y − 1mx)

= mx +
σ2
x

σ2
x(σ

2
1 + σ2

2) + σ2
1σ

2
2

(1 1)

(

σ2
x + σ2

2 −σ2
x

−σ2
x σ2

x + σ2
1

)(

y1 −mx

y2 −mx

)

= mx +
1

σ2
1 + σ2

2 +
σ2

1
σ2

2

σ2
x

(σ2
2 σ2

1)

(

y1 −mx

y2 −mx

)

= mx +
σ2
2y1 + σ2

1y2 −mx(σ
2
1 + σ2

2)

σ2
1 + σ2

2 +
σ2

1
σ2

2

σ2
x
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=

mxσ2

1
σ2

2

σ2
x

+ σ2
2y1 + σ2

1y2

σ2
1 + σ2

2 +
σ2

1
σ2

2

σ2
x

=

mx

σ2
x
+ 1

σ2

1

y1 +
1
σ2

2

y2

1
σ2
x
+

σ2

1
+σ2

2

σ2

1
σ2

2

=

mx

σ2
x
+ 1

σ2

1

y1 +
1
σ2

2

y2

1
σ2
x
+ 1

σ2

1

+ 1
σ2

2

.

Notice that each measurement is weighted with a weight that is inversely

proportional to the variance of the noise affecting the measurement. More-

over, the a priori information on x (i.e., its mean mx and variance σ2
x), is

treated as an additional observation of x. In particular, it is interesting to

observe that if σ2
x → +∞ (i.e., the a priori information on x is completely un-

reliable), the estimate x̂LMSE takes on the same form of the Gauss-Markov

parametric estimate of the mean mx. This highlights the relationship be-

tween Bayesian and parametric estimation. △

1.5 Bayesian estimation in the Gaussian frame-

work

Now let us consider the case in which the random variables x,y are jointly

Gaussian, with mean and covariance matrix defined as in Theorem 1.2. This

means that the joint pdf of x and y is given by

fξ (ξ) =
1

(2π)(n+m)/2(detPξ)1/2
e−

1

2
(ξ−mξ)

TP−1

ξ
(ξ−mξ), (1.9)

where

ξ =

(

x

y

)

, mξ =

(

mx

my

)

, Pξ =

(

Px Pxy

P T
xy Py

)

. (1.10)

The following result holds.

Theorem 1.3. Let x, y be distributed according to (1.9)-(1.10). Then, the

conditional expected value of x given the observation of y is given by

E [x|y] = mx + PxyP
−1
y (y −my).
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Moreover, the minimum covariance matrix of the estimation error achievable

by any Bayesian estimator is equal to Px − PxyP
−1
y P T

xy.

Proof

Let us introduce the new variable

x̂ = x− PxyP
−1
y (y −my).

One has that E [x̂] = E [x] = mx, and

Px̂ = E
[
(x̂−mx)(x̂−mx)

T
]

= E
[
(x−mx − PxyP

−1
y (y −my))(x−mx − PxyP

−1
y (y −my))

T
]

= Px − PxyP
−1
y P T

xy − PxyP
−1
y P T

xy + PxyP
−1
y PyP

−1
y P T

xy

= Px − PxyP
−1
y P T

xy.

Moreover, if we compute the cross-covariance between x̂ and y, we obtain

Px̂y = Pxy − PxyP
−1
y Py = 0,

meaning that x̂ and y are uncorrelated. Since x̂ is by definition a linear

combination of Gaussian random variables, it is itself a Gaussian random

variable. Therefore, x̂ and y are also independent (being both jointly Gaus-

sian and uncorrelated), and one can write their joint pdf as

fx̂,y (x̂, y) = fx̂ (x̂) fy (y) . (1.11)

Now, observe that the pairs of random variables (x,y) and (x̂,y) satisfy the

linear relationship

(

x−mx

y −my

)

=

(

I PxyP
−1
y

0 I

)(

x̂−mx

y −my

)

in which the transformation matrix has determinant equal to 1. Hence, one

gets

fx,y (x, y) = fx̂,y
(
x− PxyP

−1
y (y −my), y

)

= fx̂
(
x− PxyP

−1
y (y −my)

)
fy (y)
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where the last equality comes from (1.11). Then, we can write the conditional

pdf of x given y as

fx|y(x|y) =
fx,y (x, y)

fy (y)
=

fx̂
(
x− PxyP

−1
y (y −my)

)
fy (y)

fy (y)

= fx̂
(
x− PxyP

−1
y (y −my)

)

=
1

(2π)n/2(detPx̂)1/2
e−

1

2
(x−PxyP

−1
y (y−my)−mx̂)

TP−1

x̂
(x−PxyP

−1
y (y−my)−mx̂).

By recalling the mean and covariance matrix of x̂, one immediately has the

result. �

According to Theorem 1.3, we can conclude that: if x,y are Gaussian vari-

ables, the LMSE estimator coincides with the minimum MSE estimator, i.e.,

x̂MSE = x̂LMSE. In other words, in the Gaussian case the minimum MSE

estimator is a linear function of the observations y.

1.6 Exercises

1.1. Consider two random variables x and y, whose joint pdf is

fx,y (x, y) =

{

−32 x2 + 2xy 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

0 elsewhere

Find the LMSE estimate x̂LMSE of x, based on one observation of y.

Plot the estimate x̂LMSE computed above and the minimum MSE estimate

x̂MSE derived in Example 1.1, as functions of y (the realization of y).

Compute the expected values of both estimates and compare them with the

a priori mean E [x].

1.2. Let x and y be two random variables with joint pdf

fx,y(x, y) =







1

12
(x+ y)e−y 0 ≤ x ≤ 4, y ≥ 0

0 elsewhere

Assume that an observation y of y is available.
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a) Find the estimators x̂MSE and x̂LMSE of x, and plot them as functions

of the observation y.

b) Compute the MSE of the estimators obtained in item a) [Hint: use

MATLAB to compute the integrals].

1.3. Let x be a random variable and assume the following measurement is

available

y = ln

(
1

x

)

+ v

where v is a random variable, whose pdf is given by fv (v) =

{

e−v v ≥ 0

0 v < 0
.

a) Assume that x is independent from v, and its a priori pdf is given by

fx(x) =

{

1 0 ≤ x ≤ 1

0 altrimenti
.

Find the MSE and LMSE estimators of x.

b) Plot the estimates obtained in items a) as functions of the observation

y of y.
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Chapter 2

State estimation for linear

systems

This chapter addresses the problem of state estimation for linear stochastic

systems. First, the general framework of stochastic dynamic systems is intro-

duced and the state estimation problem is formulated. In the second part of

the chapter, the solution of the state estimation problem for linear systems

is derived and its properties are discussed in detail.

2.1 Notation

Let us briefly recall some basic notations that will be used in this chapter.

A discrete-time stochastic process (herafter, often abbreviated as s.p.) is a

sequence of random variables x(t), with t ∈ {t1, t2, . . . , tk, . . . }. For simplicity

of notation, we will write x(k) instead of x(tk), with k ∈ Z. Hence, summing

up, the s.p. x(t) is a sequence of real random variables, indexed by the

discrete time t ∈ Z. The pdf of a s.p. x(t) is denoted by fx (x(t)). Its

mean and covariance function are defined as mx(t) = E [x(t)] and Rx(t, s) =

E
[
(x(t)−mx(t))(x(s)−mx(s))

T
]
, respectively. For a (weakly) stationary

stochastic process, the mean is constant , mx(t) = mx ∀t, and the covariance

function depends only on the lag between the time instants τ = t − s, i.e.,

15
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Rx(t, s) = Rx(t− s) = Rx(τ)

A white stochastic process is a sequence of independent random variables,

hence it is completely defined by its mean mx(t) and its variance matrix

Rx(t, t) (being Rx(t, s) = 0 for t 6= s, due to independence). If mx(t) = mx

and Rx(t, t) = Rx, ∀t, then the white process is also stationary. We briefly

denote a white stochastic process as x(t) ∼WP (mx, Rx).

2.2 State space representation of stochastic

systems

The state variables (or simply the state) of a dynamic system are the variables

that one needs to know at a generic time t, to determine the evolution of the

system at all future times τ > t, provided that the input signal u(τ), τ > t,

is known. For deterministic discrete-time systems, this allows one to write

the input-state-output (i/s/o) representation






x(t+ 1) = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)
(2.1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input and y(t) ∈ R
p is

the output. For linear time-invariant (LTI) systems, model (2.1) boils down

to 





x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where A,B,C,D are constant matrices of suitable dimensions.

When the involved signals are stochastic processes, the system becomes a

stochastic system and the state can be interpreted in terms of an important

class of stochastic processes.

Definition 2.1 (Markov process). The s.p. x(t) is a Markov process if, at

every time t ∈ Z, the conditional pdf of x(t) is such that

fx (x(t+ 1)|x(t), x(t− 1), · · · , x(1)) = fx (x(t + 1)|x(t))
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The above definition states that for a Markov process the conditional pdf

with respect to past observations is equal to the conditional pdf with respect

to the most recent one. In other words, it is not necessary to keep track of all

past observations, because the state vector x(tk) contains all the necessary

information to compute the a posteriori pdf of the next state x(tk+1).

Hereafter, we consider the following general class of systems:







x(t + 1) = f(x(t), u(t), w(t))

y(t) = h(x(t), u(t)) + v(t)
(2.2)

where w(t) ∈ R
d and v(t) ∈ R

p are stochastic processes, on which we make

the following assumption.

Assumption 2.1. For system (2.2), we assume that:

i) E

[(

w(t)

v(t)

)]

=

[

0

0

]

;

ii) E





(

w(t)

v(t)

)(

w(t)

v(t)

)T


 =

[

Q 0

0 R

]

where Q and R are the covariance

matrices of w(t) and v(t), respectively;

iii) w(t) and v(t) are independent white processes;

iv) x(0) is a random vector, independent from w(t) and v(t), with mean

m0 and covariance matrix P0;

v) u(t) is a deterministic (known) signal.

The s.p. w(t) is often referred to as disturbance process and models the

stochastic component of the dynamic model f(·) (unmodeled dynamics, dis-

turbances, etc.). The s.p. v(t) is the so-called measurement noise, which

represents the error of the sensor measuring the output function h(·). It is

easy to see that under Assumption 2.1, the state x(t) of model (2.2) is a

Markov process.
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For an LTI system, model (2.2) can be written as







x(t+ 1) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) +Du(t) + v(t)
(2.3)

where A ∈ R
n×n, B ∈ R

n×m, G ∈ R
n×d, C ∈ R

p×n, D ∈ R
p×m, and

(

w(t)

v(t)

)

∼ WP

((

0

0

)

,

(

Q 0

0 R

))

(2.4)

with Q ∈ R
d×d, R ∈ R

p×p. Hereafter, it is assumed for simplicity D = 0,

as it occurs in many real systems1. We will refer to the 6-tuple M =

{A,B,G,C,Q,R} as the model of the stochastic system (2.3)-(2.4).

Let us now state a result concerning the mean and covariance functions

of the processes x(t) and y(t), defined by system (2.3)-(2.4).

Theorem 2.1. Consider system (2.3) and assume for simplicity D = 0.

Then, under Assumption 2.1,one has

mx(t) = Atm0 +

t−1∑

i=0

At−1−iBu(i) (2.5)

my(t) = Cmx(t) (2.6)

Rx(t+ τ, t) = AτRx(t, t) , AτP (t) (2.7)

Ry(t+ τ, t) =

{

CAτP (t)CT if τ > 0

CP (t)CT +R if τ = 0
(2.8)

where

P (t+ 1) = AP (t)AT +GQGT . (2.9)

Proof

By taking the expected value of the first equation in (2.3), one gets

E [x(t + 1)] = AE [x(t)] +Bu(t) +GE [w(t)]

1The extension to the case D 6= 0 is trivial, as one can replace y(t) with y(t)−Du(t),

being u(t) known.
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which results in

mx(t+ 1) = Amx(t) +Bu(t). (2.10)

Then, (2.5) follows from the total response of the LTI deterministic system

(2.10). Similarly, one obtains (2.6).

Let us define x̃(t) = x(t)−mx(t). By using (2.10), one has

Rx(t+ τ, t) =E
[
(x(t + τ)−mx(t+ τ))(x(t)−mx(t))

T
]
=

=E
[
(Ax(t + τ − 1) +Gw(t+ τ − 1)− Amx(t+ τ − 1))x̃(t)T

]
=

=E
[
(Ax̃(t+ τ − 1) +Gw(t+ τ − 1))x̃(t)T

]
=

=AE
[
x̃(t+ τ − 1)x̃(t)T

]
+GE

[
w(t+ τ − 1)x̃(t)T

]

︸ ︷︷ ︸

0 for τ≥1

=

=ARx(t+ τ − 1, t)

where we have exploited the fact that w(t) is a white process and hence

x̃(t), which depends on samples of w up to time t − 1, is uncorrelated with

w(t+ τ − 1), ∀τ > 0. By iterating backwards, one gets

Rx(t+ τ, t) =ARx(t+ τ − 1, t) =

=A2Rx(t+ τ − 2, t) =

...

=AτRx(t, t), for τ ≥ 1.

For τ = 0 one has

P (t+ 1) = Rx(t+ 1, t+ 1) = E
[
x̃(t+ 1)x̃(t+ 1)T

]
=

= E
[
(Ax̃(t) +Gw(t))(Ax̃(t) +Gw(t))T

]
=

= AP (t)AT +GQGT

where once again we exploited E
[
x̃(t)w(t)T

]
= 0.

Finally, (2.8) can be proven in the same way, by exploiting (2.7) and the

fact that v(t) is uncorrelated with w(t) and x(0), and hence also with x̃(t). �
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Remark 2.1. It is worth stressing that all the results in Theorem 2.1 can

be easily extended to the case of a linear time-varying system, in which the

matrices of modelM change with time. For example, if the first equation in

(2.3) is x(t + 1) = A(t)x(t) + G(t)w(t) (we set B = 0 for simplicity), (2.5)

becomes

mx(t) = A(t− 1)A(t− 2) · · ·A(0)m0 =
t−1∏

i=0

A(i)m0

The other equations can be amended in a similar way.

The matrix P (t) = Rx(t, t) is the autocovariance matrix of process x(t)

and equation (2.9), which describes its evolution in time, is called recursive

Lyapunov equation. The fact that both mx(t) and P (t) are not constant in

time implies that in general both x(t) and y(t) are not stationary process.

The following result provides conditions under which they are asymptotically

stationary.

Theorem 2.2. Let λi i = 1 · · ·n, be the eigenvalues of A and assume that

|λi| < 1, ∀i, (i.e., the system is asymptotically stable). Then:

lim
t→∞

P (t) = P̄ ∀P (0) = P0 > 0

where P̄ = P̄ T ≥ 0 is the unique solution of the Lyapunov equation

P̄ = AP̄AT +GQGT .

Moreover, x(t) and y(t) are asymptotically stationary stochastic processes

with zero mean and covariance matrices

Rx(τ) = Aτ P̄ , τ ≥ 0,

Ry(τ) =

{

CAτ P̄ T if τ > 0

CP̄CT +R if τ = 0
.

2.3 The state estimation problem

Consider the linear stochastic system






x(t+ 1) = Ax(t) +Bu(t) +Gw(t)

y(t) = Cx(t) + v(t)
(2.11)
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and let Assumption 2.1 hold. We are now ready to formulate the state

estimation problem for system (2.11).

Problem 2.1. (State estimation problem). At each time t, find an estimate

of x(t), based on the knowledge of the input sequence {u(0), u(1), . . . , u(t−1)}
and the output measurements

Y t = {y(0), y(1), · · · , y(t)}.

Being both the data set Y t and the quantity to be estimated x(t) random

variables, this is clearly a Bayesian estimation problem. Therefore, the MSE

estimate x̂(t), minimizing the mean square error E [||x(t)− x̂(t)||2], is the

conditional mean with respect to the data, i.e., x̂MSE(t) = E [x(t)|Y t].

In order to compute the MSE solution, it is necessary to know the joint

pdf of the state x(t) and the data Y t. If we restrict our attention to linear

estimator, we can compute the linear MSE solution, which requires only

knowledge of the mean and covariance functions of the involved processes.

In fact, one has

x̂LMSE(t) = mx(t) + Px(t),Y t [PY t ]−1(Y t −mY t), (2.12)

where PY t is the covariance matrix of the data vector

Y t =










y(0)

y(1)
...

y(t)










,

while Px(t),Y t is the cross-covariance matrix between x(t) and Y t. Although

such quantities can be computed from model (2.11), by using Assumption

2.1, equation (2.12) cannot be employed in practice because the dimen-

sion of the involved covariance matrices grows as time passes. In fact,

PY t ∈ R
(t+1)p×(t+1)p and for large values of t the computation of its inverse is

practically infeasible.
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In order to provide a computationally efficient approach to solve Problem

2.1, we aim at finding a recursive solution of the form

x̂(t + 1) = Φt x̂(t) + Ψt y(t+ 1)

where Φt and Ψt are suitable time-varying matrices which are used to com-

pute a linear combination of the current estimate x̂(t) and the next measure-

ment y(t + 1), providing the new estimate x̂(t + 1), based on the data set

Y t+1. The key idea is that the current estimate x̂(t) embeds all the informa-

tion provided by the data up to time t, Y t. Clearly, the gains Φt and Ψt must

be computed in order to minimize the mean square estimation error. The

solution is based on a 2-step procedure and is known as the Kalman Filter

(KF).

2.4 The Kalman Filter

Let us first introduce the notation that will be used in the construction of

the LMSE state estimator. We denote by:

• x̂(t|t) the LMSE estimate of x(t) based on Y t;

• x̂(t + 1|t) the LMSE estimate of x(t + 1) based on Y t (LMSE 1-step

ahead prediction);

• P (t|t) = E
[
(x(t)− x̂(t|t))(x(t)− x̂(t|t))T

]
∈ R

n×n the covariance ma-

trix of the estimation error at time t;

• P (t+ 1|t) = E
[
(x(t + 1)− x̂(t+ 1|t))(x(t+ 1)− x̂(t+ 1|t))T

]
∈ R

n×n

the covariance matrix of the 1-step ahead prediction error at time t.

We aim at constructing the LMSE estimate of x(t) through a two-step re-

cursive procedure, also known as prediction-correction algorithm:

1. Prediction: Given x̂(t|t), P (t|t) and the model M, compute x̂(t +

1|t), P (t+ 1|t)
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2. Correction: Given x̂(t+ 1|t), P (t+1|t), the new measurement y(t+1)

and the modelM, compute x̂(t+ 1|t+ 1), P (t+ 1|t+ 1)

3. Set t← t+ 1 and go to step 1.

2.4.1 The prediction step

Given x̂(t|t), P (t|t) and the model

x(t+ 1) = Ax(t) +Bu(t) +Gw(t)

we want to compute the LMSE estimate x̂(t+1|t) of x(t+1), based on data

up to time t. The objective is to minimze E [||x(t+ 1)− x̂(t+ 1|t)||2] which
is equivalent to minimize

E
[
(x(t + 1)− x̂(t+ 1|t))(x(t+ 1)− x̂(t+ 1|t))T

]

in the matricial sense. Let us introduce the notation for the estimation error

x̃(t|t) = x(t)− x̂(t|t) and the prediction error x̃(t+1|t) = x(t+1)− x̂(t+1|t).
Then one has

min
x̂

E
[
(x(t+ 1)− x̂(t+ 1|t))(x(t + 1)− x̂(t+ 1|t))T

]
=

= min
x̂

E
[
(Ax(t) +Bu(t) +Gw(t)− x̂(t+ 1|t))(· · · )T

]
=

= min
x̂

E
[
(Ax̂(t|t) + Ax̃(t|t) +Bu(t) +Gw(t)− x̂(t + 1|t))(· · · )T

]
(2.13)

where the notation (· · · )T is used to denote the transpose of the same term

that appears on the left. Let

1© = Ax̂(t|t) +Bu(t)− x̂(t+ 1|t),
2© = Ax̃(t|t) +Gw(t).

It is easy to see that E
[
1© 2©T

]
= 0. In fact, a property of the LMSE estimate

is that its estimation error is uncorrelated from the data, i.e. E [x̃(t|t) Y t] = 0.

The term 1© is a linear combination of the data up to time t, namely Y t and
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u(t). On the other hand, in 2© both x̃(t|t) and w(t) are uncorrelated from

Y t. Hence, (2.13) becomes

min
x̂(t+1|t)

E
[
(Ax̂(t|t) +Bu(t)− x̂(t + 1|t))(· · · )T

]

+E
[
(Ax̃(t|t) +Gw(t))(· · · )T

]
.

(2.14)

While the second term in (2.14) does not depend on the prediction x̂(t+1|t),
the first term can be minimized by setting

x̂(t+ 1|t) = Ax̂(t|t) +Bu(t) (2.15)

which turns out to be the sought LMSE 1-step ahead state prediction. The

corresponding error covariance is given by the second term in (2.14)

P (t+ 1|t) = E
[
(Ax̃(t|t) +Gw(t))(· · · )T

]
=

= E
[
Ax̃(t|t))x̃T (t|t)AT

]
+ E

[
Gw(t)wT (t)GT

]
=

= AE
[
x̃(t|t))x̃T (t|t)

]
AT +GE

[
w(t)wT (t)

]
GT =

= AP (t|t)AT +GQGT (2.16)

where we have exploited the fact that E [x̃(t|t)w(t)] = 0, being w(t) uncor-

related with both x(t) and Y t.

2.4.2 The correction step

Now assume that x̂(t+1|t), P (t+1|t) and y(t+1) are available. In order to

derive the corrected estimate x̂(t+ 1|t+ 1), which incorporates also the new

information provided by y(t+1), we need to introduce a decoupling property

of the LMSE estimate. Consider the expression of the LMSE estimate of a

random variable x based on data y

x̂LMSE = mx + PxyP
−1
y (y −my). (2.17)

and assume that y is partitioned in two subvectors, i.e.

y =

[

y1

y2

]

.
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Then, (2.17) becomes

x̂LMSE = mx +
[

Pxy1
Pxy2

]
[

Py1
Py1y2

Py2y1
Py2

]−1 [

y1 −my1

y2 −my2

]

The computation of the matrix inverse simplifies if y1 and y2 are uncorre-

lated. Indeed, if Py1y2
= 0 one has

x̂LMSE =mx +
[

Pxy1
Pxy2

]
[

Py1
0

0 Py2

]−1 [

y1 −my1

y2 −my2

]

=

=mx +
[

Pxy1
Pxy2

]
[

P−1
y1

0

0 P−1
y2

][

y1 −my1

y2 −my2

]

=

=mx + Pxy1
P−1
y1

(y1 −my1
) + Pxy2

P−1
y2

(y2 −my2
)

=x̂LMSE|y1 + Pxy2
P−1
y2

(y2 −my2
) (2.18)

where x̂LMSE|y1 is the LMSE estimate of x based on the observation of y1

. This suggests that if one is able to decompose the available data in two

subsets that are uncorrelated with each other, it is possible to first compute

the LMSE estimate based on the first data subset and then update it when

the second data subset becomes available, by just adding the correction term

Pxy2
P−1
y2

(y2 −my2
).

Since in general it is not true that y(t+1) is uncorrelated with Y t (notice

that if this occurs for every time t, y is an uncorrelated process), we want to

find a new process that contains only the information provided by y(t + 1)

which is not correlated with Y t. This turns out to be the so called innovation

process e(t), which is defined as

e(t+ 1) , y(t+ 1)− Cx̂(t+ 1|t) =
= Cx(t + 1) + v(t+ 1)− Cx̂(t+ 1|t) =
= Cx̃(t+ 1|t) + v(t+ 1).

(2.19)

Proposition 2.1. The innovation process e(t) defined in (2.19) has the fol-

lowing properties.

1. e(t+ 1) is a linear combination of the data Y t+1 =

[

Y t

y(t+ 1)

]

;
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2. The process e(t) is a sequence of uncorrelated random variables.

Proof

1. Being e(t + 1) = y(t + 1) − Cx̂(t + 1|t), where x̂(t + 1|t) is a linear

combination of data Y t, one has that e(t+1) is a linear combination of Y t+1.

2. Being e(t+1) = Cx̃(t+1|t)+v(t+1), we have that x̃(t+1|t) is uncorrelated
with Y t because the LMSE estimation error is uncorrelated with the data

used to compute the estimate, while v(t+1) is uncorrelated with Y t because

it is white and independent from w(t) and x(0) (and hence also from x(t)).

Hence, e(t + 1) is uncorrelated with Y t and therefore also with e(i), i =

0, 1, . . . , t, which are linear combinations of Y i. �

By exploiting Proposition 2.1, we compute the LMSE estimate of x(t + 1)

based on [

Y t

e(t+ 1)

]

=

[

I 0

∗ 1

][

Y t

y(t+ 1)

]

i.e., on a nonsingular linear transformation of the original dataset Y t+1. By

assuming y1 = Y t and y2 = e(t + 1), from (2.18) one gets

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + Px(t+1)e(t+1)P
−1
e(t+1)(e(t + 1)−me(t+1)) (2.20)

where we need to compute the mean and covariance function of e(t+ 1) and

its cross covariance with x(t + 1). The mean is given by

me(t+1) = E [Cx̃(t+ 1|t) + v(t+ 1)] =

= CE [x̃(t+ 1|t)] + E [v(t+ 1)] = 0 (2.21)

in which the first term is zero because the LMSE estimate is unbiased. The

cross-covariance between x(t + 1) and e(t + 1) is given by

Px(t+1)e(t+1) = E
[
(x(t+ 1)−mx(t+1))e

T (t+ 1)
]
=

= E
[
(x(t + 1)−mx(t+1))(Cx̃(t + 1|t) + v(t+ 1))T

]
=

= E[{x̃(t + 1|t)
︸ ︷︷ ︸

1©
+ x̂(t+ 1|t)−mx(t+1)
︸ ︷︷ ︸

2©
}{Cx̃(t + 1|t)
︸ ︷︷ ︸

3©
+ v(t+ 1)
︸ ︷︷ ︸

4©
}T ].
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We claim that the only product which is not zero is the one between the

terms 1© and 3©. In fact, x̃(t+1|t) is uncorrelated with x̂(t+1|t), which is a

linear combination of Y t, while v(t+ 1) is uncorrelated with both x̂(t+ 1|t)
and x̃(t+ 1|t), which depend on y and w up to time t. Therefore,

Px(t+1)e(t+1) = E
[
x̃(t + 1|t)x̃T (t+ 1|t)

]
CT = P (t+ 1|t)CT (2.22)

Then, let us compute the covariance matrix of e(t + 1)

Pe(t+1) = E
[
(Cx̃(t+ 1|t) + v(t+ 1))(Cx̃(t+ 1|t) + v(t+ 1))T

]
=

= CE
[
(x̃(t+ 1|t)(x̃(t+ 1|t))T

]
CT + E

[
v(t+ 1)vT (t+ 1)

]
=

= CP (t+ 1|t)CT +R (2.23)

By substituting (2.19), (2.21), (2.22) and (2.23) into (2.20), one gets

x̂(t+ 1|t+ 1) = x̂(t + 1|t) + P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1·
(y(t+ 1)− Cx̂(t+ 1|t))

which can be written in a shorter form as

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +K(t+ 1)(y(t+ 1)− Cx̂(t+ 1|t)) (2.24)

where we have introduced the Kalman gain

K(t+ 1) = P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1.

Finally, we need to compute the covariance of the estimation error at time

t+ 1, which is given by

P (t+ 1|t+ 1) = E
[
x̃(t+ 1|t)x̃T (t + 1|t)

]
=

= E
[
(x(t + 1)− x̂(t+ 1|t)−K(t + 1)[Cx̃(t+ 1|t) + v(t+ 1)])(· · · )T

]
=

= E
[
((I −K(t+ 1)C)x̃(t+ 1|t)−K(t+ 1)v(t+ 1))(· · · )T

]

= (I −K(t+ 1)C)P (t+ 1|t)(I −K(t+ 1)C)T +K(t + 1)RK(t+ 1)T

= P (t+ 1|t)− P (t+ 1|t)CT [CP (t+ 1|t)CT +R]−1CP (t+ 1|t)
= P (t+ 1|t)[I − CTK(t + 1)T ]. (2.25)
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2.4.3 Initialization

In order to start the iteration of the Kalman filter, one needs to choose x̂(0|−
1) and P (0| − 1), i.e., the state estimate and the corresponding covariance

error before the first measurement y(0) is processed. The natural choice are

clearly the mean and covariance matrix of x(0), if these quantities are known,

i.e., x̂(0| − 1) = m0 and P (0| − 1) = P0.

Otherwise, if such quantities are not available, one can choose x̂(0| − 1)

as any vector which is compatible with the a priori information on x(0), and

set

P (0| − 1) =










λ1

λ2

. . .

λn










with λi > 0, “big enough” so that the resulting confidence interval of xi(0)

covers the initial uncertainty associated to the i-th element of the state vector.

2.5 Properties of the Kalman Filter

Summing up the derivation carried out in the previous section, the Kalman

Filter algorithm is defined as follows.

Initialization: x̂(0| − 1) = m0, P (0| − 1) = P0

For t = 0, 1, 2, · · ·
K(t) = P (t|t− 1)CT [CP (t|t− 1)CT +R]−1 (2.26)

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1)) (2.27)

P (t|t) = P (t|t− 1)[I − CTK(t)T ] (2.28)

x̂(t + 1|t) = Ax̂(t|t) +Bu(t) (2.29)

P (t+ 1|t) = AP (t|t)AT +GQGT (2.30)

end
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It is worth stressing that the derivation of the Kalman filter does not

change if the model M is time-varying. Hence, the above equation can be

easily extended to the time-varying case by just setting A = A(t), B = B(t),

C = C(t), G = G(t), Q = Q(t), and R = R(t).

Another interesting observation concerns the fact that the evolution of

the matrices P (t|t), P (t + 1|t) and K(t) does not depend on the data set

{u(t), y(t)} which is processed. In fact, the input-output data affect only

the estimates x̂(t|t), x̂(t+ 1|t). This means that the quality of the estimates

(which is determined by the covariances of the estimation errors) depends

only on the modelM and not on the actual data realization. Moreover, the

sequences P (t|t), P (t + 1|t), K(t), for t = 0, 1, . . . , can be computed offline,

before the filter is applied to a data stream, and they remain the same for

all data sets. This is particularly useful in those applications in which the

computational burden at each iteration is critical and must be kept as low

as possible.

In the following, we analyze other useful properties of the KF algorithm.

2.5.1 The information matrix

Let us rewrite the correction equation for the covariance of the estimation

error as

P (t|t) = P (t|t− 1)−P (t|t− 1)CT [CP (t|t− 1)CT +R]−1CP (t|t− 1) (2.31)

and define the Information matrix

I(t|t) , P (t|t)−1.

The information matrix is the inverse of the covariance matrix, so the larger

is I(t|t), the smaller is the uncertainty associated to the estimate x̂(t|t) of x(t)
(i.e., the more accurate is the estimate). By recalling the Matrix Inversion

Lemma

(Ā− B̄C̄D̄)−1 = Ā−1 + Ā−1B̄(C̄−1 − D̄Ā−1B̄)−1D̄Ā−1 (2.32)
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and applying it to (2.31) with Ā = P (t|t), B̄ = P (t|t− 1)CT , C̄ = [CP (t|t−
1)CT +R]−1 and D̄ = CP (t|t− 1), one gets

I(t|t) = I(t|t− 1) + CTR−1C

where I(t|t − 1) = P (t|t − 1)−1 and CTR−1C can be interpreted as the

quantity of information provided by the new measurement y(t). In the scalar

case (n = p = 1), one has y(t) = c x(t) + v(t), with c ∈ R and

CTR−1C =
c2

σ2
v

which can be seen as a sort of signal-to-noise ratio, between the signal c x(t)

measured by the output sensor and the measurement noise v(t).

2.5.2 The Kalman Filter as a dynamic system

It is easy to see that the KF is a dynamic system processing the input and

output data to produce state estimates. By substituting (2.27) into (2.29),

one gets

x̂(t+ 1|t) = A{x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1))}+Bu(t) =

= (A−AK(t)C)x̂(t|t− 1) + AK(t)y(t) +Bu(t)

= (A−AK(t)C) x̂(t|t− 1) +
[

AK(t) B

]
[

y(t)

u(t)

]

(2.33)

which is the equation of a linear time-varying system, whose state vector is

x̂(t+1|t) and the input vector is

[

y(t)

u(t)

]

. Notice that the KF is an inherently

time-varying system, due to the fact that the Kalman gain K(t) changes at

every time instant. The corresponding equation of the prediction error turns
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out to be

x̃(t + 1|t) = x(t + 1)− x̂(t+ 1|t)
= Ax(t) +Bu(t) +Gw(t)

−A{x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1))} −Bu(t) =

= Ax̃(t|t− 1) +Gw(t)− AK(t){Cx(t) + v(t)− Cx̂(t|t− 1)}
= (A− AK(t)C) x̃(t|t− 1) +Gw(t)−AK(t)v(t) (2.34)

which leads to the evolution of the average prediction error

E [x̃(t + 1|t)] = (A−AK(t)C)E [x̃(t|t− 1)] . (2.35)

For the covariance of the 1-step ahead prediction error, by substituing

(2.28) into (2.30) one gets

P (t+ 1|t) = AP (t|t− 1)AT +GQGT

− AP (t|t− 1)CT [CP (t|t− 1)CT +R]−1CP (t|t− 1)AT (2.36)

which can be seen as a dynamic system whose state is the matrix P (t|t− 1).

Equation (2.36) is known as the Discrete Riccati equation (DRE).

2.5.3 The Kalman Filter as a state observer

Being the aim of the KF the computation of a state estimate, there is clearly

a connection with the classical Luenberger state observer for deterministic

systems. Consider the deterministic system






x(t + 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

then, the Luenberger observer is given by

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)). (2.37)

If we introduce the state estimation error x̃(t) = x(t)− x̂(t), we obtain the

error dynamics

x̃(t+ 1) = (A− LC)x̃(t) (2.38)
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If the pair (A,C) is detectable, it is always possible to find a matrix L such

that (A−LC) has all its eigenvalues inside the unit circle. This implies that

system (2.38) is asymptotically stable and hence limt→∞ x̃(t) = 0 for every

initial condition x̃(0). Equation (2.37) can be rewritten as

x̂(t+ 1) = (A− LC)x̂(t) +
[

L B

]
[

y(t)

u(t)

]

in which it is easy to recognize the same structure as in (2.33). Indeed, they

turn out to be the same equation if we set L = AK(t). A similar analogy can

be observed between equations (2.38) and (2.35). This means that the KF

can be seen as a time-varying state observer for the linear stochastic system

(2.11).

2.5.4 The innovation process

Let us consider the innovation process e(t) = y(t)− Cx̂(t|t− 1). It is possible

to reformulate the KF as a dynamic system that processes the signals y(t)

and u(t), to generate e(t) as the output. In fact, by recalling (2.33) one can

write







x̂(t + 1|t) = (A−AK(t)C)x̂(t|t− 1) +
[

AK(t) B

]




y(t)

u(t)





e(t) = −Cx̂(t|t− 1) +
[

I 0
]




y(t)

u(t)





This can be seen as a whitening filter, i.e., a system which takes the (usually)

correlated process y(t) and transforms it into the sequence of uncorrelated

random variables e(t) (which is also a white process in the Gaussian case,

i.e., when x(0), w(t) and v(t) are all normally distributed).
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2.5.5 Extension to non white disturbance and noise

processes

So far, we have supposed that the disturbance process w(t) and the measure-

ment noise v(t) are white. This assumption can be relaxed, provided that

a model for such processes is known. For example, assume that w(t) is a

stochastic process generated by the system

xw(t + 1) = Awxw(t) +Bwξ(t)

w(t) = Cwxw(t) +Dwξ(t)

where ξ(t) ∼ WP (0, Qξ) and it is assumed to be uncorrelated with the

measurement noise v(t) ∼ WP (0, R). Notice that for an asymptotically

stationary s.p., matrices Aw, Bw, Cw, Dw can be derived by computing a

state space realization of the canonical spectral factor of process w(t). Hence,

we can write

x(t + 1) = Ax(t) +Bu(t) +Gw(t)

= Ax(t) +Bu(t) +G(Cwxw(t) +Dwξ(t)).

By defining the extended state vector

x̄(t) =

[

x(t)

xw(t)

]

one can write the system

[

x(t+ 1)

xw(t + 1)

]

=

[

A GCw

0 Aw

][

x(t)

xw(t)

]

+

[

GDw

Bw

]

ξ(t) +

[

B

0

]

u(t) (2.39)

y(t) =
[

C 0
]
[

x(t)

xw(t)

]

+ v(t) (2.40)

Hence, one can apply the standard KF to system (2.39)-(2.40), thus obtaining

an estimate ˆ̄x(t|t) =

[

x̂(t|t)
x̂w(t|t)

]

of the extended state. Notice that, besides
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the desired estimate of the state of the original system, this contains also the

estimate of the disturbance state xw(t) as a byproduct.

Similarly, assume that v(t) is not white and it is generated by the system

xv(t+ 1) = Avxv(t) +Bvξ(t)

v(t) = Cvxv(t) +Dvξ(t)

where ξ(t) ∼ WP (0, Qξ) and is uncorrelated with the process disturbance

w(t) ∼WP (0, Q). By defining the extended state vector

x̄(t) =

[

x(t)

xv(t)

]

one obtains the extended system equations
[

x(t + 1)

xv(t+ 1)

]

=

[

A 0

0 Av

][

x(t)

xv(t)

]

+

[

G 0

0 Bv

][

w(t)

ξ(t)

]

+

[

B

0

]

u(t) (2.41)

y(t) =
[

C Cv

]
[

x(t)

xv(t)

]

+Dv ξ(t) (2.42)

where the extended process w̄(t) =

[

w(t)

ξ(t)

]

is a white process with zero mean

and covariance matrix

[

Q 0

0 Qξ

]

.

Also in this case, one may think to apply the standard KF to system (2.41)-

(2.42), thus obtaining an estimate ˆ̄x(t|t) =
[

x̂(t|t)
x̂v(t|t)

]

of the extended state,

which contains the desired state estimate, along with the estimate of the

noise state xv(t). However, it should be noticed that it is not true that the

extended process w̄(t) and the new output noise Dvξ(t) are uncorrelated. In

fact, one has E
[
w̄(t)(Dvξ(t))

T
]
= [0 QξD

T
v ]. Therefore, it is customary to

use the version of the Kalman Filter in which item ii) in Assumption 2.1 is

replaced by

E





(

w(t)

v(t)

)(

w(t)

v(t)

)T


 =

[

Q N

N R

]
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where N ∈ R
d×p is the cross-covariance between w(t) and v(t). The equations

of such a version of the Kalman Filter turn out to be as follows.

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− Cx̂(t|t− 1)) (2.43)

P (t|t) = P (t|t− 1)[I − CTKT (t)] (2.44)

K(t) = P (t|t− 1)CT [CP (t|t− 1)CT +R]−1 (2.45)

x̂(t + 1|t) = Ax̂(t|t) +Bu(t)

+GN [CP (t|t− 1)CT +R]−1(y(t)− Cx̂(t|t− 1)) (2.46)

P (t+ 1|t) = AP (t|t)AT +GQGT −GN [CP (t|t− 1)CT +R]−1NTGT

−AP (t|t− 1)CT [CP (t|t− 1)CT +R]−1NTGT

−GN [CP (t|t− 1)CT +R]−1CP (t|t− 1)AT (2.47)

which in predictor form takes the more coincise form

x̂(t+ 1|t) = Ax̂(t|t− 1) +Bu(t) +Kc(t)(y(t)− Cx̂(t|t− 1)) (2.48)

P (t+ 1|t) = AP (t|t− 1)AT +GQGT −Kc(t)[CP (t|t− 1)CT +R]Kc(t)
T

(2.49)

with

Kc(t) = (AP (t|t− 1)CT +GN)[CP (t|t− 1)CT +R]−1. (2.50)

Finally, the case in which both w(t) and v(t) are not white can be treated

in the same way, by combining the two approaches outlined above.

2.6 Asymptotic behavior of the KF

A fundamental question on the performance of the Kalman Filter concerns

its asymptotic behavior. In particular, we would like to answer the following

questions.

1. What is the asymptotic expected value of the estimation error, i,e.

lim
t→+∞

E [x̃(t|t)] = lim
t→+∞

E [x(t)− x̂(t|t)] (2.51)
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and how does it depend on the initialization of the filter? If the limit

in (2.51) is equal to zero, this means that the KF is an asymptotically

unbiased estimator.

2. What is the asymptotic behavior of the DRE (2.36)? Does the limit

lim
t→+∞

P (t + 1|t) exist? How does it depend on the initial condition

P (0| − 1)?

3. Does the Kalman gain K(t) converge to a constant matrix? And if this

is the case, what are the properties of the asymptotic version of system

(2.33)?

Clearly, all such questions make sense only when the dynamic model we are

considering is time-invariant and the stochastic processes w(t) and v(t) are

stationary. The next result provide an answer to the above questions.

Theorem 2.3. Consider system (2.11) and let Assumtpion 2.1 hold. Let

A,B,C,G,Q,R be constant matrices. Define the matrix H ∈ R
n×d such that

HHT = GQGT and assume that the pair (A,C) is detectable and the pair

(A,H) is stabilizable. Then, the following results hold.

1. lim
t→+∞

E [x̃(t|t)] = lim
t→+∞

E [x̃(t + 1|t)] = 0 , ∀x̂(0| − 1) ∈ R
n

2. lim
t→+∞

P (t+ 1|t) = P∞ < +∞, ∀ P (0| − 1) > 0 where P∞ is the unique

positive semidefinite solution of the Algebraic Riccati Equation (ARE)

P∞ = AP∞AT +GQGT − AP∞CT [CP∞CT +R]−1CP∞AT (2.52)

3. Let

K∞ = lim
t→∞

K(t) = P∞CT [CP∞CT +R]−1.

Then, the matrix (A − AK∞C) has all its eigenvalues inside the unit

circle.

The first item in Theorem 2.3 states that the state estimates provided by

the KF are asymptotically unbiased. Even more important is the result in
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item 2: the covariance of the 1-step ahead prediction error always converges

to the same constant matrix P∞, whatever is the initial covariance matrix

P (0| − 1) chosen to start the KF iterations. Notice that the same occurs for

the covariance matrix of the state estimation error

lim
t→+∞

P (t|t) = P∞ − P∞CT [CP∞CT +R]−1CP∞ = P∞(I − CTKT
∞)

It is also worth pointing out that the above results hold under quite

mild assumptions. The most important one concerns detectability of the

pair (A,C): in fact, if the system is not detectable, it means that there is

a subsystem which is not asymptotically stable and it is also unobservable.

Hence, the covariance of the state estimation error for such subsystem will

eventually grow to infinity. Recall that if a system is fully observable, it is

also detectable.

The other assumption in Theorem 2.3, namely stabilizability of the pair

(A,H), is essentially technical and it is necessary to guarantee that the ARE

(2.52) has a unique positive semidefinite solution. Recall that if (A,H) is

fully reachable, it is also stabilizable. This assumption can be further relaxed

to exclude only unreachable eigenvalues of A with modulus exactly equal to

1: in such a case the ARE may have multiple positive semidefinite solutions,

but they will be ordered (in matrical sense) and P (t + 1|t) will converge to

the largest one.

Finally, the third item in Theorem 2.3 suggests that the time-varying

evolution of the average prediction error in equation (2.35), converges to an

asymptotically stable time-invariant system. This suggests that one may

want to use the constant gain K∞ right from the start, in place of the time-

varying Kalman gain K(t), as explained next.

2.6.1 The asymptotic Kalman Filter

Let us assume that instead of changing the Kalman gain K(t) at every KF

iteration, we want to use a constant gain. A natural choice is to use K∞,

because we know that it minimizes the asymptotic mean square estimation
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error. Then, the recursion (2.27)-(2.30) simplifies to

x̂(t+ 1|t) = Ax̂(t|t) +Bu(t) (2.53)

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +K∞(y(t+ 1)− Cx̂(t+ 1|t)) (2.54)

which we will refer to as the Asymptotic Kalman Filter. Clearly, while (2.53)-

(2.54) has the advantage of being a linear time-invariant system, not requiring

the computation of the covariance matrices P (t|t), P (t + 1|t) at every time

step, it does not guarantee anymore to minimize the estimation MSE for

every t, but only as time approaches infinity.

In order to understand which is the trade-off between using a time-

invariant filter and the optimal KF, let us consider the following simple

example involving a scalar state (n = 1)






x(t + 1) = a x(t)

y(t) = x(t) + v(t)
(2.55)

where a ∈ R and v(t) ∼WP (0, r). The associated KF equations are

x̂(t + 1|t) = a x̂(t|t)
P (t+ 1|t) = a2P (t|t)

x̂(t + 1|t+ 1) = x̂(t+ 1|t) +K(t+ 1)(y(t+ 1)− x̂(t + 1|t))

P (t+ 1|t+ 1) = P (t+ 1|t)− P 2(t+ 1|t)
P (t+ 1|t) + r

.

In prediction form, they become

x̂(t+ 1|t) = ax̂(t|t− 1) + aK(t)(y(t)− x̂(t|t− 1)) (2.56)

P (t+ 1|t) = a2P (t|t− 1)− a2P 2(t|t− 1)

P (t|t− 1) + r
=

a2P (t|t− 1)r

P (t|t− 1) + r
(2.57)

The estimation error is given by

x̃(t+ 1|t) = x(t + 1)− x̂(t+ 1|t)
= ax(t)− ax̂(t|t− 1)− aK(t)(x(t) + v(t)− x̂(t|t− 1))

= ax̃(t|t− 1)− aK(t)x̃(t|t− 1)− aK(t)v(t)

= a(1−K(t))x̃(t|t− 1)− aK(t)v(t) (2.58)
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where

K(t) =
P (t|t− 1)

P (t|t− 1) + r
.

Now, let us assume that we want to use an LTI filter with constant gain K. If

we denote by x̂(t) the estimate of the LTI filter and by x̃(t) the corresponding

estimation error, from (2.58) one has

x̃(t+ 1) = a(1−K)x̃(t)− aKv(t).

By taking the expected value, being E [v(t)] = 0, one gets

E [x̃(t+ 1)] = a(1−K)E [x̃(t)]

and hence the bias error will tend to zero whenever |a(1 − K)| < 1. In

particular, convergence will be faster as K approaches 1. On the other hand,

if we consider the variance of the estimation error

P (t) = E
[
(x̃(t)−mx̃(t))

2
]

by exploiting the fact that x̃(t) and v(t) are uncorrelated, we get

P (t+ 1) = E
[{

a(1−K)(x̃(t)−mx̃(t))− aKv(t)
}2
]

= a2(1−K)2E
[
(x̃(t)−mx̃(t))

2
]
+ a2K2E

[
v2(t)

]

= a2(1−K)2P (t) + a2K2r

which is a first order dynamic system in the variable P (t), forced by the

constant input a2K2r. If a2(1 − K)2 < 1 such a system is asymptotically

stable and one has

lim
t→∞

P (t) =
1

1− a2(1−K)2
a2K2r.

Therefore, it is easy to see that the asymptotic value of the variance of the

estimation error will tend to zero as K approaches zero. Summing up, we

are faced to the typical bias-variance trade off: we need a “large” filter gain

(K → 1) to reduce the bias error as fast as possible, and a “small” gain
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(K → 0) to reduce the asymptotic variance (uncertainty) associated to the

estimate. This is the reason why the MSE filter is indeed a time-varying

one: it employs a large gain during the transient, in order to rapidly reduce

the bias error, and a small gain asymptotically, to reduce the variance of the

estimation error.

Figures 2.1-2.3 report the results of a numerical test performed on system

(2.55) with a = 0.9, r = 0.04, and x(0) = 1. Fig. 2.1 shows the evolution of

the true state x(t) and the noisy observation y(t). Fig. 2.2 reports on top

the estimates of two LTI filters with constant gain K = 0.9 and K = 0.1,

respectively. It can be seen that the former quickly reduces the bias error but

shows a remarkable uncertainty in the estimates; conversely, the latter has

a small asymptotic variance of the estimate but it is quite slow in tracking

the true state evolution. The bottom plot reports the estimate provided by

the Kalman Filter, initialized with x̂(0| − 1) = 0 and P (0| − 1) = 1. It can

be observed that the KF succeeds in both reducing the initial bias error and

keeping small the asymptotic error variance. This is clearly due to the time

varying gain K(t), shown in Fig. 2.3, along with the error variance P (t|t).
The considered one-dimensional example is also helpful to provide an

insight in the asymptotic results of Theorem 2.3. Since there is no process

disturbance in system (2.55), one has Q = 0 and the ARE (2.52) reduces to

P∞ =
a2P∞r

P∞ + r

which can be written as

P 2
∞ + P∞r(1− a2) = 0

and therefore it has two solutions






P∞ = 0

P∞ = r(a2 − 1)
(2.59)

If a2 < 1, then the only positive semidefinite solution is P∞ = 0. This is

consistent with the fact that, being H = 0, the pair (A,H) = (a, 0) is not
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Figure 2.1: Evolution of system (2.55) with a = 0.9, r = 0.04, and x(0) = 1:

x(t) (solid); y(t) (dashed).
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Figure 2.2: Top: performance of LTI filters with K = 0.9 (dashed) and

K = 0.1 (dotted), with respect to the true state x(t) (solid). Bottom: KF

estimate x̂(t|t) (dashed) compared to true state x(t) (solid).
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Figure 2.3: Top: Kalman gain K(t). Bottom: variance of estimation error

P (t|t).

reachable but it is indeed stabilizable (the system is already asymptotically

stable!). Hence, Theorem 2.3 guarantees that

lim
t→∞

P (t|t− 1) = P∞ = 0

lim
t→∞

K(t) =
P∞

P∞ + r
= K∞ = 0

This is precisely what can be obtained by studying the one-dimensional (non-

linear) system (2.57), which describes the behavior of the variance P (t|t−1).

Notice that in this example the asymptotic Kalman filter simply ignores the

output data (K∞ = 0) and it just waits that the state estimate converges to

zero, like the true state does.

Conversely, if a2 > 1, the pair (a, 0) is not stabilizable and hence we can-

not apply Theorem 2.3. Indeed, both solutions (2.59) are positive semidefi-
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nite. Nevertheless, by analyzing again system (2.57), it can be shown that:

lim
t→∞

P (t|t− 1) = r(a2 − 1)

lim
t→∞

K(t) =
P∞

P∞ + r
=

r(a2 − 1)

r(a2 − 1) + 1
=

a2 − 1

a2

i.e., the covariance converges to the largest solution of the ARE. We stress

that the solution K∞ = 0 this time is unacceptable because the system is

unstable and ignoring the output data would lead to divergence of the error

variance. Instead, K∞ = a2−1
a2

leads to

lim
t→∞

(A−AK(t)C) = a− aK∞ = a− a
a2 − 1

a2
=

1

a

which is indeed inside the unit circle, as a2 > 1 implies
∣
∣ 1
a

∣
∣ < 1. This confirms

that the asymptotic KF is an asymptotically stable LTI filter, guaranteeing

that the expected value of the state estimation error converges to zero also

for unstable systems.

It is also interesting to analyze the case in which the process disturbance

is present. Let

x(t + 1) = ax(t) + w(t)

with w(t) ∼ WP (0, q) and h =
√
q 6= 0, which implies that the pair (a, h) is

always reachable and hence also stabilizable. The ARE becomes

P∞ = a2P∞ + q − a2P 2
∞

P∞ + r
=

a2P∞r

P∞ + r
+ q

or equivalently

P 2
∞ + P∞[r(1− a2)− q]− rq = 0

which has always a unique positive solution P∞ > 0, for every a ∈ R, q > 0,

r > 0. Hence, Theorem 2.3 guarantees that

lim
t→∞

P (t|t− 1) = P∞.

Notice that in this case P∞ cannot be equal to zero because w(t) steadily

injects uncertainty into the system.
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2.7 Applications of the Kalman Filter

The Kalman Filter is widely employed in a number of applications. Hereafter,

we briefly review some of them.

Observer for stochastic systems and LQG control

As it has been previously remarked, the KF can be used as a state observer for

stochastic systems. When coupled with a suitable state feedback, it allows

one to design an output feedback control law, according to the scheme in

Figure 2.4.

r(t) y(t)u(t)

x̂(t)

F (t)

Kalman
filter

Plant

Figure 2.4: KF as a state observer in an output feedback control loop.

A special case is that of Linear Quadratic Gaussian (LQG) control, in

which the aim is to find a control signal u(t) which minimizes the cost function

E

[
N−1∑

t=0

(xT (t)Q̄x(t) + uT (t)R̄u(t)) + xT (N)S̄x(N)

]

(2.60)

where Q̄, R̄ and S̄ are positive definite matrices. It can be shown that the

solution of such problem is provided by the scheme in Figure 2.4, in which

matrix F (t) is designed to minimize cost (2.60) as the true state x(t) were

available. This is known as separation principle, as it allows to design the
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state feedback and the observer separately. The resulting control input turns

out to be

u(t) = F (t)x̂(t) + r(t)

where

F (t) = −(BTS(t + 1)B + R̄)−1BTS(t+ 1)A

and S(t) is a sequence of matrices computed via the backward Riccati itera-

tion

S(N) = S̄,

S(t) = ATS(t + 1)A+ Q̄

−ATS(t+ 1)B(BTS(t+ 1)B + R̄)−1BTS(t+ 1)A,

for t = N − 1, N − 2, . . . , 1, 0.

Sensor fusion

Sensor fusion is a problem in which information provided by multiple sensors

has to be processed in order to estimate an unknown quantity. The problem

is particularly important in networked systems, where a large number of

sensors is deployed within the network and their measurements have to be

“fused” either by a central unit or in a decentralized way (i.e., distributing

the estimation task among multiple nodes of the network).

The KF provides the natural framework for facing such a problem. As-

sume that at time t the i-th sensor provides a measurement yi(t) = Cix+vi(t)

of the quantity x to be estimated, corrupted by noise vi(t). All measurements

can be stack in the unique vector

y(t) =










y1(t)

y2(t)
...

yp(t)










=










C1

C2

...

Cp










x+










v1(t)

v2(t)
...

vp(t)










where p is the total number of sensors. If x is constant in time, one can

use directly the KF to estimate it, by setting A = I, B = G = 0, in the
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state dynamic model. Clearly, if x is not constant but its dynamics is known

(possibly with uncertainty modeled as a process disturbance), the KF setting

can be readily applied.

Estimation of sensor bias and drit

Let us consider system (2.11) and assume that the sensor providing the scalar

measurement y(t) = Cx(t)+v(t) is affected by unknown bias and drift errors.

This can be modeled by assuming that v(t) ∼ WP (b+ d t, R), where b and

d are, respectively, the bias and drift to be estimated. This can be done by

augmenting the state of the system to include such quantities, i.e.

x̄(t) =







x(t)

xb(t)

xd(t)







where xb(t) and xd(t) represent the bias and drift, respectively. Their dy-

namic model can be chosen as a random walk, i.e.

xb(t + 1) = xb(t) + wb(t)

xd(t + 1) = xd(t) + wd(t)

in which wb(t) ∼ WP (0, σ2
b ), wd(t) ∼ WP (0, σ2

d) are independent white

processes. Their variances σ2
b , σ

2
d are tunable parameters whose aim is to

allow the filter to move from the initial (possibly wrong) estimate of b and d

and converge to their actual values. Then, by defining ṽ(t) = v(t)− (b+ d t),

one can write the output equation as

y(t) = Cx(t) + b+ d t+ ṽ(t) = [C 1 t] x̄(t) + ṽ(t).

Finally, by observing that ṽ(t) ∼WP (0, R), one can use the standard KF to

estimate the extended state x̄(t), that corresponds to simultaneoulsy estimate

the original state x(t) along with the sensor bias b and drift d.
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Fault detection

The aim of fault detection is to detect undesired behaviors of dynamical

systems, by using observations of the input and output signal. The KF is

among the standard tools employed to this purpose. Assume that a model

of the dynamic system is available, in the form (2.11). The idea is to exploit

one of the key properties of the KF: the fact that the innovation process

e(t) = y(t) − Cx̂(t|t − 1) is white, with zero mean and covariance matrix

equal to CP (t|t+ 1)CT +R, i.e.

e(t) ∼WP (0, CP (t|t+ 1)CT +R). (2.61)

Therefore, one can run the KF as a dynamic system with e(t) as output

signal, like in Figure 2.5, and then apply statistical tests to check whether

e(t) is consistent with the hypothesis (2.61). If there is statistical evidence

that such an hypothesis is violated, this suggests a possible malfunctioning

of the system.

y(t)u(t)

Kalman
filter

Plant

Cx̂(t|t− 1)

+

−

e(t)

Figure 2.5: KF in innovation form for fault detection.

Recursive system identification

Consider a parametric system identification problem, in which the model has

the linear regression form

y(t) = ϕT (t)θ + e(t) (2.62)
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where y(t) is the measured output at time t, φ(t) is the (known) regressor

vector, containing input and output values at times before t, e(t) is an error

term modeled as a white stochastic process with zero mean and variance σ2
e ,

and θ is the parameter vector to be estimated. Assume that at every time t,

a new output measurement y(t) and regressor ϕ(t) is collected. The aim is

to compute the least squares estimate of θ based on the measurements up to

time t, which is defined as

θ̂LSt = argmin
θ

t∑

k=1

(y(k)− ϕT (k)θ)2. (2.63)

The solution of (2.63) is given by

θ̂LSt =

(
t∑

k=1

ϕ(k)ϕT (k)

)−1 t∑

k=1

ϕ(k)y(k) (2.64)

but it would be clearly impractical to use equation (2.64) to compute the

parameter estimates at each time t, as one needs to process a steadily in-

creasing number of data as t grows. An efficient solution is provided by the

recursive least squares (RLS) algorithm

θ̂t = θ̂t−1 + L(t)[y(t)− ϕT (t)θ̂t−1]

L(t) =
P (t− 1)ϕ(t)

1 + ϕT (t)P (t− 1)ϕ(t)

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 + ϕT (t)P (t− 1)ϕ(t)
.

(2.65)

It can be shown that if the RLS algorithm is initialized at a certain time t0

with θ̂t0 = θ̂LSt0
given by (2.64) and P (t0) =

(∑t0
k=1 ϕ(k)ϕ

T (k)
)−1

, then one

has that the RLS algorithm returns the same parameter estimate as the least

squares estimate given by (2.64), i.e., θ̂t = θ̂LSt , ∀t ≥ t0.

It is interesting to highlight that the RLS algorithm can be seen as an

application of the Kalman filter to a time-varying linear system. In fact, de-

fine the state vector x(t) as the unknown parameter vector θ to be estimated.

Being θ constant, for a linear regression model y(t) = ϕT (t)θ + e(t) one can
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write the state space model

x(t + 1) = x(t)

y(t) = ϕT (t)x(t) + e(t).
(2.66)

This clearly falls within the general framework of the LMSE state estima-

tion problem (2.11), by setting A = I, B = G = Q = 0, C = ϕT (t) and

v(t) = e(t) ∼ WP (0, σ2
e), i.e., R = σ2

e . If we apply to system (2.66) the KF

algorithm, we get the recursions

x̂(t) = x̂(t− 1) +K(t)[y(t)− ϕT (t)x̂(t− 1)]

K(t) =
P (t− 1)ϕ(t)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

σ2
e + ϕT (t)P (t− 1)ϕ(t)

(2.67)

where we used the shorthand notations x̂(t) and P (t), in place of x̂(t|t) =

x̂(t|t−1) and P (t|t) = P (t|t−1), respectively. It is easy to see that equations

(2.67) coincide with those in (2.65), if we set σ2
e = 1. Notice that this can be

done without loss of generality, as one can always scale the linear regression

model by the standard deviation σe thus obtaining a new output equation

ỹ(t) = ϕ̃T (t)θ + ẽ(t) (2.68)

where ỹ(t) = y(t)
σe

, ϕ̃(t) = ϕ(t)
σe

, ẽ(t) = e(t)
σe

and E [ẽ2(t)] = 1. If we apply the

RLS algorithm (2.65) to the linear regression model (2.68) , the resulting

sequence of estimates θ̂t is exactly the same as the sequence x̂(t) returned by

the recursion (2.67).
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Chapter 3

State estimation for nonlinear

systems

This chapter addresses the problem of state estimation for nonlinear stochas-

tic systems.

3.1 Nonlinear State Estimation

Let us consider the system







x(t+ 1) = f (x(t), u(t), w(t))

y(t) = h (x(t)) + v(t)
(3.1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is a known deterministic input,

y(t) ∈ R
p is the output, w(t) ∈ R

d is the process disturbance and v(t) ∈ R
p

is the measurement noise. The functions f : R
n × R

m × R
d → R

n and

h : R
n → R

p are assumed to be known, continuous and differentiable. For

the process disturbance w(t), measurement noise v(t) and initial state x(0)

we enforce the same Assumption 2.1 as in the linear setting.

The problem we want to solve is the same as Problem 2.1: find an estimate

of x(t) based on input-output measurements up to time t. As we know, this

is a Beyesian estimation problem, being both the unknown vector x(t) and

51
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the data Y t random variables. With respect to the linear case, the main

difficulty lies in the fact that the functions f(·) and h(·) can be any C1
nonlinear mapping. Therefore, even if we restrict our attention to the LMSE

estimate, the relevant covariance matrices at time t cannot be expressed only

in terms of covariance matrices at previous times, because they will depend

also on higher order moments (through the nonlinear model functions).

Since the exact solution of the LMSE problem is intractable, a wide vari-

ety of approximations have been proposed in the literature. It is important

to keep in mind that all these techniques do not provide the actual LMSE

state estimate, and hence they must be tested in simulations and real-world

experiments in order to assess their performance in the specific application

at hand. The most popular approach is the one based on the linearization of

the model equations, which is known as Extended Kalman Filter (EKF).

3.1.1 The Extended Kalman Filter

The EKF is a recursive procedure based on the same prediction-correction

approach adopted in the linear KF. The notation adopted is the same as in

Section 2.4, although both x̂(t|t) and P (t|t) will end up to be only approx-

imations of the true LMSE state estimate and covariance of the estimation

error, respectively. We start by deriving the equations of the prediction step.

3.1.2 The EKF prediction step

Let x̂(t|t) and P (t|t) be given. The objective is to compute the 1-step ahead

prediction x̂(t+1|t) and the corresponding error covariance P (t+1|t). To do

this, we write the Taylor expansion of f(x, u, w) around the nominal values

x = x̂(t|t), u = u(t) (recall that u(t) is known at every time t) and w = 0
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(being E [w(t)] = 0). Then, one has

f(x, u, w) =f(x̂(t|t), u(t), 0) + ∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(x− x̂(t|t)) + ∂f

∂u

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(u− u(t))

+
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(w − 0) +O

(∣
∣
∣
∣

∣
∣
∣
∣

x−x̂(t|t)
u−u(t)
w−0

∣
∣
∣
∣

∣
∣
∣
∣

2
)

where the last term contains all the terms of degree equal or higher than 2

in the involved variables. The main idea is that, if these terms are small,

they can be neglected with respect to the linear terms. Hence, by doing so,

we obtain the following approximated version of the first equation in (3.1)

x(t + 1) ≃f(x̂(t|t), u(t), 0) + ∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(x(t)− x̂(t|t)) + ∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)

u=u(t)
w=0

w(t)

(3.2)

In order to obtain x̂(t + 1|t), we have to replace x(t) and w(t) in (3.2) with

their best estimates based on the data available up to time t, which are clearly

x̂(t|t) and 0, respectively (recall that being w(t) white, its best prediction is

equal to the a priori expected value). Hence, one gets

x̂(t+ 1|t) = f(x̂(t|t), u(t), 0) (3.3)

which turns out to be the first equation of the EKF prediction step. In order

to update the covariance matrix, let us introduce the following notation for

the Jacobian matrices of f(·) with respect to x and w

F (t) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)

u=u(t)
w=0

∈ R
n×n

G(t) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

∈ R
n×d
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Then, by exploiting again (3.2) and (3.3), one gets

P (t+ 1|t) = E
[

(x(t + 1)− x̂(t+ 1|t)) (x(t + 1)− x̂(t+ 1|t))T
]

≃ E [{f(x̂(t|t), u(t), 0) + F (t)(x(t)− x̂(t|t)) +G(t)w(t)

−f(x̂(t|t), u(t), 0)} {· · · }T
]

=

= E
[

{F (t)(x(t)− x̂(t|t)) +G(t)w(t)} {· · · }T
]

=

= F (t)P (t|t)F (t)T +G(t)QG(t)T .

3.1.3 The EKF correction step

Let x̂(t+ 1|t), P (t+ 1|t) and y(t+ 1) be given. Recall that

y(t+ 1) = h(x(t+ 1)) + v(t+ 1) (3.4)

Let us write the Taylor expansion of h(x) around the nominal value x =

x̂(t+ 1|t) (the best available guess of x(t+ 1) at time t). One has

h(x) = h(x̂(t+ 1|t)) + ∂h

∂x

∣
∣
∣
∣
∣
x=x̂(t+1|t)

(x− x̂(t+ 1|t))

+O

(∣
∣
∣

∣
∣
∣x− x̂(t+ 1|t)

∣
∣
∣

∣
∣
∣

2
)

(3.5)

where the last term contains all the terms of order equal or higher than 2 in

the error x − x̂(t + 1|t). As in the prediction step, we define the Jacobian

matrix

H(t+ 1) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(t+1|t)

∈ R
p×n.

By using the expansion (3.5) into (3.4) and neglecting higher order terms,

we get

y(t+ 1) ≃ h(x̂(t+ 1|t)) +H(t+ 1)(x(t+ 1)− x̂(t + 1|t)) + v(t+ 1) (3.6)

Now, denote the prediction error as

d(t+ 1) = x(t + 1)− x̂(t + 1|t) (3.7)
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and set m(t + 1) = y(t+ 1)− h(x̂(t+ 1|t)). Then, (3.6) becomes

m(t + 1) = H(t+ 1)d(t+ 1) + v(t+ 1). (3.8)

By noticing that d̂(t+ 1|t) = x̂(t+ 1|t)− x̂(t+ 1|t) = 0 and

E
[

(d(t+ 1)− d̂(t+ 1|t))(d(t+ 1)− d̂(t+ 1|t))T
]

= E
[
(x(t+ 1)− x̂(t + 1|t))(x(t+ 1)− x̂(t+ 1|t))T

]
= P (t+ 1|t)

one can apply the correction step of the standard Kalman filter to the linear

output equation (3.8) (observe that m(t+ 1) is known). Therefore, one gets

d̂(t + 1|t+ 1) = d̂(t+ 1|t) +K(t + 1)
(

m(t + 1)−H(t+ 1)d̂(t+ 1|t)
)

= K(t + 1)(y(t+ 1)− h(x̂(t+ 1|t))).

From (3.7), one has d̂(t + 1|t + 1) = x̂(t + 1|t + 1)− x̂(t + 1|t), which leads

to the first EKF correction equation

x̂(t+ 1|t+ 1) = x̂(t + 1|t) +K(t+ 1)(y(t+ 1)− h(x̂(t+ 1|t))) (3.9)

where K(t+1) is defined according to the standard KF applied to (3.8), i.e.

K(t+1) = P (t+1|t)H(t+1)T
[
H(t+ 1)P (t+ 1|t)H(t+ 1)T +R

]−1
(3.10)

and similarly one has that the update of the covariance matrix P (t+1|t+1)

is given by

P (t+ 1|t+ 1) = P (t+ 1|t)
[
I −H(t+ 1)TK(t+ 1)T

]
. (3.11)
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Hence, by assuming to initialize the EKF recursion in the same way as in

the KF, the equations of the EKF algorithm can be summarized as follows.

Initialization: x̂(0| − 1) = m0, P (0| − 1) = P0

For t = 0, 1, 2, · · ·
K(t) = P (t|t− 1)H(t)T [H(t)P (t|t− 1)H(t)T +R]−1 (3.12)

x̂(t|t) = x̂(t|t− 1) +K(t)(y(t)− h(x̂(t|t− 1))) (3.13)

H(t) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(t|t−1)

(3.14)

P (t|t) = P (t|t− 1)[I −H(t)TK(t)T ] (3.15)

x̂(t + 1|t) = f(x̂(t|t), u(t), 0) (3.16)

F (t) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

, G(t) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(t|t)
u=u(t)
w=0

(3.17)

P (t+ 1|t) = F (t)P (t|t)F (t)T +G(t)QG(t)T (3.18)

end

3.1.4 Properties of the EKF

It is worth pointing out the main differences between the EKF and the KF

derived for linear systems.

First, it is necessary to stress that the estimates x̂(t|t) and x̂(t + 1|t)
provided by the EKF are not the LMSE estimates of x(t) and x(t + 1),

respectively, based on Y t. This is due to the approximations introduced in

the linearization of the functions f(x, u, w) and h(x). Similarly, P (t|t) and
P (t+ 1|t) are not the covariance matrices of the estimation errors, but only

their approximations. How good such approximations are may depend on

several factors, including the initial conditions x̂(0|−1), P (0|−1). Therefore,
special care must be taken in the choice of such initial values, by exploiting

the available a priori knowledge on the variables to be estimated.

Another main difference with the linear case is that the matrices F (t),
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G(t) and H(t) depend on the current estimates x̂(t|t) and x̂(t + 1|t) (that

are the values at which the Jacobian matrice are computed), which in turn

depend on the data Y t. As a consequence, the matricesK(t), P (t|t), P (t+1|t)
cannot be precomputed as in the linear case. Moreover, they depend on the

specific data realization processed, which means that also the uncertainty

associated to the estimates actually depend on the data set. In other words,

we cannot assess the quality of the estimates before computing them.

In general, there are no guarantees that the estimates provided by the

EKF are satisfactory. Loosely speaking, neglecting the higher order terms is

reasonable only if the estimation errors are “small”, which clearly leads to a

circular reasoning. The possible undesired behaviors that can be observed can

be divided in two types: divergence occurs when the error grows arbitrarily,

i.e.

lim
t→∞
||x(t)− x̂(t|t)|| = +∞.

On the other hand, even if the error remains bounded, one may face incon-

sistency of the estimates. This happens if

E
[
(x(t)− x̂(t|t))(x(t)− x̂(t|t))T

]
≫ P (t|t)

that is, if the actual uncertainty is much larger than the one evaluated by

the EKF. In such a case, one may make overoptimistic statements about

the quality of the estimates delivered by the filter. Said another way, the

true state values may be significantly faraway from the confidence intervals

derived from the filter estimates.

State estimation for nonlinear dynamic systems is still an active research

area. Whenever the solution provided by the EKF is not satisfactory, one may

resort to a variety of alternatives that have been proposed in the literature.

Some of them are briefly presented in the next sections.

3.2 The Continuous-Discrete Kalman Filter

In many real-world applications, the system dynamics are described by a

set of continuous-time differential equations, while the output measurements
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are available only at discrete time instants. For example, this is the case of

sampled-data systems, in which the physical behavior is usually described

by a state-space continuous-time model, while the sensor measurements are

functions of the state vector, sampled at a given clock rate or made available

at asynchronous time instants. For a linear time-invariant system, this setting

is captured by the equations







ẋ(t) = Ax(t) +Bu(t) +Gw(t)

y(tk) = Cx(tk) + v(tk) k = 0, 1, 2, . . .

where t0 < t1 < t2 < . . . are the discrete time instants at which mea-

surements are collected. It is worth observing that in this case w(t) is a

continuous-time stochastic process which is assumed to be stationary and

white. This means that its covariance function is given by E
[
w(t+ τ)wT (t)

]
=

Qδ(τ), where Q is the spectral density matrix. We also set E [w(t)] = 0 and

make the usual assumptions on the output noise, i.e., v(tk) ∼WP (0, R) and

it is independent from w(t).

The LMSE state estimates for system (3.2) is given by the following

recursive equations:

Initialization: x̂(t0|t−1) = m0, P (t0|t−1) = P0

For k = 0, 1, 2, · · ·
K(tk) = P (tk|tk−1)C

T [CP (tk|tk−1)C
T +R]−1 (3.19)

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)− Cx̂(tk|tk−1)) (3.20)

P (tk|tk) = P (tk|tk−1)[I − CTK(tk)
T ] (3.21)

d

dt
x̂(t|tk) = Ax̂(t|tk) +Bu(t) , for t ∈ [tk, tk+1) (3.22)

d

dt
P (t|tk) = AP (t|tk) + P (t|tk)AT +GQGT , for t ∈ [tk, tk+1) (3.23)

end

Algorithm (3.19)-(3.23) is known as the Continuous-Discrete Kalman Fil-

ter (CDKF). While equations (3.19)-(3.21) are the same as in the standard
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discrete-time Kalman filter, the equations of the prediction step (3.22)-(3.23)

are a set of differential equations which allow one to compute the prediction

of the state and the associated covariance matrix of the prediction error along

the time interval t ∈ [tk, tk+1), until the next measurements y(tk+1) becomes

available.

It is worth observing that (3.22) are n first-order linear differential equa-

tions in the state components, while (3.23) correspond to n(n+1)
2

first-order

linear differential equations in the independent entries of P (t|tk) (recall that
P is symmetric). Hence the solutions of these two systems of differential

equations can be computed analytically. It must be also stressed that the

resulting state estimate trajectories are piecewise continuous, as x̂(t|tk) is

continuous in the interval t ∈ (tk, tk+1), while jumps occur at the discrete

time instants tk due to the correction step (the same occurs also for the

entries of P ).

Clearly, a possible alternative to the CDKF described above is to first

discretize the continuous-time dynamics of system (3.2) and then apply the

discrete-time Kalman filter to the discretized system. This usually works well

for linear systems, which can be discretized exactly, i.e., without introducing

errors in the dynamics due to the discretization. On the other hand, the state

estimation problem becomes much more challenging when dealing with non-

linear systems. In particular, if the time interval between two time samples

tk and tk+1 is long (compared to the time constants of the system dynamics),

a poor discretization of the system dynamics may lead to significant errors,

which in turn can generate inconsistency of the estimates or even divergence

of the filter.

A possible solution of the state estimation problems in the case of sampled-

data nonlinear systems is provided by the Continuous-Discrete Extended

Kalman Filter (CDEKF) described next.

Consider the system






ẋ(t) = f (x(t), u(t), w(t))

y(tk) = h (x(tk)) + v(tk)
(3.24)
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in which w(t) and v(tk) satisfy the same assumptions as in the linear case

treated above. Then, the equations of the CDEKF algorithm are given by

Initialization: x̂(t0|t−1) = m0, P (t0|t−1) = P0

For k = 0, 1, 2, · · ·
K(tk) = P (tk|tk−1)H

T (tk)[H(tk)P (tk|tk−1)H
T (tk) +R]−1 (3.25)

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)− h(x̂(tk|tk−1)) (3.26)

P (tk|tk) = P (tk|tk−1)[I −HT (tk)K(tk)
T ] (3.27)

d

dt
x̂(t|tk) = f(x̂(t|tk), u(t), 0) , for t ∈ [tk, tk+1) (3.28)

d

dt
P (t|tk) = F (tk)P (t|tk) + P (t|tk)F T (tk) +G(tk)QGT (tk) , (3.29)

for t ∈ [tk, tk+1)

end

where

F (tk) =
∂f

∂x

∣
∣
∣
∣
∣x=x̂(tk |tk)

u=u(tk)
w=0

∈ R
n×n (3.30)

G(tk) =
∂f

∂w

∣
∣
∣
∣
∣x=x̂(tk |tk)

u=u(tk)
w=0

∈ R
n×d (3.31)

H(tk) =
∂h

∂x

∣
∣
∣
∣
∣
x=x̂(tk |tk−1)

∈ R
p×n (3.32)

As in the linear case, the correction step composed by equations (3.25)-(3.27)

are analogous to those of the discrete-time EKF. The prediction step (3.28)-

(3.29) consists of n nonlinear differential equations in the state predictions

x̂(t|tk) and n(n+1)
2

linear differential equations in the entries of P (t|tk). Such
equations must be integrated over the interval t ∈ [tk, tk+1). In particular,

the crucial task is the integration of the nonlinear equations (3.28). In fact,

the main reason why the CDEKF is often successfully employed in applica-

tions involving sampled-data systems is that it allows one to precisely evolve
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the state estimates between two consecutive measurements, through precise

numerical integration of the prediction step equations.

Clearly, the same observations made for the EKF in the discrete-time

setting, apply also to the CDEKF. In particular, there is no guarantee that

the expected value of the state estimation error converge to zero, nor that

P (t|tk) be equal to the covariance matrix of the estimation error. In this

respect, the role of the initial conditions x̂(t0|t−1) and P (t0|t−1) may be

crucial to promote a satisfactory behavior of the filter.

Remark 3.1. In principle, the Jacobian matrices (3.30) and (3.31) could be

computed by linearizing the system around the current prediction x̂(t|tk) and
the current input u(t), instead of their corresponding values at the beginning

of the integration interval [tk, tk+1). Notice however that this would make

the matrices F and G time-varying and, more importantly, dependent on the

variables x̂(t|tk) themselves! As a consequence, the equations (3.28)-(3.29)

would be coupled, that is they would become a unique system of nonlinear

differential equations in n + n(n+1)
2

variables. The resulting increase of the

computational burden may not be worth the advantage provided by a more

precise approximation of the covariance matrix of the estimation errors.

3.3 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an algorithm for state estimation of

nonlinear systems, based on the unscented transform. The key idea is to use

a set of points in the state space, in order do match some relevant statistics

of the a posteriori pdf of the state fx(x(t)|Y t), and then suitably propagate

and update such points according to the equations of the nonlinear dynamic

system.

3.3.1 The Unscented Transform

Let us consider a set of p points in R
n, hereafter referred to as sigma points

and denoted by X(i) ∈ R
n, for i = 1, . . . , p. To each sigma point we associate
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a scalar weight W (i) ∈ R, i = 1, . . . , p, such that
∑p

i=1W
(i) = 1. The sigma

points are chosen in such a way that their (weighted) sample statistics are

equal to the selected statistics of the target a posteriori pdf.

Example 3.1. Let x ∈ R
n be a Gaussian random variable, x ∼ N (m,P ).

Let us choose p = 2n sigma points as

X(i) = m+ (
√
nP )i i = 1, · · · , n (3.33)

X(i) = m− (
√
nP )i i = n+ 1, · · · , 2n (3.34)

W (i) =
1

2n
i = 1, · · · , 2n (3.35)

where (M)i denotes the i-th column of matrix M , while for M and U square

matrices,
√
M = U means that M = UUT . It is easy to show that the

weighted mean and covariance matrix of the sigma points match those of the

original Gaussian pdf, i.e.

2n∑

i=1

W (i)X(i) = m,

2n∑

i=1

W (i)(X(i) −m)(X(i) −m)T = P.

We aim to use the sigma points to propagate the relevant statistics of a

random variable that undergoes a nonlinear transformation. Consider the

non linear function h : Rn → R
n such that

z = h(x)

Let X(i),W (i) be a set of sigma points for x. If we apply the nonlinear

function h(·) to the sigma points, we obtain the new set of sigma points

Z(i) = h(X(i)) i = 1, · · · , p.

Then, we approximate the statistic of z with the new sigma points. For

example, the mean

E [z] ≃
p
∑

i=1

W (i)Z(i) = mz
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and the covariance matrix

Cov(z) ≃
p
∑

i=1

W (i)(Z(i) −mz)(Z
(i) −mz)

T

It is worth stressing that the set of sigma points and weights (3.33)-(3.35)

is just one of the many possible choices. In particular, by enriching the set

of sigma points it is possible to match other moments of the target pdf, thus

improving the quality of the approximation. For instance, considering again

Example 3.1, by choosing the set of 2n + 1 sigma points

X(i) = m+ (
√
3P )i i = 1, · · · , n (3.36)

X(i) = m− (
√
3P )i i = n + 1, · · · , 2n (3.37)

X(2n+1) = m (3.38)

W (i) =
1

6
i = 1, · · · , 2n (3.39)

W (2n+1) = 1− n

3
(3.40)

it is possible to match not only the mean and covariance of the pdf N (m,P ),

but also the 4-th order moments E [(xi −mi]
4 = 3P 2

ii, i = 1, . . . , n. Notice

that this comes at the price of adding only one further sigma point with

respect to the set (3.33)-(3.35).

Example 3.2. Let us consider the mapping from polar coordinates ξ = [ρ θ]T

to cartesian coordinates z = [x y]T , defined as

z =

[

x

y

]

=

[

ρ cos θ

ρ sin θ

]

= h

([

ρ

θ

])

= h(ξ)

Assume that M samples of polar coordinates are drawn from the pdf

[

ρ

θ

]

∼ N
([

mρ

mθ

]

,

[

σ2
ρ 0

0 σ2
θ

])

(3.41)

By using the linearization approach, as in the EKF, the mean and covariance
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of the distribution of the cartesian coordinates can be approximated as

E [z] ≃ h

([

mρ

mθ

])

=

[

mρ cos(mθ)

mρ sin(mθ)

]

Cov(z) ≃ H

[

σ2
ρ 0

0 σ2
θ

]

HT

where

H =
∂h

∂ξ

∣
∣
∣
∣
∣ ρ=mρ

θ=mθ

=

[

cos(mθ) −mρ sin(mθ)

sin(mθ) mρ cos(mθ)

]

. In order to compare the approximations provided by the linearization ap-

proach to that based on the unscent transform, we consider the estimated

confidence ellipses, defined as (z − ẑ)TP−1
z (z − ẑ) ≤ rχ, in which ẑ and Pz

are the estimates of E [z] and Cov(z), respectively. We set rχ = 9.21, which

corresponds to a 99% confidence level. We generated M = 1000 points

ξ = [ρ θ]T distributed according to the pdf (3.41), with mρ = 1, mθ = π
2
,

σρ = 0.02, σθ = 15π
180

. In Figure 3.1, such points are shown (in blue) to-

gether with different estimates of the 99% confidence ellipses. The dashed

black line corresponds to the ellipse generated by the sample mean and co-

variances of the 1000 points and can be considered as a ground truth. The

confidence ellipse provided by the linearization-based approach is shown in

red. The ellipses generated from the unscented transforms using the sets of

sigma points (3.33)-(3.35) and (3.36)-(3.40) are shown respectively in light

blue and in green. It can be observed that the approximation based on the

linearization underestimates significantly the covariance of the transformed

vector z = [x y]T . Conversely, the ellipse resulting from the first set of sigma

point is much closer to that based on sample estimates, which is almost

perfectly matched by the ellipse corresponding to the extended set of sigma

points.
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Figure 3.1: Example 3.2. Comparison of confidence ellipses: linearization

(red), unscented transform based on (3.33)-(3.35) (light blue); unscented

transform based on (3.36)-(3.40) (green). The blue crosses are the points

drawn from the pdf (3.41).

3.3.2 The UKF Algorithm

The main idea behind the UKF algorithm is to use the sigma points to

propagate the statistics of the posterior pdf fx(x(t)|Y t), using a prediction-

correction structure similar to that of the EKF. Consider system (3.1) and

let Assumption 2.1 hold. Let x̂(t|t) and P (t|t) have the same meaning as in

the EKF and assume they are given at time t. The prediction and correction

steps of the UKF are summarized next. For simplicity, it is assumed that

the same number p of sigma points, with the same set of weights W (i), are

generated for the distributions of x(t), w(t) and v(t).

Prediction

• Generate the sigma points {X(i),W (i)} so that they have mean x̂(t|t)
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and covariance P (t|t).

• Generate the sigma points {Ξ(i),W (i)} so that they match some relevant

statistics of the pdf of w(t) (e.g., the mean 0 and the covariance Q).

• Compute the predicted sigma points

X̂(i) = f(X(i), u(t),Ξ(i)) i = 1, . . . , p

• Compute the (approximated) mean and covariance of the a posteriori

pdf fx(x(t + 1)|Y t) as

x̂(t+ 1|t) =
p
∑

i=1

W (i)X̂(i)

P (t+ 1|t) =
p
∑

i=1

W (i)(X̂(i) − x̂(t+ 1|t))(X̂(i) − x̂(t+ 1|t))T

Correction

• Generate the sigma points {V (i),W (i)} so that they match some rele-

vant statistics of the pdf of v(t) (e.g., the mean 0 and the covariance

R).

• Compute the output sigma points

Ŷ (i) = h(X̂(i)) + V (i) i = 1, · · · , p

• Set

ŷ(t+ 1) =

p
∑

i=1

W (i)Ŷ (i)

S(t+ 1) =

p
∑

i=1

W (i)(Ŷ (i) − ŷ(t+ 1))(Ŷ (i) − ŷ(t + 1))T

Pxy(t+ 1) =

p
∑

i=1

W (i)(x̂(i) − x̂(t+ 1|t))(Ŷ (i) − ŷ(t+ 1))T
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• Compute the (approximated) mean and covariance of the a posteriori

pdf fx(x(t + 1)|Y t+1) as

x̂(t+ 1|t+ 1) = x̂(t + 1|t) + Pxy(t+ 1)S(t+ 1)−1 (y(t+ 1)− ŷ(t + 1))

P (t+ 1|t+ 1) = P (t+ 1|t)− Pxy(t+ 1)S(t+ 1)−1Pxy(t + 1)T .

It is apparent that the last two equations derive from the LMSE estimation

expressions, in which the relevant covariances are obtained from the corre-

sponding sample statistics of the sigma points.

It is worth stressing that many different versions of the UKF have been

proposed in the literature. The one presented above contains only the basic

features, but the tool is flexible enough to allow several interesting exten-

sions. For example, one may take into account cross-correlations between

state variables, process disturbances and measurement noise, by generating

a set of sigma points representative of the joint statistics of an extended

vector including x(t), w(t) and v(t). Moreover, one may exploit a priori

knowledge on the functional form of the involved distributions and generate

and extended set of sigma points matching higher order statistics, beyond

the mean and the covariance. For further details, see the references (Julier

and Uhlmann, 2004; Wan et al., 2001).

3.4 The Particle Filter

Ideally, the aim of the state estimation problem is to find an estimate of the

a posteriori pdf of the state, fx(x(t)|Y t). Then, one can compute the MSE

estimate of x(t) as

E
[
x(t)|Y t

]
=

∫

xf(x|Y t)dx.

In the linear Gaussian case (i.e., if the system is linear and the stochastic

processes w(t) and v(t) have a Gaussian pdf), it turns out that

f(x(t)|Y t) = N(x̂(t|t), P (t|t))
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where x̂(t|t) and P (t|t) can be computed through the KF iterations. If the

Gaussian assumption is not satisfied, the KF still provides the LMSE estimate

of the state. However, in the nonlinear case, the a posteriori pdf of x(t)

can be significantly different from a Gaussian pdf. In such cases, the pdf

N(x̂(t|t), P (t|t)), with x̂(t|t) and P (t|t) provided by the EKF, can be a very

coarse approximation of the true pdf fx(x(t)|Y t).

In principle, it is possible to recursively update the exact a posteriori pdf

of the state, by using a prediction-correction iterative procedure, as explained

next.

3.4.1 Recursive computation of the a posteriori state

distribution

Consider again system (3.1) and assume that w(t) and v(t) are independent

and distributed according to fw(w(t)) and fv(v(t)), respectively.

Prediction

Assume that fx(x(t)|Y t) is known. From the theory of joint and condi-

tional pdfs, one has

fx(x(t+ 1)) =

∫

fx(x(t + 1), x(t))dx(t)

=

∫

fx(x(t + 1)|x(t))fx(x(t))dx(t)

The above equation still holds if we condition all the involved pdfs also to

the data Y t, thus giving

fx(x(t + 1)|Y t) =

∫

fx(x(t+ 1)|x(t), Y t)fx(x(t)|Y t)dx(t)

=

∫

fx(x(t+ 1)|x(t))fx(x(t)|Y t)dx(t) (3.42)

where the last equality is due to the fact that x(t) is a Markov process.

Therefore, in order to compute the predicted pdf fx(x(t+1)|Y t), we need to

know fx(x(t + 1)|x(t)), which in turn can be derived from the first equation

in model (3.1) and the knowledge of fw(w(t)).
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Correction

From Bayes’s formula, one has

fx(x(t + 1)|Y t+1) = fx(x(t + 1)|y(t+ 1), Y t)

=
fxy(x(t + 1), y(t+ 1)|Y t)

fy(y(t+ 1)|Y t)

=
fy(y(t+ 1)|x(t+ 1))fx(x(t+ 1)|Y t)

fy(y(t+ 1)|Y t)
(3.43)

where in the last equality we have exploited the fact that

fy(y(t+ 1)|x(t+ 1), Y t) = fy(y(t+ 1)|x(t+ 1))

thanks once again to the fact that x(t) is a Markov process. Now, being

fy(y(t+ 1)|Y t) =

∫

fy(y(t+ 1)|x(t + 1), Y t)fx(x(t+ 1)|Y t)dx(t+ 1)

=

∫

fy(y(t+ 1)|x(t + 1))fx(x(t + 1)|Y t)dx(t + 1)

by substituting in (3.43) one gets

fx(x(t + 1)|Y t+1) =

=
fy(y(t+ 1)|x(t+ 1))

∫
fy(y(t+ 1)|x(t+ 1))fx(x(t+ 1)|Y t)dx(t+ 1)

fx(x(t+ 1)|Y t). (3.44)

Therefore, in order to compute the corrected pdf fx(x(t+ 1)|Y t+1), we need

to know fy(y(t+1)|x(t+1)), which can be derived from the second equation

in model (3.1) and the knowledge of fv(v(t)). In particular, one has

fy(y(t+ 1)|x(t+ 1)) = fv(y(t+ 1)− h(x(t + 1)). (3.45)

The equations (3.42) and (3.44) can be used in principle to compute the

exact a posteriori pdf of the state vector. However, such computations can

be intractable even by numerical approximation techniques, especially when

the dimension of the state vector is large. One way to practically approximate

the a posterior pdf is through the so-called Monte Carlo sequential methods.

The key idea is to use a relatively large set of points in the state space

(“particles”) whose sample distribution is as close as possible to the true a

posteriori pdf fx(x(t)|Y t). The resulting estimator, known as Particle Filter

(PF), is described next.
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3.4.2 The Particle Filter Algorithm

Consider system (3.1) and let fw(w(t)) and fv(v(t)) be known. Assume that

a set of particles xi
t, for i = 1, · · · , N , is available and that they are (approx-

imately) distributed according to fx(x(t)|Y t).

Prediction

• GenerateN particles wi
t, i = 1, · · · , N , distributed according to fw(w(t)).

• Compute the predicted particles

x̂i
t+1 = f(xi

t, u(t), w
i
t) i = 1, · · · , N

The particles x̂i
t+1 provide an approximation of fx(x(t + 1)|Y t).

Correction

• Generate the weights

qi =
fy(y(t+ 1)|x̂i

t+1)
N∑

j=1

fy(y(t+ 1)|x̂j
t+1)

i = 1, · · · , N

One clearly has qi ≥ 0, ∀i, and∑N
i=1 qi = 1. We use qi as the probability

mass function of x̂i
t+1 in the a posteriori pdf fx(x(t + 1)|Y t+1). Notice

that, according to (3.45), fy(y(t+ 1)|x̂i
t+1) = fv(y(t+ 1)− h(x̂i

t+1)).

• Re-sampling. Sample N -times from the set of particles x̂i
t+1 in such a

way that the probability of extracting x̂i
t+1 is equal to qi. This amounts

to generate a new set of particles xj
t+1, j = 1, . . . , N , such that

P{xj
t+1 = x̂i

t+1} = qi , j = 1, · · · , N.

The new set of particles x
j
t+1, j = 1, · · · , N , is approximately dis-

tributed according to fx(x(t + 1)|Y t+1).

We illustrate the application of the PF algorithm with some examples.
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Example 3.3. Consider the system







x(t + 1) = x(t) + w(t)

y(t) = 1
20
x2(t) + v(t)

where w(t) and v(t) satisfy Assumption 2.1 with Q = 0.5 and R = 0.05,

and they are normally distributed. The EKF and a particle filter with 5000

particles have been run on a realization of the output y(t), for t = 0, 1, . . . , 50.

Figure 3.2 shows the obtained results at time t = 50. The histogram of the

particles, shown in blue, represents an approximation of the state a posteriori

pdf fx(x(t)|Y t). It can be noticed that it is a bimodal pdf, with maxima close

to 4 and -4. This is due to the output nonlinearity which essentially provides

the same nominal output, irrespectively of the sign of x(t). The Gaussian

pdf corresponding to the EKF mean and covariance estimates is depicted in

red. It is apparent that it matches only one lobe of the a posteriori pdf.

The true state x(t) is marked with a black cross, while the estimate x̂(t|t)
provided by the EKF with a red cross. In this case, the estimate of the EKF

is affected by a large error, due to the fact that the true state is located in

the lobe of the a posteriori pdf which is not matched by the EKF.

Example 3.4. Let a consider a 2D localization problem in which an agent

of coordinates (x(t), y(t)) is tracked by two radars, placed respectively at

locations (0, 0) and (1, 1). The radars return only distance measurements,

given by

d1(t) =
√

x2(t) + y2(t) + v1(t),

d2(t) =
√

(x(t)− 1)2 + (y(t)− 1)2 + v2(t).

Assume the agent is fixed at position (0, 1). Both radars measure a nominal

(i.e., noiseless) distance equal to 1, which leads to an ambiguity in the position

estimate, as both (0, 1) and (1, 0) are locations compatible with the available

measurements. By adopting the dynamic model

x(t + 1) = x(t)

y(t+ 1) = y(t)



72 CHAPTER 3. STATE ESTIMATION FOR NONLINEAR SYSTEMS

Figure 3.2: Example 3.3. Histogram of a posteriori pdf provided by PF

(blue); estimate of a posteriori pdf returned by EKF (red); true state (black

cross); EKF state estimate (red cross).

and running a PF with 3000 particles for 100 time instants, the situation

depicted in Figure 3.3(left) is obtained. The blue circles represent the radar

locations, while the red dotted circles are the positions compatible with their

nominal measurements. The intersections of the circles (red crosses) are the

positions compatible with the nominal measurements. The black cross is

the estimate provided by the EKF, which is approximately halfway the two

admissible positions. The particles of the PF are shown in green. It can be

observed that they all collapsed to a single particle, located close to one of

the admissible positions. Clearly, this is not a good approximation of the

actual a posteriori pdf of the state.

This awkward behavior is due to the fact that the particles are initially chosen

at random and then are progressively resampled in the correction steps, but

always among the initial set of particles. Hence, the correction step only

modifies the probabilities qi associated to each particle, but not their values.
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In the shown experiment, one particle was eventually resampled 3000 times,

most likely because the probability of all the other particles became too

small. In these situations, it is useful to inject a process disturbance in the

state dynamics, with the purpose to “spread” the particles and promote the

exploration of the state space. In this example, we adopt the random walk

model
x(t+ 1) = x(t) + wx(t)

y(t+ 1) = y(t) + wy(t)

where the [wx(t) wy(t)]
T is generated as a with process with zero mean and

variance Q = σ2
w · I. By choosing σw = 0.1, one gets the particle distribution

at time t = 100 shown in Figure 3.3(right). At it can be seen, now the parti-

cles are concentrated around the two admissible positions, thus providing a

reliable approximations of the state pdf. Clearly, once the agent will move,

the measurements will allow to discriminate between the two positions and

the particles will be located with high probability close to the unique location

compatible with the measurements.
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Figure 3.3: Example 3.4. Left: particle distribution without process dis-

turbance. Right: particle distribution with process disturbance of standard

deviation σw = 0.1. Particles (green); admissible positions (red crosses);

EKF estimate (black cross).

As for the UKF, the version of the particle filter presented in this notes
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is a basic one. A number of variations have been proposed in the literature

which allow the user to exploit the potential of this approach to carefully

approximate probability density functions even in state spaces of very high

dimensions. We also hint to the fact that there are theoretical results show-

ing that, under suitable technical assumptions, by increasing the number of

particles N one can approximate the true pdf fx(x(t)|Y t) with arbitrary pre-

cision. For a detailed treatment of the subject, see the references (Gordon et

al., 1993; Doucet et al., 2001).
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