
CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO

• Sistema in condizioni di equilibrio a t = 0.
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u(t) = 0

d(t) = 0

y(t) = 0Sistema

• Tipi di perturbazione.

– Perturbazione di durata limitata:

u(t) = 0, t > Tu & ‖u(t)‖ ≤ Mu ∀t ≥ 0

d(t) = 0, t > Td & ‖d(t)‖ ≤ Md ∀t ≥ 0

– Perturbazione persistente:

‖u(t)‖ ≤ Mu ∀t ≥ 0

‖d(t)‖ ≤ Md ∀t ≥ 0



STABILITÀ: PERTURBAZIONI DI DURATA LIMITATA

• Caratterizzazione risposta per perturbazioni di durata limitata.

– La risposta è stabile se:

∗ A) la norma dell’uscita è limitata, ovvero

∃My > 0 : ‖y(t)‖ ≤ My;

∗ B) perturbazioni “piccole”inducono variazioni “piccole”, ovvero

Mu → 0 & Md → 0 =⇒ My → 0.

– La risposta è stabile asintoticamente se:

∗ C) è stabile, ovvero valgono A) e B);

∗ D) il sistema ritorna asintoticamente in condizioni di equilibrio,

ovvero t →∞ =⇒ ‖y(t)‖ → 0.

– La risposta è instabile negli altri casi.

• Conclusioni sulla stabilità della condizione di equilibrio rispetto a per-

turbazioni di durata limitata.

– Stabilità: nessuna risposta è instabile ed almeno una è stabile.

– Stabilità asintotica: tutte le risposte sono stabili asintoticamente.

– Instabilità: almeno una risposta è instabile.



STABILITÀ: PERTURBAZIONI PERSISTENTI

• Caratterizzazione risposta per perturbazioni persistenti.

– La risposta è stabile se:

∗ A) la norma dell’uscita è limitata, ovvero

∃My > 0 : ‖y(t)‖ ≤ My;

∗ B) perturbazioni “piccole”inducono variazioni “piccole”, ovvero

Mu → 0 & Md → 0 =⇒ My → 0.

– La risposta è instabile negli altri casi.

• Conclusioni sulla stabilità della condizione di equilibrio rispetto a per-

turbazioni persistenti.

– Stabilità: tutte le risposte sono stabili.

– Instabilità: almeno una risposta è instabile.



STABILITÀ DI SISTEMI LINEARI STAZIONARI

• Indipendenza dalla norma della perturbazione.

• Indipendenza dall’istante t0.

• Indipendenza dalla condizione di equilibrio.

Stabilità del sistema

rispetto a perturbazioni di durata limitata

m

Carattere di convergenza della risposta libera

Stabilità del sistema

rispetto a perturbazioni persistenti di ampiezza limitata

m

Limitatezza della risposta forzata



STABILITÀ DI SISTEMI LINEARI STAZIONARI

• Modello ingresso-uscita (i/u).

- -u(t) = 0 y(t)
P (D)

Q(D)
, Yo

• Modi di un sistema lineare.

• Condizione per la stabilità: Non esistono poli della funzione di trasferi-

mento con parte reale positiva e quelli con parte reale nulla sono semplici.

• Condizione per la stabilità asintotica: I poli della funzione di trasferi-

mento hanno parte reale negativa.



CRITERI PER LA STABILITÀ DI UN POLINOMIO

• Polinomio di grado n

Pn(s) = sn + an−1s
n−1 + . . . a1s + a0

• Condizione necessaria per la stabilità asintotica: ai > 0 per ogni i =

0, 1, . . . , n− 1

• Condizione necessaria e sufficiente per la stabilità asintotica: criterio di

Routh.

– Costruzione tabella di Routh.

– Ad ogni variazione di segno che si presenta nella prima colonna

della tabella corrisponde una radice con parte reale positiva e ad

ogni permanenza una radice a parte reale negativa.



CRITERI PER LA STABILITÀ DI UN POLINOMIO

• Presenza di uno zero in una colonna diversa dalla prima.

• Presenza di uno zero nella prima colonna della tabella.

– Altri elementi della riga non tutti nulli.

1. metodo ε: si sostituisce ε al posto dello 0 e si continua la tabella

studiando alla fine il comportamento per ε = 0.

2. metodo del binomio: si ripete l’algoritmo di Routh per il poli-

nomio (s + λ)Pn(s) dove λ è scelto a piacere.

– Altri elementi della riga tutti nulli

1. metodo del polinomio ausiliario: si applica il criterio di Routh

fino alla riga precedente quella nulla. L’analisi viene completata

prima costruendo il polinomio ausiliario Pa(s) definito dagli ele-

menti della riga precedente e quindi applicando il procedimento

di Routh al polinomio Pa(s) + dPa(s)/ds. In tal caso ogni vari-

azione di segno corrisponde ad una radice a parte reale positiva

e ogni permanenza ad una radice a parte reale nulla o negativa.



CRITERI PER LA STABILITÀ DI UN POLINOMIO

• Diagramma polare di Pn(s)

Pn(jω) = (jω)n + an−1(jω)n−1 + . . . a1jω + a0

• Criterio di Michailov: Pn(s) è stabile asintoticamente se e solo se

1. il diagramma polare di Pn(jω) non attraversa l’origine;

2. la variazione di fase di arg[Pn(jω)]+∞0 vale nπ/2.

• Osservazioni.

– Curvatura dei polinomi stabili.

– Calcolo delle radici a parte reale maggiore di zero.

– Separazione zeri parte reale e parte immaginaria di Pn(jω).



STABILITÀ INGRESSO LIMITATO - USCITA LIMITATA

- -u(t) = 0 y(t) = 0
in equilibrio

Sistema

• Definizione di stabilità ILUL (ingresso limitato - uscita limitata)

– Un sistema in stato di equilibrio si dice ILUL stabile se ad ogni se-

gnale in ingresso la cui ampiezza non superi un determinato limite

corrisponde una risposta limitata, ovvero

∃Mu, My > 0 :

∀u(·) : |u(t)| ≤ Mu ∀t ≥ to =⇒ |y(t)| ≤ My ∀t ≥ to



STABILITÀ INGRESSO LIMITATO - USCITA LIMITATA

• Criterio di stabilità ILUL per sistemi lineari stazionari.

– Un sistema lineare è ILUL stabile se e solo se vale

∫ ∞
0
|g(t)|dt ≤ M < ∞

– Dimostrazione parte sufficiente:

|y(t)| = |
∫ t

0
g(t− τ)u(τ)dτ | ≤

∫ t

0
|g(t− τ)||u(τ)|dτ ≤

≤
∫ t

0
|g(t− τ)|dτMu ≤ MMu = My

– Dimostrazione parte necessaria:

per assurdo scegliendo, una volta assegnato t, il segnale di ingresso

u(τ) = sign[g(t− τ)]



INTERCONNESSIONE DI SISTEMI IN RETROAZIONE
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R(s) Y (s)
E(s)

G(s)

H(s)

• Notazioni.

– r(t): segnale di riferimento

– y(t): variabile controllata

– e(t): segnale errore

– G(s): funzione di trasferimento della catena diretta

– H(s): funzione di trasferimento della catena di retroazione

– L(s) ·= G(s)H(s): guadagno d’anello



INTERCONNESSIONE DI SISTEMI IN RETROAZIONE

• Sistema equivalente ingresso-uscita

- -R(s) Y (s)W (s)

– W (s): funzione di trasferimento da anello chiuso

W (s) =
G(s)

1 + G(s)H(s)
=

G(s)

1 + L(s)

– Ipotesi: il sistema è ben posto, ovvero 1 + L(s) non è identicamente

nullo.

– Riduzione a retroazione unitaria

W (s) =
1

H(s)

L(s)

1 + L(s)

j
−
+
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R(s) Y (s)L(s)H−1(s)



INTERCONNESSIONE SISTEMI IN RETROAZIONE

• Problema.

Ottenere una rappresentazione di W (s) note quelle di G(s) e H(s).

– Gli zeri di W (s) sono definiti dagli zeri di G(s) e dai poli di H(s).

– I poli di W (s) sono definiti dagli zeri dell’equazione nella variabile s

G(s)H(s) + 1 = 0

– La risposta in frequenza W (jω) risulta

W (jω) =
G(jω)

1 + G(jω)H(jω)



SISTEMA A RETROAZIONE UNITARIA
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R(s) Y (s)
E(s)

G(s)

• Passaggio da G a W quando G è assegnata in forma grafica

• Osservazione: relazione bilineare fra W e G

W + WG−G = 0

• Proprietà relazioni bilineari fra quantità complesse.

– Sono rappresentazioni conformi e trasformano circonferenze di un

piano complesso in circonferenze dell’altro piano



CIRCONFERENZE A MODULO COSTANTE

• La circonferenza |W (jω)| = M nel piano di W è trasformata nella cir-

conferenza del piano di G di centro

 M 2

1−M 2 , 0



e raggio

M

|1−M 2|



CIRCONFERENZE A FASE COSTANTE

• La semiretta arg W (jω) = arctan N nel piano di W è trasformata nella

circonferenza del piano di G di centro

(
−1

2
,

1

2N

)

e raggio

1

2

√√√√N 2 + 1

N 2



CARTA DI NICHOLS

• Passaggio dal diagramma di Nichols di G(jω) a quello di W (jω).



CARTA DI NICHOLS

• Parametri caratteristici di W (jω).



ESEMPIO DI UTILIZZO DEI LUOGHI A M E N COSTANTE

• Effetto del guadagno di Bode di G(jω) sui parametri caratteristici di

W (jω)



SISTEMI DI CONTROLLO IN RETROAZIONE: STABILITÀ
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Dp(s)

Dh(s)

R(s) Y (s)

H(s)

C(s) P (s)
X1(s) X2(s)

X3(s)

U(s)

V (s)

• Definizioni di stabilità interna del sistema di controllo in retroazione.

– Il sistema si dice asintoticamente stabile internamente se ad ogni

arbitraria perturbazione di durata finita dei tre ingressi r(t), dp(t) e

dh(t) corrisponde una risposta asintoticamente stabile in ogni punto

del sistema di controllo.

– Il sistema si dice ILUL stabile internamente se ad ogni terna di in-

gressi r(t), dp(t), dh(t) limitati in ampiezza corrisponde una risposta

limitata in ogni punto del sistema di controllo.



SISTEMI DI CONTROLLO IN RETROAZIONE: STABILITÀ

• Ipotesi semplificativa: C(s), P (s) e H(s) sono funzioni razionali fratte

(equivalenza delle due definizioni di stabilità interna).

– Condizione necessaria e sufficiente per la stabilità interna:

∗ Le 9 funzioni di trasferimento riportate in tabella devono avere

tutti i poli a parte reale minore di zero.

R(s) Dp(s) Dh(s)

V (s) C(s)P (s)H(s)
1+C(s)P (s)H(s)

P (s)H(s)
1+C(s)P (s)H(s)

H(s)
1+C(s)P (s)H(s)

U(s) C(s)
1+C(s)P (s)H(s) − C(s)P (s)H(s)

1+C(s)P (s)H(s) − C(s)H(s)
1+C(s)P (s)H(s)

Y (s) C(s)P (s)
1+C(s)P (s)H(s)

P (s)
1+C(s)P (s)H(s) - C(s)P (s)H(s)

1+C(s)P (s)H(s)

• Estensione a sistemi di controllo più complessi.



SISTEMI DI CONTROLLO IN RETROAZIONE: STABILITÀ

• Problema: esiste una condizione equivalente per la stabilità interna del

sistema di controllo in retroazione?

• Risposta (I).

– Il sistema di controllo in retroazione è internamente stabile se e solo

se:

1. la funzione di trasferimento 1 + C(s)P (s)H(s) non ha zeri con

parte reale maggiore o uguale a zero;

2. non ci sono cancellazioni polo-zero nel semipiano destro chiuso

del piano complesso nel prodotto C(s)P (s)H(s).

• Osservazione: è sufficiente studiare la configurazione a retroazione uni-

taria con G(s) := C(s)P (s)H(s) tenendo conto degli eventuali poli a

parte reale maggiore o uguale a zero di C(s), P (s) e H(s).
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G(s)R(s) Y (s)



CRITERIO DI NYQUIST

• Risposta (II).

– Si consideri il diagramma di Nyquist di G(s) esteso ai valori nega-

tivi della pulsazione ω tenendo conto delle eventuali singolarità sull’asse

immaginario (percorso di Nyquist D e percorso di Nyquist indentato

Di)

– Sia ni(G) il numero di poli di G(s) con parte reale maggiore di zero.

– Criterio di Nyquist.

∗ Il sistema di controllo a retroazione unitaria è internamente sta-

bile se e solo se il diagramma esteso di Nyquist di G(s) non passa

per il punto (−1, 0) e compie, intorno a questo punto, un numero

di rotazioni antiorarie pari a ni(G).



DIMOSTRAZIONE CRITERIO DI NYQUIST

• Lemma di Cauchy (principio degli argomenti).

– Sia F (s) una funzione di trasferimento razionale fratta e Γ una curva

chiusa nel piano complesso orientata in senso orario. Siano zi(F ) e

pi(F ) rispettivamente il numero di zeri e di poli di F (s) interni alla

regione limitata del piano complesso definita da Γ. Se nessun polo

o zero di F (s) appartiene a Γ, allora F (Γ) è una curva chiusa e

limitata che non passa per l’origine e compie intorno all’origine un

numero di rotazioni orarie pari a zi(F )− pi(F )

• La dimostrazione del criterio di Nyquist deriva dall’applicazione del prin-

cipio degli argomenti ponendo:

1. F (s) = 1 + G(s)

2. Γ = D



CONSIDERAZIONI SUL CRITERIO DI NYQUIST

• Schema a retroazione unitaria.

– Sia ni(W ) il numero dei poli a parte reale maggiore di zero della fun-

zione di trasferimento ad anello chiuso W (s). Allora, nelle ipotesi

del criterio di Nyquist, vale:

ni(W ) = ni(G) + NG,−1

– Se ni(G) = 0 (G(s) stabile), allora si parla di criterio di Nyquist

ridotto.

– Se G(s) ha poli sull’asse immaginario, allora si deve usare il percorso

indentato Di richiudendo il diagramma esteso di Nyquist.

– Se il diagramma di Nyquist di G(s) passa per il punto (−1, 0), allora

W (s) ha poli a parte reale nulla.

• Schema a retroazione non unitaria.

– Detto n̂i(1 + CPH) il numero di zeri a parte reale positiva di 1 +

C(s)P (s)H(s), risulta:

n̂i(1 + CPH) = ni(C) + ni(P ) + ni(H) + NCPH,−1



CRITERIO DI NYQUIST: ESEMPI DI APPLICAZIONE

• Sistemi del primo e del secondo ordine stabili

• Sistemi di ordine superiore al secondo stabili.

– effetto delle variazioni del guadagno:

G(s) =
K

(1 + sτ0)(1 + sτ1)(1 + sτ2)

– sistemi condizionatamente stabili:

G(s) =
K(1 + sτ0)

2

(1 + sτ1)3

• Sistemi con poli in zero:

G(s) =
K

s(1 + sτ1)(1 + sτ2)
; G(s) =

K

s2(1 + sτ1)
; G(s) =

K(1 + sτ0)

s2(1 + sτ1)

• Sistemi instabili:

G(s) =
K(1 + sτ0)

(1− sτ1)(1− sτ2)



MARGINI DI STABILITÀ : FASE E GUADAGNO

• Sistemi “comuni”: la funzione di trasferimento G(s), oltre a non avere

poli e zeri a parte reale maggiore di zero, ha un andamento monotono

decrescente del modulo |G(jω)|.

• Definizioni delle pulsazioni ωa (pulsazione di attraversamento) e ωπ.

– ωa è la pulsazione alla quale il modulo di G(jω) è unitario (è univo-

camente definita per i sistemi comuni);

– ωπ è la pulsazione alla quale G(jω) è reale ed ha minimo valore.

• Margine di fase:

mφ := arg G(jωa) + π

• Margine di guadagno:

mg :=
1

|G(jωπ)|

• Lettura dei margini di fase sui diagrammi di Bode, Nichols e Nyquist.

• Margini di stabilità per sistemi non comuni.



CRITERIO DI NYQUIST: SISTEMI CON RITARDO
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G(s)e−sTR(s) Y (s)

• Ipotesi (I): G(s) non ha poli a parte reale maggiore di zero.

• Ipotesi (II): se T = 0 (assenza di ritardo), allora il sistema ad anello

chiuso non ha poli a parte reale maggiore di zero.

• Risultato: se T > 0, allora il sistema ad anello chiuso ha poli a parte

reale maggiore di zero se il diagramma di Nyquist modificato compie

delle rotazioni orarie intorno al punto (−1, 0).



CRITERIO DI NYQUIST: SISTEMI CON RITARDO

• Ritardo critico Tc: è il minimo valore del ritardo T che fa perdere la

stabilità al sistema ad anello chiuso.

Tc =
mφ

ωa
=

arg[G(jωa)] + π

ωa

compie delle rotazioni orarie intorno al punto (−1, 0).

• Relazione fra il guadagno di Bode K del guadagno d’anello G(s) di un

sistema comune e il ritardo critico Tc.


