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Criteri di stabilita (ver. 1.2)

1.1 1l concetto di stabilita

Il concetto di stabilita ¢ piuttosto generale e puo essere definito in diversi contesti. Per i

problemi di interesse nell’area dei controlli automatici, si fa sempre esplicito riferimento
alla stabilita di un punto di equilibrio di un sistema dinamico.

1.1.1 Stabilita di un punto di equilibrio

Sia dato un sistema dinamico tempo continuo, rappresentato in variabili di stato:

i(t) = f(x(t),u(l))
y(t) = g(x(t), u(?))
z(0) = zo,

dove x € R" e y € R™.

Si definisce punto di equilibrio un punto dello spazio di stato nel quale il sistema permane

in uno stato di quiete (una volta fissato un ingresso costante U), cioe, tale per cui:

Definizione 1.1 Sia x. un punto di equilibrio.
Lyapunov), se:

FEsso si dira localmente stabile (alla
Ve >0, 30(e) >0 : |lxg — z|| < d(e)

—

||Il§'(t,ﬂfo) - Ie” <e, Vvt > 0.
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Questo significa che, partendo da una condizione iniziale zy “vicina” ad un punto di
equilibrio localmente stabile z., la traiettoria seguita dal sistema non si allontana mai pit
di € da z, (Fig. 1.1).

»
>»

J

Figura 1.1: Interpretazione grafica del concetto di stabilita locale di un punto di equilibrio.
Per un sistema lineare la stabilita locale implica quella globale, ovvero, la condizione sopra
enunciata se vale per un xzg, allora sara valida per ogni scelta di z.

Definizione 1.2 Sia x. un punto di equilibrio. Esso si dira asintoticamente stabile, se

e stabile ed inoltre:

360 >0 : |lwo — x| <00 — tlim |z(t, z0) — x| = 0.

1.2 Stabilita ingresso limitato - uscita limitata

Un sistema dinamico si dice BIBO stabile (bounded input - bounded output), o ILUL
stabile (ingresso limitato - uscita limitata), se ad ogni segnale in ingresso di ampiezza

limitata corrisponde un’uscita anch’essa limitata, cioe:
VY <400 @ Yu:|ult)| <U Vt>0 — Jy(t)| <Y, Vt>0.

Per i sistemi lineari e stazionari vale il seguente teorema:



1.2 Stabilita ingresso limitato - uscita limitata

Teorema 1.1 (Stabilita BIBO per sistemi lineart)

Un sistema lineare € stabile in senso BIBO se e solo se:

/_+OO lw(T)|dr < o0

[e.e]

dove w(T) denota la risposta impulsiva del sistema.

Dimostrazione.

(Sufficienza “<="). Si assuma che [} |w(7)|dr < co. Allora,

ly()] =

/Ooow(f) u(t — ) dr

< /000 lw(T)||u(t —1)|dr <U /000 lw(r)|dr < M'.

(Necessarieta “=7).  Assumiamo che [[°|w(T)|dr = oo. Vogliamo provare che Ju
limitato tale che y(t) é illimitata. Sia

sgnjw(t—71)] 0< 1<t

0 altrove.

w(t) G

Figura 1.2: Esempio di funzioni w(t) e uz(7).

Risulta quindi che

y;i(t) = /0 w(t — 1) ug(r) dr = /0 w(t —T) sgn[w(f— 7)|dr.

Calcoliamo luscita all’istante t =t

y;(t:%v) :/o ’w(?— T)’dT

e quindi per lipotesi fatta l'uscita diverge per t — 0. 0
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Il precedente teorema afferma quindi che un sistema lineare € BIBO stabile se e solo se la

risposta impulsiva ¢ a modulo sommabile.

Osservazione: per i sistemi lineari tempo invarianti la stabilita BIBO coincide con la
stabilita asintotica. Come gia precedentemente studiato, un sistema lineare tempo inva-
riante e asintoticamente stabile se e solo se tutti i suoi poli sono a parte reale strettamente
negativa. E’ invece stabile se i poli sono a parte reale negativa e non esistono poli multipli

lungo ’asse immaginario.

1.3 Criteri di stabilita per polinomi

Poiché la stabilita di un sistema lineare ¢ diretta conseguenza della posizione dei suoi poli
nel piano complesso, risulta evidente I'importanza di poter determinare in quale semipiano
sono posizionate le radici di un polinomio (ovvero del denominatore della funzione di

trasferimento).

I metodi che analizzeremo saranno in grado di fornire informazioni sul numero delle radici
a parte reale positiva, negativa o nulla di un polinomio (non forniranno informazioni circa

la loro posizione esatta nel piano complesso).

1.3.1 Criterio di Routh

Sia dato un generico polinomio:
Pu(s) = 8"+ ap_1 5" 4 ...+a1s+ao.

Risulta evidente che tale polinomio puo essere scomposto nella somma di due polinomi,

uno contenente le potenze pari ed uno quelle dispari, cioe:

—2 —4 -1 -3 -5
P.(s) = s"+ap 28" +a,45"" +. .;+gn_1s” + Ap_58" " F Ay ST+

J/

e

Qn(s) Qno1(s)

= Qn(s) + Qn—l(s)‘

A questo punto, effettuiamo le seguenti divisioni successive:

Qus) _ L Quoals)
Quals) T
Qn—l(s) - s Qn—3(3)
Qnals) "2 Q. 0)
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Queste divisioni si possono reiterare finché non si ottiene un polinomio di grado 0 (co-
stante). Poiché Q;(s) e formato solo da potenze pari (se ¢ & pari) o solo dispari (se i ¢

dispari), possiamo utilizzare la seguente notazione:
Qi(s) =D ;s
J

dove l'indice j assume i valori 4, ¢ — 2, ¢ —4,... fino a 0 se ¢ & pari, o fino ad 1 se 7 e

dispari. Inoltre, assumeremo che

Oy j = Qj perj=n,n—2, n—4, ...

Op—1,j = Q; perj=n—1,n—3 n—95,...

Gli elementi «; ; disposti opportunamente costituiscono quella che si chiama Tabella di
Routh (Tab. 1.1). Vale il seguente teorema:

Teorema 1.2 (Criterio di Routh)

Condizione necessaria e sufficiente affinché tutte le radici di un polinomio siano a parte
reale minore di zero, € che gli c;; siano strettamente dello stesso segno per tutti ¢ valori
dii da 0 an.

n Ann A n—2 A n—a

)

n—1 Up—1n—1 Op_1n-3 Ap_1n-5

n—2|0p2n-2 Onona Op_2n_6

n—3 Qp_3n—3 Upn_3n-5 Op_3n-7

2 Qg2 9.0
11
O Oé()’o

Tabella 1.1: Tabella di Routh.

E’ possibile calcolare gli elementi di ciascuna riga a partire da quelli delle due righe
precedenti (purché la seconda di queste non inizi con un elemento nullo), utilizzando la
formula:

Q2542 Qgya 4

Aip1i41 1,51 Ay it ig15-1

Qi = = Qit25 —
Q1 i+1 Qi1 i+1

che corrispondono ai coefficienti del polinomio resto della divisione di Q); 12 per Q1.
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Esempio 1.1
Sia dato il sistema di Fig. 1.3, in cui:
1

G(S):s(52+s+1)(s+4)'

k " G(s) >

Figura 1.3: Esempio di sistema in retroazione con guadagno variabile.

Vogliamo determinare i valori di k che rendono stabile il sistema ad anello chiuso. La

funzione di trasferimento ad anello chiuso risulta:

kG
) =1 e

Per determinare la stabilita é necessario determinare la posizione delle radici del polinomio

caratteristico del sistema, cioe:
s(s®+s+1)(s+4)+k=0

ovvero:
st4583 4582 +4s+k=0.

La tabella di Routh risulta:

4 1 5 k
3] 5 4 0
21 & k0
—25k
1| 852k 0

0| &

Per avere stabilita, tutti gli elementi della prima colonna devono essere concordi di segno,

che in questo caso significa maggiori di zero. Affinché questo sia verificato é necessario

che: 84 — 25k 84
o 0 T kg

k>0

per cui 1 valort di k che stabilizzano il sistema sono tutti e soli quelli appartenenti al

sequente intervallo:
84

O0<k<—.
T
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Casi critici.

Durante la compilazione della tabella di Routh e possibile incorrere nei seguenti casi

critici:

e [l primo termine di una riga e nullo.

In questo caso la costruzione della tabella non puo proseguire in quanto si incor-
rerebbe in una divisione per zero. Una possibile soluzione e quella di sostituire al
posto dell’elemento nullo il valore +¢ 0o —¢ (¢ > 0 infinitesimo) e proseguire con la
costruzione della tabella. Le variazioni di segno degli elementi in prima colonna non
subiranno modifiche per € — 0.

Un metodo alternativo e quello di moltiplicare il polinomio originale per un poli-
nomio del primo ordine, come ad esempio (s + 1) e ricostruire la tabella, tenendo

presente I'aggiunta fittizia di una radice stabile al polinomio di partenza.

e Tutti i termini di una riga sono nulli.
Questa condizione si puo verificare solo nelle righe di indice dispari. Supponiamo
che tale indice sia 2m — 1. Allora si considera la riga immediatamente precedente

(2m) e la si scrive come:
bom, 82m+me_2 S2m_2—|— ...+by=0. (11)

A questo punto effettuiamo la derivata della (1.1), inseriamo i coefficienti ottenuti

nella riga 2m — 1 e proseguiamo con la costruzione della tabella.

In tutti e due i casi precedenti, si conclude immediatamente che il polinomio non ¢ stabile.
L’ulteriore costruzione della tabella serve solo per localizzare esattamente il numero di

radici a destra e a sinistra del piano complesso.

Osservazione: se nella costruzione della tabella di Routh appare un coefficiente nullo o
negativo in una qualunque posizione, se ne puo subito concludere che il polinomio non e
stabile.

1.3.2 Criterio di Michailov

Il criterio di Michailov fornisce un metodo grafico per la determinazione delle posizione

delle radici di un polinomio. Sia dato il seguente polinomio:

n

Po(jw) = (jw)" + an-1(jw)" " + ... + a1 (jw) + a0 = H(J'w —Pi)- (1.2)
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Possiamo decomporre tale polinomio nella sua parte reale ed immaginaria, cioe:

P,(jw) = (ag —w?ay +wras —...)+j(wa —wias +was —...)

Re(Py(jw)) Im(Pn(jw))

Sara quindi possibile tracciare il diagramma polare di P(jw), che sara alla base del criterio

di Michailov. Un esempio di diagramma e riportato in Fig. 1.4.

A
Im(P,(jw))
w=20
/ »
Re(Py(jw))
w — +00

Figura 1.4: Esempio di diagramma polare di un polinomio.

Teorema 1.3 (Criterio di Michailov)

Un polinomio P,(s) ¢ asintoticamente stabile se e solo se:

1. il diagramma polare di P,(jw) non attraversa l’origine;
nm
2. tale diagramma compie una rotazione di fase antioraria pari a o perw € [0, +00).

Dimostrazione.
Dalla (1.2) si ricava che

+o0

+00 "
ALP,| =) AL(jw-p)| . (1.3)
BT

Consideriamo la posizione delle radici del polinomio sul piano complesso (Fig. 1.5). E’
evidente che la variazione di fase in (1.3) corrispondente alle radici stabili per una varia-
zione di frequenza da —oco a 400 risulta pari a +m (rotazione antioraria). Analogamente,
le radici instabili produrranno una variazione pari a —mw. Dunque, supponendo di avere
n; radici instabili e (n — n;) radici stabili, avremo:

+o0
A/P, =(n—n)m —n;w = (n—2n;)m.

o0
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A
Im(s)
4 Jw

/

/

/

/
/
/
X / X
/
/
/
/
/
/
/
/ >
>
/
/ Re(s)
//
/
/
/
Di %o _ X

Figura 1.5: Variazione di fase di una radice stabile.

Considerando adesso la variazione di fase tra 0 e 400, risultera:
+o0 T
0

+o0 T
e quindi, affinché il polinomio sia stabile (cioé n; =0), dovra essere: ALP, = n§ ([l
0

Osservazione: il criterio di Michailov afferma che un polinomio di ordine n ¢ stabile se
e solo se il suo diagramma polare per w € [0, +00) non passa per 'origine ed attraversa

esattamente n quadranti.

Osservazione: condizione necessaria per la stabilita e che la fase di P,(jw) sia monoto-

nicamente crescente per w € [0, +00).

1.3.3 Criterio di Hermite-Biehler

Un altro criterio grafico per la stabilita di un polinomio e quello di Hermite-Biehler. Anche

in questo caso possiamo scomporre il polinomio nella sua parte reale ed immaginaria, ossia:

Po(jw) = Re(P,(jw)) +j Im(P(jw)) -

S

R(w) I(w)

Possiamo ora tracciare R(w) e I(w) al variare di w (sullo stesso grafico), come riportato
in Fig. 1.6.
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Figura 1.6: Grafico per I'applicazione del criterio di Hermite-Biehler.

Teorema 1.4 (Criterio di Hermite-Biehler)

Siano R(w) e I(w) la parte reale ed immaginaria di un generico polinomio P,(jw). Con-
dizione necessaria e sufficiente affinché questo polinomio abbia radici a parte reale stret-
tamente negativa é che R(w) e I(w) presentino zeri reali “interallacciati” (cioé alternati),

e che il numero totale di zeri delle due funzioni per w € [0, +00) sia pari ad n.

E’ immediato verificare che il criterio di Hermite-Biehler puo essere facilmente dimostrato

mediante il criterio di Michailov.

1.4 Criteri di stabilita ad anello chiuso

In questo paragrafo analizzeremo i criteri di stabilita grafici per sistemi ad anello chiuso (in
retroazione). E’ da notare che 1'uso del criterio algebrico di Routh, cosi come evidenziato
nell’esempio 1.1, e di utilizzo immediato a questo fine. In particolare faremo riferimento

allo schema in retroazione unitaria riportato in Fig. 1.7.

(1 L(s)
1

Figura 1.7: Schema in retroazione utilizzato per I'applicazione dei vari criteri di stabilita.

E’ possibile verificare che uno schema in retroazione non unitaria e riconducibile ad uno

schema in retroazione unitaria con le stesse proprieta di stabilita.
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Esempio 1.2
Sia dato il sistema in Fig. 1.8 ed il suo equivalente in Fig. 1.9. Risulta che la funzione di

trasferimento ad anello chiuso é:

G- CH 1__G
TI1YGH H 1+GH

Assumendo L = GH, la funzione di trasferimento equivalente (riferita allo schema di
Fig. 1.7) risulta:

~ L GH
GO =171 " Ty am

che presenta gli stessi poli di G(s). Tale funzione puo quindi essere utilizzata per lo studio
della stabilita al posto di G(s).

(O Gls) [

=

Figura 1.9: Schema in retroazione equivalente per I’esempio 1.2.

1.4.1 Ciriterio di stabilita di Nyquist

Il criterio di stabilita di Nyquist consente di determinare la stabilita dell’anello chiuso
analizzando il diagramma di Nyquist della funzione ad anello aperto. Al fine di poter
enunciare questo criterio, & necessario introdurre il cosiddetto principio dell’argomento (o

lemma di Cauchy).

Principio dell’argomento (Lemma di Cauchy):
Sia data una generica funzione di variabile complessa F'(s); supponiamo di poter scrivere

questa funzione come:
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Sia I" una qualunque curva chiusa nel piano [s| percorsa in senso orario che non passa né

per i poli, né per gli zeri di F(s). Analizzando la fase di F(s) risulta che:

m

LF(s) = L(s—z)— Y Z(s—p). (1.4)
i=1 i=1

Supponiamo adesso di far percorrere alla variabile complessa s la curva chiusa I' in senso
orario, ed andiamo a valutare la variazione di fase di F'(s), indicata con AZF(s). Dalla
Fig. 1.10 risulta evidente che:

—2m , sep; e interno a I
ALF(s) =
0 , sep;eesternoal

Altrettanto si verifica per gli zeri.

Dj

Figura 1.10: Esempio di curva I' nel piano complesso.

Dalla (1.4) risulta quindi che:
ALF(s) = ZAZ(S — 2) — Z AZ(s—p;) = —2m(NE — NI')
i=1 i=1

dove NI e N} denotano rispettivamente il numero di zeri e di poli di F(s) interni alla
curva I'.

Possiamo quindi riformulare il risultato di questo lemma come:
F _ anF F
Nor - Nzr - Npp

dove NI denota il numero di rotazioni orarie intorno all’origine di F'(s) per s che percorre

la curva I' in senso orario.
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Il criterio di stabilita di Nyquist € una diretta conseguenza del lemma di Cauchy. Consi-
deriamo infatti la curva I" riportata in Fig. 1.11. Tale curva si suppone estesa all’infinito,
per cui circondera tutti gli zeri e poli nel semipiano destro.

A

Im(s)

\4

Re(s

~—

Figura 1.11: Curva I" utilizzata per ’applicazione del criterio di Nyquist.

Applicando il principio dell’argomento alla funzione F(s) £ 1+ L(s) = 1+ G(s)H(s), si
ottiene:

Ny = Nig = Ny,
dove con N,4 e N,4 si denotano rispettivamente gli zeri e i poli di F(s) nel semipiano
destro. Risulta pero evidente che gli zeri di F'(s) coincidono con i poli di é(s), mentre i

poli di F(s) coincidono con quelli di L(s). Possiamo quindi affermare che:

AC __ AA F
di - di + Nor’

(1.5)

dove AC sta per Anello Chiuso, AA per Anello Aperto, e NI & il numero di rotazioni
orarie del diagramma di Nyquist di £ intorno a 0.

Per semplicita, risulta pitu conveniente tracciare il diagramma di Nyquist di L(s) (anziché

di F(s) =1+ L(s) e considerare le rotazioni orarie intorno al punto (-1,0).

Possiamo ora enunciare il Criterio di stabilita di Nyquist come una semplice applicazione
di (1.5).

Teorema 1.5 (Criterio di Nyquist)
Sia dato il sistema in Fig. 1.7. Condizione necessaria e sufficiente per la stabilita asinto-

tica del sistema wn retroazione ¢ che:

NL — NAA

aor_q pd >

dove N . denota il numero di rotazioni antiorarie del diagramma di Nyquist di L(jw)

aor—

intorno al punto (-1,0).
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Osservazioni: dalla relazione (1.5) segue che:

e Rotazioni orarie di L(jw) aggiungono instabilita al sistema ad anello chiuso rispetto

a quelle dell’anello aperto.
e Rotazioni antiorarie di L(jw) neutralizzano eventuali instabilita ad anello aperto.

e Se il diagramma di L(jw) passa per il punto (-1,0) , il sistema ad anello chiuso ha

almeno un polo sull’asse immaginario.

e Per studiare la stabilita di un sistema con retroazione positiva e sufficiente applicare

il criterio considerando le rotazioni intorno al punto (1,0).

Discussione della stabilita al variare del guadagno di anello.

Consideriamo lo schema in Fig. 1.12, in cui

1

Lls) = s(1+ sm)(1 4+ sm2)

T, Ty > 0.

- ?_ k L(s) -

Figura 1.12: Schema in retroazione unitaria.

Sia —« il punto di intersezione di L(jw) con l'asse reale. Il diagramma di Nyquist e
riportato in Fig. 1.13. Assumiamo per adesso k = 1. Poiché il sistema ad anello aperto
non ha poli a parte reale strettamente positiva, per il criterio di Nyquist, il sistema ad
anello chiuso sara stabile se e solo se il diagramma di L(jw) non compie rotazioni orarie

intorno al punto (-1,0).

Vogliamo adesso valutare per quali valori di k il sistema in retroazione e stabile. Consi-
deriamo k > 0. Poiché l'effetto di k sul diagramma di Nyquist comporta una variazione
del modulo ad ogni singola frequenza, ¢ evidente che il punto critico da considerare sara
quello di intersezione con 1’asse delle ascisse. Un valore di k eccessivamente elevato com-

portera uno spostamento del punto —« verso sinistra oltre il punto (-1,0), dando luogo
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Im(L(jw))

A

\/

Re(L(jw))

w=0"F

Figura 1.13: Diagramma di Nyquist di L(s).

a 2 rotazioni orarie intorno a tale punto. E’ chiaro dunque che i valori di £ tali da dare
origine a un sistema stabile sono dati da:

1
0<k<—.
(8}

Consideriamo adesso i valori di k& < 0. In questo caso dobbiamo analizzare le rotazioni
orarie intorno al punto (1,0). Essendo la richiusura effettuata all’infinito, avremo sempre

una rotazione oraria intorno a tale punto (indipendentemente dal valore di k).

Possiamo quindi riepilogare i risultati trovati:

e k<0 —— anello chiuso instabile con 1 polo a destra.

e 0<k< é —— anello chiuso asintoticamente stabile.

° k> é —— anello chiuso instabile con 2 poli a destra.

Nella discussione precedente abbiamo visto come un aumento eccessivo del guadagno
possa portare il sistema ad anello chiuso in condizione di instabilita, mentre un valore
molto piccolo produce un effetto stabilizzante. Questa e in effetti una situazione comune,
ma non e sempre valida. Possono esistere casi in cui si verifica esattamente il fenomeno

opposto, oppure casi in cui gli intervalli di stabilita sono disgiunti.

Consideriamo ad esempio il diagramma di Nyquist di Fig. 1.14, ed assumiamo che la
funzione ad anello aperto non abbia poli instabili. Tale funzione si dice marginalmente

stabile (o condizionatamente stabile). Al variare di k avremo le seguenti situazioni:
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e k<0 —— anello chiuso instabile con 1 polo a destra.

e < k< % — anello chiuso stabile.
° % <k< é —— anello chiuso instabile con 2 poli a destra.
o é <k< % —— anello chiuso stabile.

o k> % — anello chiuso instabile con 2 poli a destra.

A Im(G(jw))

—Qp

) ,X »\ Re(G(jw))

—an
—Qug

\/

Figura 1.14: Diagramma di Nyquist di un sistema marginalmente stabile.

Consideriamo adesso una funzione di trasferimento del tipo:

s+ T

L(s) = S5=T)

Il diagramma di Nyquist e riportato in Fig. 1.15. Al variare di k avremo i seguenti casi:

e k<0 — anello chiuso instabile con 1 polo a destra.

e 0<k< é — anello chiuso instabile con 2 poli a destra.

° k> é —— anello chiuso stabile.

In questo caso il sistema viene stabilizzato al crescere del valore di k.
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M Im(L(Gw))

\ Re(L(jw))

Figura 1.15: Diagramma di Nyquist di L(s) = S(sstj;).

1.4.2 Criterio di stabilita di Bode

Parametri per la valutazione della “buona” stabilita
Analizziamo adesso alcuni parametri utili per la valutazione della “buona” stabilita di un
sistema ad anello chiuso.

Margine di guadagno. Sia dato il diagramma di Nyquist in Fig. 1.16. Per il criterio
di stabilita di Nyquist, la posizione del punto —a gioca un ruolo cruciale per I’analisi
della stabilita ad anello chiuso. Se tale punto si trovasse a sinistra del punto (-1,0), allora
si avrebbe una rotazione oraria intorno a tale punto che provocherebbe l'instabilita del

sistema. Si definisce margine di guadagno del sistema la quantita:

1
Ym = —
(6%

che espressa in decibel risulta:

1
(0%

Un sistema con un margine di guadagno prossimo ad 1 risultera molto vicino all’instabilita.
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Bode Diagram

100
50
N le!
Im(L(jw)) _
—> @
= A = 0
w=20 3
E}
1=
g -s0
>3
-100
— 150
wW=T00
+ 90
| >
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Figura 1.16: Esempio per la valutazione del margine di guadagno dal diagramma di

Nyquist e di Bode.

E’ possibile valutare il margine di guadagno anche dal diagramma di Bode. Infatti il
punto —« corrisponde alla frequenza per la quale la fase vale —180° ed il modulo vale
a. Il margine di guadagno sara quindi 'opposto (nel diagramma di modulo) del modulo

della funzione ad anello aperto a tale frequenza critica (Fig. 1.16).

Margine di fase. E’ facile notare come due sistemi possano avere lo stesso margine
di guadagno, pur essendo profondamente diversi per quanto riguarda la stabilita. In
Fig. 1.17 si puo osservare il particolare di un diagramma di Nyquist di due funzioni
che attraversano l'asse reale nello stesso punto e che quindi hanno lo stesso margine di
guadagno. E’ evidente pero che la funzione G1(s) & pin vicina all’instabilita rispetto alla
funzione Ga(s), in quanto il diagramma di Gq(s) risulta essere piu distante rispetto al
punto (-1,0) rispetto a quello di G;(s). E’ infatti sufficiente una piccola rotazione oraria
del diagramma (provocata ad esempio da una linea di ritardo) per far andare in instabilita

il sistema G1(s).
Si definisce come margine di fase la seguente espressione:
Om = LG(jw,) + 180°

dove w, ¢ la frequenza a cui il diagramma di modulo di G(jw) attraversa I'asse 0 dB
(ovvero la frequenza a cui il modulo vale 1). Questo margine e definito univocamente per

i sistemi il cui modulo assume il valore unitario ad una sola frequenza.

L’interpretazione grafica di tale margine relativamente ai diagrammi di Nyquist e Bode e

riportata in Fig. 1.18.
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Figura 1.17: Esempio di due sistemi con uguale margine di guadagno.
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Figura 1.18: Esempio per la valutazione del margine di fase dal diagramma di Nyquist e
di Bode.

Teorema 1.6 (Criterio di stabilita di Bode)
Sia data una funzione di trasferimento G(s) stabile e tale che 3w : |G(jw)| = 1. Allora,

condizione necessaria e sufficiente per la stabilita dell’anello chiuso é:

e il guadagno é positivo;

e ¢, >0 (il margine di fase é positivo).
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Esempio 1.3

Sia dato il sistema in Fig. 1.19. Supponiamo che per T' = 0 il sistema in retroazione sia

stabile e che il margine di fase sia positivo. Vogliamo valutare il valore di T critico che
rende il sistema instabile.

efsT G(S)

\ 4

Figura 1.19: Schema in retroazione dell’esempio 1.3.

Sappiamo che effetto del ritardo consiste in una rotazione del diagramma di Nyquist
in senso orario di una quantita pari a WT. Sia w* la frequenza di attraversamento del

cerchio unitario e ¢y, il margine di fase per T'= 0. Il ritardo critico T* risultera pari a:

w*

Figura 1.20: Diagramma di Nyquist dell’esempio 1.3 per T'=0 (—) e per T'=T* (— —).



