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Criteri di stabilità (ver. 1.2)

1.1 Il concetto di stabilità

Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i

problemi di interesse nell’area dei controlli automatici, si fa sempre esplicito riferimento

alla stabilità di un punto di equilibrio di un sistema dinamico.

1.1.1 Stabilità di un punto di equilibrio

Sia dato un sistema dinamico tempo continuo, rappresentato in variabili di stato:





ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

x(0) = x0,

dove x ∈ R
n e y ∈ R

m.

Si definisce punto di equilibrio un punto dello spazio di stato nel quale il sistema permane

in uno stato di quiete (una volta fissato un ingresso costante U), cioè, tale per cui:

ẋ(t) = f(x(t), U) = 0.

Definizione 1.1 Sia xe un punto di equilibrio. Esso si dirà localmente stabile (alla

Lyapunov), se:

∀ε > 0, ∃δ(ε) > 0 : ‖x0 − xe‖ ≤ δ(ε) −→ ‖x(t, x0) − xe‖ ≤ ε, ∀t > 0.
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Questo significa che, partendo da una condizione iniziale x0 “vicina” ad un punto di

equilibrio localmente stabile xe, la traiettoria seguita dal sistema non si allontana mai più

di ε da xe (Fig. 1.1).

xe

x0

δ(ε)

ε

Figura 1.1: Interpretazione grafica del concetto di stabilità locale di un punto di equilibrio.

Per un sistema lineare la stabilità locale implica quella globale, ovvero, la condizione sopra

enunciata se vale per un x0, allora sarà valida per ogni scelta di x0.

Definizione 1.2 Sia xe un punto di equilibrio. Esso si dirà asintoticamente stabile, se

è stabile ed inoltre:

∃δa > 0 : ‖x0 − xe‖ ≤ δa −→ lim
t→∞

‖x(t, x0) − xe‖ = 0.

1.2 Stabilità ingresso limitato - uscita limitata

Un sistema dinamico si dice BIBO stabile (bounded input - bounded output), o ILUL

stabile (ingresso limitato - uscita limitata), se ad ogni segnale in ingresso di ampiezza

limitata corrisponde un’uscita anch’essa limitata, cioè:

∃U, Y < +∞ : ∀u : |u(t)| ≤ U, ∀t ≥ 0 −→ |y(t)| ≤ Y, ∀t ≥ 0.

Per i sistemi lineari e stazionari vale il seguente teorema:
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Teorema 1.1 (Stabilità BIBO per sistemi lineari)

Un sistema lineare è stabile in senso BIBO se e solo se:
∫ +∞

−∞

|w(τ)| dτ < ∞

dove w(τ) denota la risposta impulsiva del sistema.

Dimostrazione.

(Sufficienza “⇐”). Si assuma che
∫

∞

0
|w(τ)|dτ < ∞. Allora,

|y(t)| =

∣∣∣∣
∫

∞

0

w(τ) u(t − τ) dτ

∣∣∣∣ ≤
∫

∞

0

|w(τ)| |u(t − τ)|dτ ≤ U

∫
∞

0

|w(τ)| dτ ≤ M ′.

(Necessarietà “⇒”). Assumiamo che
∫
∞

0
|w(τ)|dτ = ∞. Vogliamo provare che ∃u

limitato tale che y(t) è illimitata. Sia

uet(τ) =





sgn[w(t̃ − τ)] 0 ≤ τ ≤ t̃

0 altrove.

t

w(t)
1

−1

ττ = et

uet(τ)

w(et − τ)

Figura 1.2: Esempio di funzioni w(t) e uet(τ).

Risulta quindi che

yet(t) =

∫ t

0

w(t − τ) uet(τ) dτ =

∫ et

0

w(t − τ) sgn[w(t̃ − τ)]dτ.

Calcoliamo l’uscita all’istante t = t̃:

yet(t = t̃ ) =

∫ et

0

∣∣w(t̃ − τ)
∣∣ dτ

e quindi per l’ipotesi fatta l’uscita diverge per t̃ → ∞. �
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Il precedente teorema afferma quindi che un sistema lineare è BIBO stabile se e solo se la

risposta impulsiva è a modulo sommabile.

Osservazione: per i sistemi lineari tempo invarianti la stabilità BIBO coincide con la

stabilità asintotica. Come già precedentemente studiato, un sistema lineare tempo inva-

riante è asintoticamente stabile se e solo se tutti i suoi poli sono a parte reale strettamente

negativa. E’ invece stabile se i poli sono a parte reale negativa e non esistono poli multipli

lungo l’asse immaginario.

1.3 Criteri di stabilità per polinomi

Poiché la stabilità di un sistema lineare è diretta conseguenza della posizione dei suoi poli

nel piano complesso, risulta evidente l’importanza di poter determinare in quale semipiano

sono posizionate le radici di un polinomio (ovvero del denominatore della funzione di

trasferimento).

I metodi che analizzeremo saranno in grado di fornire informazioni sul numero delle radici

a parte reale positiva, negativa o nulla di un polinomio (non forniranno informazioni circa

la loro posizione esatta nel piano complesso).

1.3.1 Criterio di Routh

Sia dato un generico polinomio:

Pn(s) = sn + an−1 sn−1 + . . . + a1 s + a0.

Risulta evidente che tale polinomio può essere scomposto nella somma di due polinomi,

uno contenente le potenze pari ed uno quelle dispari, cioè:

Pn(s) = sn + an−2 sn−2 + an−4 sn−4 + . . .︸ ︷︷ ︸
Qn(s)

+ an−1s
n−1 + an−3 sn−3 + an−5 sn−5 + . . .︸ ︷︷ ︸

Qn−1(s)

= Qn(s) + Qn−1(s).

A questo punto, effettuiamo le seguenti divisioni successive:

Qn(s)

Qn−1(s)
= qn−1 s +

Qn−2(s)

Qn−1(s)

Qn−1(s)

Qn−2(s)
= qn−2 s +

Qn−3(s)

Qn−2(s)

. . . .
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Queste divisioni si possono reiterare finché non si ottiene un polinomio di grado 0 (co-

stante). Poiché Qi(s) è formato solo da potenze pari (se i è pari) o solo dispari (se i è

dispari), possiamo utilizzare la seguente notazione:

Qi(s) =
∑

j

αi,j sj

dove l’indice j assume i valori i, i − 2, i − 4, . . . fino a 0 se i è pari, o fino ad 1 se i è

dispari. Inoltre, assumeremo che

αn,j = aj per j = n, n − 2, n − 4, . . .

αn−1,j = aj per j = n − 1, n − 3, n − 5, . . .

Gli elementi αi,j disposti opportunamente costituiscono quella che si chiama Tabella di

Routh (Tab. 1.1). Vale il seguente teorema:

Teorema 1.2 (Criterio di Routh)

Condizione necessaria e sufficiente affinché tutte le radici di un polinomio siano a parte

reale minore di zero, è che gli αi,i siano strettamente dello stesso segno per tutti i valori

di i da 0 a n.

n αn,n αn,n−2 αn,n−4 . . .

n − 1 αn−1,n−1 αn−1,n−3 αn−1,n−5 . . .

n − 2 αn−2,n−2 αn−2,n−4 αn−2,n−6 . . .

n − 3 αn−3,n−3 αn−3,n−5 αn−3,n−7 . . .
...

...
...

...

2 α2,2 α2,0

1 α1,1

0 α0,0

Tabella 1.1: Tabella di Routh.

E’ possibile calcolare gli elementi di ciascuna riga a partire da quelli delle due righe

precedenti (purché la seconda di queste non inizi con un elemento nullo), utilizzando la

formula:

αi,j =

−

∣∣∣∣∣
αi+2,i+2 αi+2,j

αi+1,i+1 αi+1,j−1

∣∣∣∣∣
αi+1,i+1

= αi+2,j −
αi+2,i+2 αi+1,j−1

αi+1,i+1

che corrispondono ai coefficienti del polinomio resto della divisione di Qi+2 per Qi+1.
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Esempio 1.1

Sia dato il sistema di Fig. 1.3, in cui:

G(S) =
1

s (s2 + s + 1) (s + 4)
.

−
k

r y
G(s)

Figura 1.3: Esempio di sistema in retroazione con guadagno variabile.

Vogliamo determinare i valori di k che rendono stabile il sistema ad anello chiuso. La

funzione di trasferimento ad anello chiuso risulta:

T (s) =
k G(s)

1 + k G(s)
.

Per determinare la stabilità è necessario determinare la posizione delle radici del polinomio

caratteristico del sistema, cioè:

s (s2 + s + 1) (s + 4) + k = 0

ovvero:

s4 + 5 s3 + 5 s2 + 4 s + k = 0.

La tabella di Routh risulta:
4 1 5 k

3 5 4 0

2 21
5

k 0

1 84−25k
21

0

0 k

Per avere stabilità, tutti gli elementi della prima colonna devono essere concordi di segno,

che in questo caso significa maggiori di zero. Affinché questo sia verificato è necessario

che:
84 − 25k

21
> 0 −→ k <

84

25
e

k > 0

per cui i valori di k che stabilizzano il sistema sono tutti e soli quelli appartenenti al

seguente intervallo:

0 < k <
84

25
.
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Casi critici.

Durante la compilazione della tabella di Routh è possibile incorrere nei seguenti casi

critici:

• Il primo termine di una riga è nullo.

In questo caso la costruzione della tabella non può proseguire in quanto si incor-

rerebbe in una divisione per zero. Una possibile soluzione è quella di sostituire al

posto dell’elemento nullo il valore +ε o −ε (ε > 0 infinitesimo) e proseguire con la

costruzione della tabella. Le variazioni di segno degli elementi in prima colonna non

subiranno modifiche per ε → 0.

Un metodo alternativo è quello di moltiplicare il polinomio originale per un poli-

nomio del primo ordine, come ad esempio (s + 1) e ricostruire la tabella, tenendo

presente l’aggiunta fittizia di una radice stabile al polinomio di partenza.

• Tutti i termini di una riga sono nulli.

Questa condizione si può verificare solo nelle righe di indice dispari. Supponiamo

che tale indice sia 2m − 1. Allora si considera la riga immediatamente precedente

(2m) e la si scrive come:

b2m s2m + b2m−2 s2m−2 + . . . + b0 = 0. (1.1)

A questo punto effettuiamo la derivata della (1.1), inseriamo i coefficienti ottenuti

nella riga 2m − 1 e proseguiamo con la costruzione della tabella.

In tutti e due i casi precedenti, si conclude immediatamente che il polinomio non è stabile.

L’ulteriore costruzione della tabella serve solo per localizzare esattamente il numero di

radici a destra e a sinistra del piano complesso.

Osservazione: se nella costruzione della tabella di Routh appare un coefficiente nullo o

negativo in una qualunque posizione, se ne può subito concludere che il polinomio non è

stabile.

1.3.2 Criterio di Michailov

Il criterio di Michailov fornisce un metodo grafico per la determinazione delle posizione

delle radici di un polinomio. Sia dato il seguente polinomio:

Pn(jω) = (jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0 =
n∏

i=1

(jω − pi). (1.2)
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Possiamo decomporre tale polinomio nella sua parte reale ed immaginaria, cioè:

Pn(jω) = (a0 − ω2 a2 + ω4 a4 − . . .)︸ ︷︷ ︸
Re(Pn(jω))

+j (ω a1 − ω3 a3 + ω5 a5 − . . .)︸ ︷︷ ︸
Im(Pn(jω))

Sarà quindi possibile tracciare il diagramma polare di P (jω), che sarà alla base del criterio

di Michailov. Un esempio di diagramma è riportato in Fig. 1.4.

Im(Pn(jω))

Re(Pn(jω))

ω = 0

ω → +∞

Figura 1.4: Esempio di diagramma polare di un polinomio.

Teorema 1.3 (Criterio di Michailov)

Un polinomio Pn(s) è asintoticamente stabile se e solo se:

1. il diagramma polare di Pn(jω) non attraversa l’origine;

2. tale diagramma compie una rotazione di fase antioraria pari a
nπ

2
per ω ∈ [0, +∞).

Dimostrazione.

Dalla (1.2) si ricava che

∆∠Pn

∣∣∣
+∞

−∞

=
n∑

i=1

∆∠(jω − pi)
∣∣∣
+∞

−∞

. (1.3)

Consideriamo la posizione delle radici del polinomio sul piano complesso (Fig. 1.5). E’

evidente che la variazione di fase in (1.3) corrispondente alle radici stabili per una varia-

zione di frequenza da −∞ a +∞ risulta pari a +π (rotazione antioraria). Analogamente,

le radici instabili produrranno una variazione pari a −π. Dunque, supponendo di avere

ni radici instabili e (n − ni) radici stabili, avremo:

∆∠Pn

∣∣∣
+∞

−∞

= (n − ni)π − niπ = (n − 2 ni)π.
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Im(s)

Re(s)

×

××

×

×

pi

jω

jω

Figura 1.5: Variazione di fase di una radice stabile.

Considerando adesso la variazione di fase tra 0 e +∞, risulterà:

∆∠Pn

∣∣∣
+∞

0
= (n − 2 ni)

π

2

e quindi, affinché il polinomio sia stabile (cioè ni = 0), dovrà essere: ∆∠Pn

∣∣∣
+∞

0
= n

π

2
. �

Osservazione: il criterio di Michailov afferma che un polinomio di ordine n è stabile se

e solo se il suo diagramma polare per ω ∈ [0, +∞) non passa per l’origine ed attraversa

esattamente n quadranti.

Osservazione: condizione necessaria per la stabilità è che la fase di Pn(jω) sia monoto-

nicamente crescente per ω ∈ [0, +∞).

1.3.3 Criterio di Hermite-Biehler

Un altro criterio grafico per la stabilità di un polinomio è quello di Hermite-Biehler. Anche

in questo caso possiamo scomporre il polinomio nella sua parte reale ed immaginaria, ossia:

Pn(jω) = Re(Pn(jω))︸ ︷︷ ︸
R(ω)

+j Im(Pn(jω))︸ ︷︷ ︸
I(ω)

.

Possiamo ora tracciare R(ω) e I(ω) al variare di ω (sullo stesso grafico), come riportato

in Fig. 1.6.
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I(ω)

R(ω)

ω

Figura 1.6: Grafico per l’applicazione del criterio di Hermite-Biehler.

Teorema 1.4 (Criterio di Hermite-Biehler)

Siano R(ω) e I(ω) la parte reale ed immaginaria di un generico polinomio Pn(jω). Con-

dizione necessaria e sufficiente affinché questo polinomio abbia radici a parte reale stret-

tamente negativa è che R(ω) e I(ω) presentino zeri reali “interallacciati” (cioè alternati),

e che il numero totale di zeri delle due funzioni per ω ∈ [0, +∞) sia pari ad n.

E’ immediato verificare che il criterio di Hermite-Biehler può essere facilmente dimostrato

mediante il criterio di Michailov.

1.4 Criteri di stabilità ad anello chiuso

In questo paragrafo analizzeremo i criteri di stabilità grafici per sistemi ad anello chiuso (in

retroazione). E’ da notare che l’uso del criterio algebrico di Routh, cos̀ı come evidenziato

nell’esempio 1.1, è di utilizzo immediato a questo fine. In particolare faremo riferimento

allo schema in retroazione unitaria riportato in Fig. 1.7.

r y

−
L(s)

Figura 1.7: Schema in retroazione utilizzato per l’applicazione dei vari criteri di stabilità.

E’ possibile verificare che uno schema in retroazione non unitaria è riconducibile ad uno

schema in retroazione unitaria con le stesse proprietà di stabilità.
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Esempio 1.2

Sia dato il sistema in Fig. 1.8 ed il suo equivalente in Fig. 1.9. Risulta che la funzione di

trasferimento ad anello chiuso è:

G(s) =
GH

1 + GH
·

1

H
=

G

1 + GH
.

Assumendo L , GH, la funzione di trasferimento equivalente (riferita allo schema di

Fig. 1.7) risulta:

G̃(s) =
L

1 + L
=

GH

1 + GH
,

che presenta gli stessi poli di G(s). Tale funzione può quindi essere utilizzata per lo studio

della stabilità al posto di G(s).

r y

−
G(s)

H(s)

Figura 1.8: Schema in retroazione per l’esempio 1.2.

r yyr

−
G(s)H(s)

1

H(s)

Figura 1.9: Schema in retroazione equivalente per l’esempio 1.2.

1.4.1 Criterio di stabilità di Nyquist

Il criterio di stabilità di Nyquist consente di determinare la stabilità dell’anello chiuso

analizzando il diagramma di Nyquist della funzione ad anello aperto. Al fine di poter

enunciare questo criterio, è necessario introdurre il cosiddetto principio dell’argomento (o

lemma di Cauchy).

Principio dell’argomento (Lemma di Cauchy):

Sia data una generica funzione di variabile complessa F (s); supponiamo di poter scrivere

questa funzione come:

F (s) ,

∏m

i=1(s − zi)∏n

i=1(s − pi)
.
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Sia Γ una qualunque curva chiusa nel piano [s] percorsa in senso orario che non passa né

per i poli, né per gli zeri di F (s). Analizzando la fase di F (s) risulta che:

∠F (s) =
m∑

i=1

∠(s − zi) −
n∑

i=1

∠(s − pi). (1.4)

Supponiamo adesso di far percorrere alla variabile complessa s la curva chiusa Γ in senso

orario, ed andiamo a valutare la variazione di fase di F (s), indicata con ∆∠F (s). Dalla

Fig. 1.10 risulta evidente che:

∆∠F (s) =





−2 π , se pi è interno a Γ

0 , se pi è esterno a Γ

Altrettanto si verifica per gli zeri.

Im(s)

Re(s)

pi

pj

s0

Γ

×

×

×

Figura 1.10: Esempio di curva Γ nel piano complesso.

Dalla (1.4) risulta quindi che:

∆∠F (s) =
m∑

i=1

∆∠(s − zi) −
n∑

i=1

∆∠(s − pi) = −2π(NF
zΓ

− NF
pΓ

)

dove NF
zΓ

e NF
pΓ

denotano rispettivamente il numero di zeri e di poli di F (s) interni alla

curva Γ.

Possiamo quindi riformulare il risultato di questo lemma come:

NF
or = NF

zΓ
− NF

pΓ

dove NF
or denota il numero di rotazioni orarie intorno all’origine di F (s) per s che percorre

la curva Γ in senso orario.
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Il criterio di stabilità di Nyquist è una diretta conseguenza del lemma di Cauchy. Consi-

deriamo infatti la curva Γ riportata in Fig. 1.11. Tale curva si suppone estesa all’infinito,

per cui circonderà tutti gli zeri e poli nel semipiano destro.

Im(s)

Re(s)

Γ

Figura 1.11: Curva Γ utilizzata per l’applicazione del criterio di Nyquist.

Applicando il principio dell’argomento alla funzione F (s) , 1 + L(s) = 1 + G(s)H(s), si

ottiene:

NF
or = NF

zd − NF
pd,

dove con Nzd e Npd si denotano rispettivamente gli zeri e i poli di F (s) nel semipiano

destro. Risulta però evidente che gli zeri di F (s) coincidono con i poli di G̃(s), mentre i

poli di F (s) coincidono con quelli di L(s). Possiamo quindi affermare che:

NAC
pd = NAA

pd + NF
or, (1.5)

dove AC sta per Anello Chiuso, AA per Anello Aperto, e NF
or è il numero di rotazioni

orarie del diagramma di Nyquist di F intorno a 0.

Per semplicità, risulta più conveniente tracciare il diagramma di Nyquist di L(s) (anziché

di F (s) = 1 + L(s) e considerare le rotazioni orarie intorno al punto (-1,0).

Possiamo ora enunciare il Criterio di stabilità di Nyquist come una semplice applicazione

di (1.5).

Teorema 1.5 (Criterio di Nyquist)

Sia dato il sistema in Fig. 1.7. Condizione necessaria e sufficiente per la stabilità asinto-

tica del sistema in retroazione è che:

NL
aor−1

= NAA
pd ,

dove NL
aor−1

denota il numero di rotazioni antiorarie del diagramma di Nyquist di L(jω)

intorno al punto (-1,0).
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Osservazioni: dalla relazione (1.5) segue che:

• Rotazioni orarie di L(jω) aggiungono instabilità al sistema ad anello chiuso rispetto

a quelle dell’anello aperto.

• Rotazioni antiorarie di L(jω) neutralizzano eventuali instabilità ad anello aperto.

• Se il diagramma di L(jω) passa per il punto (-1,0) , il sistema ad anello chiuso ha

almeno un polo sull’asse immaginario.

• Per studiare la stabilità di un sistema con retroazione positiva è sufficiente applicare

il criterio considerando le rotazioni intorno al punto (1,0).

Discussione della stabilità al variare del guadagno di anello.

Consideriamo lo schema in Fig. 1.12, in cui

L(s) =
1

s(1 + sτ1)(1 + sτ2)
τ1, τ2 > 0.

r y
k

−
L(s)

Figura 1.12: Schema in retroazione unitaria.

Sia −α il punto di intersezione di L(jω) con l’asse reale. Il diagramma di Nyquist è

riportato in Fig. 1.13. Assumiamo per adesso k = 1. Poiché il sistema ad anello aperto

non ha poli a parte reale strettamente positiva, per il criterio di Nyquist, il sistema ad

anello chiuso sarà stabile se e solo se il diagramma di L(jω) non compie rotazioni orarie

intorno al punto (-1,0).

Vogliamo adesso valutare per quali valori di k il sistema in retroazione è stabile. Consi-

deriamo k > 0. Poiché l’effetto di k sul diagramma di Nyquist comporta una variazione

del modulo ad ogni singola frequenza, è evidente che il punto critico da considerare sarà

quello di intersezione con l’asse delle ascisse. Un valore di k eccessivamente elevato com-

porterà uno spostamento del punto −α verso sinistra oltre il punto (-1,0), dando luogo



1.4 Criteri di stabilità ad anello chiuso 15

Im(L(jω))

Re(L(jω))

ω = 0+

ω = 0−

ω=+∞

ω=−∞

−1
−α

Figura 1.13: Diagramma di Nyquist di L(s).

a 2 rotazioni orarie intorno a tale punto. E’ chiaro dunque che i valori di k tali da dare

origine a un sistema stabile sono dati da:

0 < k <
1

α
.

Consideriamo adesso i valori di k < 0. In questo caso dobbiamo analizzare le rotazioni

orarie intorno al punto (1,0). Essendo la richiusura effettuata all’infinito, avremo sempre

una rotazione oraria intorno a tale punto (indipendentemente dal valore di k).

Possiamo quindi riepilogare i risultati trovati:

• k < 0 −→ anello chiuso instabile con 1 polo a destra.

• 0 < k < 1
α

−→ anello chiuso asintoticamente stabile.

• k > 1
α

−→ anello chiuso instabile con 2 poli a destra.

Nella discussione precedente abbiamo visto come un aumento eccessivo del guadagno

possa portare il sistema ad anello chiuso in condizione di instabilità, mentre un valore

molto piccolo produce un effetto stabilizzante. Questa è in effetti una situazione comune,

ma non è sempre valida. Possono esistere casi in cui si verifica esattamente il fenomeno

opposto, oppure casi in cui gli intervalli di stabilità sono disgiunti.

Consideriamo ad esempio il diagramma di Nyquist di Fig. 1.14, ed assumiamo che la

funzione ad anello aperto non abbia poli instabili. Tale funzione si dice marginalmente

stabile (o condizionatamente stabile). Al variare di k avremo le seguenti situazioni:
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• k < 0 −→ anello chiuso instabile con 1 polo a destra.

• 0 < k < 1
a3

−→ anello chiuso stabile.

• 1
a3

< k < 1
a2

−→ anello chiuso instabile con 2 poli a destra.

• 1
a2

< k < 1
a1

−→ anello chiuso stabile.

• k > 1
a1

−→ anello chiuso instabile con 2 poli a destra.

Im(G(jω))

Re(G(jω))−1

−α1

−α2

−α3

Figura 1.14: Diagramma di Nyquist di un sistema marginalmente stabile.

Consideriamo adesso una funzione di trasferimento del tipo:

L(s) =
s + T

s(s − T )
.

Il diagramma di Nyquist è riportato in Fig. 1.15. Al variare di k avremo i seguenti casi:

• k < 0 −→ anello chiuso instabile con 1 polo a destra.

• 0 < k < 1
α

−→ anello chiuso instabile con 2 poli a destra.

• k > 1
α

−→ anello chiuso stabile.

In questo caso il sistema viene stabilizzato al crescere del valore di k.
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Im(L(jω))

Re(L(jω))

ω = 0+

ω = 0−

ω=+∞

ω=−∞

−1
−α

Figura 1.15: Diagramma di Nyquist di L(s) = s+T
s(s−T )

.

1.4.2 Criterio di stabilità di Bode

Parametri per la valutazione della “buona” stabilità

Analizziamo adesso alcuni parametri utili per la valutazione della “buona” stabilità di un

sistema ad anello chiuso.

Margine di guadagno. Sia dato il diagramma di Nyquist in Fig. 1.16. Per il criterio

di stabilità di Nyquist, la posizione del punto −α gioca un ruolo cruciale per l’analisi

della stabilità ad anello chiuso. Se tale punto si trovasse a sinistra del punto (-1,0), allora

si avrebbe una rotazione oraria intorno a tale punto che provocherebbe l’instabilità del

sistema. Si definisce margine di guadagno del sistema la quantità:

γm =
1

α

che espressa in decibel risulta:

20 log10

1

α
= −20 log10 α.

Un sistema con un margine di guadagno prossimo ad 1 risulterà molto vicino all’instabilità.
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Figura 1.16: Esempio per la valutazione del margine di guadagno dal diagramma di

Nyquist e di Bode.

E’ possibile valutare il margine di guadagno anche dal diagramma di Bode. Infatti il

punto −α corrisponde alla frequenza per la quale la fase vale −180◦ ed il modulo vale

α. Il margine di guadagno sarà quindi l’opposto (nel diagramma di modulo) del modulo

della funzione ad anello aperto a tale frequenza critica (Fig. 1.16).

Margine di fase. E’ facile notare come due sistemi possano avere lo stesso margine

di guadagno, pur essendo profondamente diversi per quanto riguarda la stabilità. In

Fig. 1.17 si può osservare il particolare di un diagramma di Nyquist di due funzioni

che attraversano l’asse reale nello stesso punto e che quindi hanno lo stesso margine di

guadagno. E’ evidente però che la funzione G1(s) è più vicina all’instabilità rispetto alla

funzione G2(s), in quanto il diagramma di G2(s) risulta essere più distante rispetto al

punto (-1,0) rispetto a quello di G1(s). E’ infatti sufficiente una piccola rotazione oraria

del diagramma (provocata ad esempio da una linea di ritardo) per far andare in instabilità

il sistema G1(s).

Si definisce come margine di fase la seguente espressione:

φm = ∠G(jωa) + 180◦

dove ωa è la frequenza a cui il diagramma di modulo di G(jω) attraversa l’asse 0 dB

(ovvero la frequenza a cui il modulo vale 1). Questo margine è definito univocamente per

i sistemi il cui modulo assume il valore unitario ad una sola frequenza.

L’interpretazione grafica di tale margine relativamente ai diagrammi di Nyquist e Bode è

riportata in Fig. 1.18.
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Figura 1.17: Esempio di due sistemi con uguale margine di guadagno.
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Figura 1.18: Esempio per la valutazione del margine di fase dal diagramma di Nyquist e

di Bode.

Teorema 1.6 (Criterio di stabilità di Bode)

Sia data una funzione di trasferimento G(s) stabile e tale che ∃ ! ω : |G(jω)| = 1. Allora,

condizione necessaria e sufficiente per la stabilità dell’anello chiuso è:

• il guadagno è positivo;

• φm > 0 (il margine di fase è positivo).
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Esempio 1.3

Sia dato il sistema in Fig. 1.19. Supponiamo che per T = 0 il sistema in retroazione sia

stabile e che il margine di fase sia positivo. Vogliamo valutare il valore di T critico che

rende il sistema instabile.

r y

e−sT

−
G(s)

Figura 1.19: Schema in retroazione dell’esempio 1.3.

Sappiamo che l’effetto del ritardo consiste in una rotazione del diagramma di Nyquist

in senso orario di una quantità pari a ωT . Sia ω∗ la frequenza di attraversamento del

cerchio unitario e φm il margine di fase per T = 0. Il ritardo critico T ∗ risulterà pari a:

T ∗ =
φm

ω∗
.

Im

Re

−1

φm

ω∗

Figura 1.20: Diagramma di Nyquist dell’esempio 1.3 per T = 0 (−) e per T = T ∗ (−−).


