
State Estimation and Filtering Labsession on Kalman Filter

The behavior of the DC motor with field control represented in the figure is described by the following discrete-time dynamic model:

$$x_1(t+1) = x_1(t) - \frac{T_c}{J}(bx_1(t) - K_m x_2(t))$$

$$x_2(t+1) = x_2(t) - \frac{T_c}{L_a}(K_m x_1(t) + R_a x_2(t)) + \frac{T_c}{L_a}(u(t) + w(t))$$

where

- $x_1(t)$ is the angular velocity of the rotating shaft;
- $x_2(t)$ is the current flowing in the field circuit;
- u(t) is the voltage applied to the field circuit;
- w(t) is a disturbance on the voltage applied to the field circuit, modeled as a white stochastic process with zero mean and variance Q;
- R_a, L_a are the resistance and inductance of the circuit;
- J, b are respectively the moment of inertia and the friction coefficient of the shaft;
- K_m is the field gain of the motor;
- T_c is the sampling time.

A measurement of the angular velocity of the shaft is available, i.e.

$$y(t) = x_1(t) + v(t)$$

where v(t) is the measurement noise, modeled as a white stochastic process with zero mean and variance R.

In the file data_kf_dcmotor.npz (.mat for Matlab), an input-output data set $\{u(t), y(t)\}$, for $t = 0, 1, \dots, N$, is provided. Such data have been generated from an experiment on the above system with

the following parameters: $J = 0.01 \ (kgm^2/s^2)$, $b = 0.1 \ (Nms)$, $K_m = 0.01 \ (Nm/A)$, $R_a = 1 \ (\Omega)$, $L_a = 1 \ (H)$, $T_c = 0.01 \ (s)$. The variances of the process disturbance and measurement noise are $Q = 1 \ (V^2)$ and $R = 0.01 \ (rad^2/s^2)$, respectively.

- a) Design and implement a linear Kalman filter which, by using the data y(t), u(t), provides an estimate of the time evolution of the state variables $x_i(t)$, i = 1, 2, for all time instants t = 0, 1, ..., N. Compare the estimated states with the corresponding true values. Evaluate the consistency of the filter by comparing the estimation error of each state variable $x_i(t) \hat{x}_i(t|t)$ with the corresponding confidence intervals $\pm 3\sqrt{P_{ii}(t|t)}$. Compute the root-mean-square error $\sqrt{\frac{1}{N+1}\sum_{t=0}^{N}\{x_i(t) \hat{x}_i(t|t)\}^2}$, for i = 1, 2. Analyze the behavior of the filter for different initial conditions $\hat{x}(0|-1)$ and P(0|-1). Compare the obtained state estimates with those provided by the asymptotic Kalman filter.
- b) Now assume that the measurement of the angular velocity is affected by a constant bias b, i.e.,

$$y_b(t) = x_1(t) + b + v(t)$$

Design a Kalman Filter which is able to simultaneously estimate the state variables $x_1(t)$, $x_2(t)$ and the bias b, by using the data $y_b(t)$, u(t). Evaluate the consistency of the filter by comparing the estimation error of each estimated variable with the corresponding 3σ confidence intervals. Compare the results with those obtained by a standard Kalman Filter which does not estimate the bias term. Compare the RMSE obtained by both filters. Analyze the behavior of the filter for different initial conditions $\hat{x}(0|-1)$ and P(0|-1). Discuss the role of the variance σ_b^2 of the process disturbance affecting the dynamic equation of the variable corresponding to the bias term.

Data available in the file data_kf_dcmotor.npz:

Y: vector of measurements y(t), t = 0, ..., N

U: vector of inputs u(t), t = 0, ..., N

Ybias: vector of measurements $y_b(t)$, t = 0, ..., N, affected by bias error

X: matrix of true states $x_i(t)$, i = 1, 2, t = 0, ..., N, to be used only for the comparisons with the estimated states (the entry (t, i) of the matrix corresponds to $x_i(t - 1)$)

bias: the true bias error b, to be used only for the comparisons with the estimated bias.