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Tecniche di progetto di controllori

(ver. 1.2)

In questo capitolo sarà descritta una tecnica di progetto classica di controllori denominata

sintesi per tentativi. Abbiamo visto precedentemente come calcolare il valore del guada-

gno kc del controllore e come fissare il tipo del sistema controllato. In questo capitolo

analizzeremo come progettare la rimanente parte del controllore, che avevamo chiamato

C ′(s). Affinché con la realizzazione di C ′(s) non vengano modificate le specifiche a regime

permanente è necessario che tale funzione di trasferimento abbia guadagno unitario, cioè

C ′(0) = 1.

1.1 Determinazione delle specifiche ad anello aperto

Come abbiamo visto in precedenza, le specifiche di un sistema di controllo, oltre che sul

regime permanente, possono essere relative al regime transitorio del sistema in anello

chiuso. Dal momento che per la sintesi di un controllore con le tecniche che verranno

descritte in seguito è necessario avere a disposizione delle specifiche sull’anello aperto del

sistema controllato, risulta evidente la necessità di utilizzare le formule di conversione tra

le specifiche riportate in precedenza.

In particolare, le due specifiche che risulteranno utili per la progettazione del controllore

sono il margine di fase desiderato (φm) del sistema ad anello aperto e la frequenza (ωc)

alla quale il modulo del sistema (sempre ad anello aperto) dovrà attraversare l’asse 0 dB.
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Di seguito sono riportate alcune delle formule di conversione:

φm ≃ 2.3 − Mr

1.25
dove Mr è espresso in scala assoluta (e non in dB) e φm in radianti;

ωc ≃ (0.5 ÷ 0.8) Bw

Mr ≃
1 + ŝ

[0.85 ÷ 1]
dove Mr e ŝ sono espressi in scala assoluta;

Ts Bw ≃ 3

φm ≃ 100 ζ.

Una volta determinato il margine di fase e la frequenza di attraversamento desiderata,

si renderà necessario progettare un controllore che soddisfi tali specifiche. A tal fine si

utilizzeranno reti a banda derivativa, integrativa o miste.

Osservazione: poiché le relazioni riportate in precedenza sono approssimate, non è

garantito che un controllore che soddisfi le specifiche su φm e ωc sia effettivamente in grado

di soddisfare le specifiche originarie. Nel caso in cui questo non accada sarà necessario

ripetere il procedimento di sintesi variando φm e ωc in modo opportuno (da qui il nome

di “sintesi per tentativi”).

1.2 Reti a banda derivativa

Una rete a banda derivativa (o rete anticipatrice) viene utilizzata per anticipare la fase ed

allargare la banda del sistema. La funzione di trasferimento di una rete a banda derivativa

è la seguente:

CD(s) =
1 + s τ

1 +
τ

m
s

dove
1

m
, α < 1.

Lo zero ed il polo della rete valgono:

z = −1

τ
, p = −m

τ
= − 1

ατ
,

e la loro posizione nel piano complesso è illustrata in Fig. 1.1, mentre il diagramma di

Bode della rete è riportato in Fig. 1.2.

Dal diagramma di Bode si deduce che questo tipo di rete opera come un filtro passa alto,

amplificando le alte frequenze a producendo un anticipo di fase. La frequenza alla quale
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Figura 1.1: Posizione dello zero e del polo di una rete anticipatrice nel piano complesso.
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Figura 1.2: Diagramma di Bode di una rete anticipatrice.

si ha il massimo guadagno di fase è pari alla media geometrica tra la posizione del polo e

dello zero, cioè:

ωH =

√

1

τ
· 1

α τ
=

1

τ
√

α
. (1.1)

A tale risultato si giunge ponendo a zero la derivata della fase di CD(jω), cioè:

d

dω
[atan(ωτ) − atan(ωατ)] = 0.
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Ricordando che
d

dx
atan(x) =

1

1 + x2
, si ottiene:

τ

1 + ω2 τ 2
− τ α

1 + ω2 τ 2 α2
= 0,

che mediante semplici passaggi algebrici conduce alla soluzione.

Il massimo valore della fase risulta quindi pari a ∠CD(j ω)
∣

∣

∣

ω=ω
H

.

Sostituendo il valore di ωH e dopo opportuni passaggi algebrici si ottiene:

φmax = arcsin
1 − α

1 + α
−→ α =

1 − sin φmax

1 + sin φmax

(1.2)

mentre il valore massimo del modulo è pari a:

γmax = 20 log
1

α
.

Risulta quindi evidente dalla (1.2) che aumentando la distanza tra lo zero ed il polo

(ovvero riducendo il valore di α), si avrà un aumento di fase fino al valore limite di π
2

(Fig. 1.3). A tale aumento di fase corrisponde però anche un aumento del modulo, che

oltre certi limiti potrebbe risultare dannoso ai fini delle prestazioni del sistema. A tal

fine, nel caso si voglia guadagnare molti gradi in fase (ad esempio più di 60◦), è preferibile

utilizzare più reti in cascata in modo da ottenere lo stesso guadagno di fase ma una minore

amplificazione del modulo.

Mentre il valore di α agisce sul guadagno (di modulo e di fase) della rete, il valore di τ

determina la posizione in frequenza dove la rete dovrà agire.
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Figura 1.3: Massimo guadagno di fase al variare di m = 1
α
.
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Dal punto di vista circuitale, una rete anticipatrice può essere realizzata come illustrato

in Fig. 1.4. La funzione di trasferimento di tale circuito risulta:

Vo(s)

Vi(s)
= − 1 + s CR2

1 + s CR1

dove i valori di R1 < R2 e C devono essere dimensionati in modo opportuno. Notare che

tale rete risulta essere di tipo invertente (guadagno negativo).
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Figura 1.4: Circuito analogico che realizza una rete anticipatrice invertente.

Un metodo alternativo alle (1.1)-(1.2) per la determinazione dei parametri caratteristici di

una rete anticipatrice è quello di utilizzare le carte normalizzate di modulo e fase (Fig. 1.5).

Tali carte riportano, rispettivamente, il modulo e la fase di una rete anticipatrice al variare

della frequenza normalizzata ωτ calcolati per diversi valori di m. Una volta selezionato il

valore desiderato di m ed ωτ , per ricavare la posizione dove piazzare la rete (τ̄), dovremo

risolvere:

ωc τ̄ = ωτ −→ τ̄ =
ωτ

ωc

dove ωc denota il valore della frequenza di attraversamento desiderata.

La rete derivativa risulterà quindi:

CD(s) =
1 + τ̄ s

1 + τ̄
m

s
=

1 + ω τ
ωc

s

1 + ω τ
ωc m

s
.

1.3 Reti a banda integrativa

Una rete a banda integrativa (o rete ritardatrice) viene utilizzata per ridurre il modulo del

sistema alle alte frequenze, mantenendo invariato il guadagno in continua. Tale operazione
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Figura 1.5: Carte normalizzate di modulo e fase.
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tenderà a diminuire la banda del sistema. La funzione di trasferimento di una rete a banda

integrativa è la seguente:

CI(s) =
1 +

τ

m
s

1 + sτ
dove

1

m
, α < 1.

Lo zero ed il polo della rete valgono:

z = −m

τ
= − 1

ατ
, p = −1

τ
,

e la loro posizione nel piano complesso è illustrata in Fig. 1.6, mentre il diagramma di

Bode della rete è riportato in Fig. 1.7.
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Figura 1.6: Posizione dello zero e del polo di una rete ritardatrice nel piano complesso.
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Figura 1.7: Diagramma di Bode di una rete ritardatrice.
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Dal diagramma di Bode si deduce che questo tipo di rete opera come un filtro passa basso,

attenuando le alte frequenze a producendo un ritardo di fase. La frequenza alla quale si

ha la massima perdita di fase è pari alla media geometrica tra la posizione del polo e dello

zero, cioè:

ωH =

√

1

τ
· 1

α τ
=

1

τ
√

α
.

La massima perdita di fase risulta:

φmin = − arcsin
1 − α

1 + α

mentre il valore minimo del modulo è pari a:

γmin = −20 log
1

α
. (1.3)

Poiché tale rete viene solitamente utilizzata per ridurre il modulo del sistema attenuando

la fase il meno possibile, si usa scegliere un valore di τ in modo tale che il polo e lo zero

si trovino sufficientemente a sinistra della frequenza di attraversamento desiderata. Una

possibile scelta può essere quella di posizionare il polo due decadi a sinistra rispetto alla

frequenza ωc.

Osservazione: un posizionamento della rete ritardatrice a frequenze troppo basse può

produrre il cosiddetto effetto coda (Fig. 1.8), ovvero la risposta del sistema può impiegare

un tempo lungo per assestarsi al suo valore di regime. Questo è dovuto al fatto che un

polo ad anello chiuso si trova in prossimità dell’asse immaginario.
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Figura 1.8: Effetto coda.

Dal punto di vista circuitale, una rete ritardatrice può essere realizzata allo stesso modo di

una anticipatrice (Fig. 1.4) con la sola differenza che in questo caso dovrà essere R1 > R2.
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Esempio 1.1

Sia dato il sistema riportato in Fig. 1.9 dove

G(s) =
1

s (1 + 0.1s) (1 + 0.2s)
.

G(s)C(s)
yer

H

-

Figura 1.9: Sistema di controllo in retroazione dell’esempio 1.1.

Vogliamo determinare i valori di C(s) e H in modo tale che siano soddisfatte le seguenti

specifiche:

1. Rapporto ingresso-uscita y/r = 1.

2. Errore di inseguimento alla rampa lineare a regime er ≤
1

30
.

3. Picco di risonanza Mr ≤ 3 dB.

4. Banda passante Bw ≥ 12 rad/s.

Affinché sia soddisfatta la 1) è necessario che H = 1, e che quindi il sistema sia in

retroazione unitaria.

Vogliamo adesso progettare un controllore della forma C(s) =
kc

sh
C ′(s) con C ′(0) = 1.

Poiché la 2) richiede un errore di inseguimento alla rampa finito, significa che il sistema

deve essere di tipo 1. Poiché la G(s) è già di tipo 1, non sarà necessario aggiungere un

polo nell’origine al controllore (h = 0). Per la determinazione del valore kc è sufficiente

ricordare che:

er =
k2

d

kg kc

.

Essendo kc = 1 e kg = 1, la 2) sarà soddisfatta ∀kc: kc ≥ 30: fissiamo quindi kc = 30.

Rimane adesso da determinare la funzione di trasferimento C ′(s). Innanzitutto trasfor-

miamo le specifiche richieste nei corrispondenti valori di φm e ωc.

Mr = 3 dB = 1.41 −→ φm =
2.3 − Mr

1.25
= 0.71 rad ≃ 41◦
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ωc = [0.5 ÷ 0.8] Bw −→ ωc = [6 ÷ 9.6]. F issiamo ωc = 8 rad/s.

Il diagramma di Bode della funzione G(s) = kc G(s) è riportato in Fig. 1.10. Da tale

diagramma si può osservare che alla pulsazione di 8 rad/s il modulo vale circa 3.8 dB e

la fase -187◦.
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Figura 1.10: Diagramma di Bode del sistema non controllato G(jω).

Dovremo quindi aumentare la fase di ∆φm = (7 + 41 + ε) gradi ed abbassare il modulo di

3.8 decibel. Risulta quindi necessario l’uso sia di una rete anticipatrice che di una ritarda-

trice. Per semplicità si è soliti progettare per prima la rete anticipatrice. Sarà opportuno

abbondare sul valore di ε poiché questa rete sarà posta in cascata ad una ritardatrice che

produrrà una piccola diminuzione di fase. Fissiamo quindi:

∆φm = 7 + 41 + ε = 55◦.

Dalla (1.2) risulta che:

α =
1 − sin 55

1 + sin 55
≃ 0.1 −→ m = 10.

Poiché vogliamo centrare questa rete alla frequenza ωc risulterà:

1

τ
√

α
= ωc −→ τ =

1

ωc

√
α

≃ 0.4 −→







z = − 1
τ
≃ −2.5 rad/s

p = − 1
ατ

≃ −25 rad/s.
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La rete anticipatrice sarà quindi:

Ca(s) =
1 + 0.4s

1 + 0.04s
.

Il diagramma di Bode della funzione G(s) in cascata con la rete anticipatrice Ca(s) è

riportato in Fig. 1.11.
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Figura 1.11: Diagramma di Bode del sistema G(jω) (−−) e di G(jω) Ca(jω) (−).

Alla frequenza ωc = 8 rad/s risulta che il modulo vale 13.9 dB e la fase -132◦.

Vogliamo adesso ridurre il modulo di 13.9 dB riducendo il meno possibile la fase. Uti-

lizzeremo una rete integrativa centrata ad una bassa frequenza minore della banda del

controllo, e tale che la massima riduzione in modulo sia pari a 13.9 dB. Per la (1.3) si

ha:

γmin = −20 log
1

α
= −13.9 −→ α = 10−

13.9

20 ≃ 0.2.

Adesso è necessario determinare il valore di τ . Possiamo scegliere τ in modo tale che

il polo sia posizionato due decadi a sinistra rispetto al valore di ωc. Questo garantisce

in generale che la variazione di fase della rete ritardatrice alla frequenza ωc sia piccola
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(< 10◦). Quindi:






p = − 1
τ

= −ωc/100 = −0.08 rad/s

z = − 1
ατ

= −0.4 rad/s.

La rete ritardatrice risulterà:

Cr(s) =
1 + 2.5 s

1 + 12.5 s

mentre il controllore finale sarà:

C(s) = kc Ca(s) Cr(s).

Il diagramma di Bode della funzione controllata è riportato in Fig. 1.12. Da tale dia-

gramma è possibile verificare che φm ≃ 46◦ e ωc ≃ 7.95 rad/s. Questo significa che le

specifiche ad anello aperto sono state soddisfatte, ma non garantisce che anche le specifi-

che di partenza lo siano. A tal fine è necessario valutare il picco di risonanza e la banda

passante del sistema ad anello chiuso. Possiamo quindi tracciare il diagramma di Nichols

(Fig. 1.13) e valutare i valori di picco di risonanza e banda passante. In questo caso, il

picco di risonanza risulta minore di 3 dB (il diagramma è esterno alla curva a 3 dB),

mentre la banda passante è circa 13.8 rad/s. Possiamo quindi concludere che il controllore

progettato soddisfa le specifiche richieste.
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Figura 1.12: Diagramma di Bode del sistema G(jω) (−−) e di G(jω) Ca(jω) Cr(jω) (−).
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Figura 1.13: Diagramma di Nichols del sistema G(jω) C(jω).

Esempio 1.2

Sia dato il sistema riportato in Fig. 1.14.

G(s)C(s)
yuer

-

Figura 1.14: Sistema di controllo in retroazione dell’esempio 1.2.

Sia Tru(s) la funzione di trasferimento tra il riferimento ed il comando, cioè:

Tru(s) =
C(s)

1 + C(s) G(s)
.

Una possibile richiesta può essere quella di voler limitare il valore del modulo di Tru(jω)

oltre una certa frequenza, ovvero:

|Tru(jω)| ≤ δ , ∀ω ≥ ω. (1.4)

Solitamente ω è situato alle alte frequenze, dove vale |C(jω) G(jω)| ≪ 1, ∀ω ≥ ω.
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Avremo quindi:

|Tru(jω)| ≃ |C(jω)| , ∀ω ≥ ω.

Supponiamo di aver progettato un controllore mediante una rete anticipatrice ed una

ritardatrice, cioè:

C(s) = kc

1 + τ s

1 + α τ s

1 + β t s

1 + t s
, α, β < 1.

Per valori di ω sufficientemente grandi (ad esempio ω ≥ ω) vale:

Tru(jω) ≃ lim
ω→∞

|Tru(jω)| ≃ lim
ω→∞

|C(jω)| = kc

β

α
.

Affinché la (1.4) sia soddisfatta dovrà quindi valere:

kc

β

α
≤ δ. (1.5)

Risulta quindi immediato che la (1.5) rappresenta un ulteriore vincolo da tenere in con-

siderazione durante la progettazione della rete di controllo.


