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Prestazioni dei sistemi in retroazione

(ver. 1.2)

1.1 Sensitività e sensitività complementare

Sia dato il sistema in retroazione riportato in Fig. 1.1. Vogliamo determinare quanto è

sensibile il sistema in anello chiuso a fronte di variazioni della funzione G(s). Questa

analisi risulta utile in quanto, dal punto di vista pratico, non avremo mai una conoscenza

esatta del sistema G(s). E’ quindi desiderabile che il sistema ad anello chiuso sia piuttosto

insensibile alle variazioni della G(s). La sensitività relativa alla funzione di anello chiuso

T = G/(1 + G) rispetto alla funzione di anello aperto G è data da:

∂T
∂G
T
G

=
1 + G − G

(1 + G)2
·

1
G

1+G
1
G

=
1 + G

(1 + G)2
=

1

1 + G
, S(s).

La funzione S(s) si dice funzione di sensitività. La funzione di anello T (s) introdotta

prima si chiama sensitività complementare poiché:

T (s) ,
G(s)

1 + G(s)
= 1 − S(s).

Conoscendo l’andamento di |G(jω)| sarà quindi possibile determinare |S(jω)| e |T (jω)|.

In generale, supponendo di avere una funzione G(s) strettamente propria, si può verificare

che:

|T (jω)| =
|G(jω)|

|1 + G(jω)|
≃







0 dB , ∀ω: |G(jω)| ≫ 1

|G(jω)|dB , ∀ω: |G(jω)| ≪ 1.



2 Prestazioni dei sistemi in retroazione (ver. 1.2)
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Figura 1.1: Sistema in retroazione unitaria.

Un ragionamento analogo può essere esteso al caso di S(s):

|S(jω)| =
1

|1 + G(jω)|
=







−|G(jω)|dB , ∀ω: |G(jω)| ≫ 1

0 dB , ∀ω: |G(jω)| ≪ 1.

In Fig. 1.2 sono rappresentati gli andamenti tipici delle funzioni S(s) e T (s).
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Figura 1.2: Andamenti delle funzioni G(s), S(s) e T (s).

Si definisce come picco di risonanza Mr la differenza tra il massimo valore raggiunto dal

modulo di T (jω) ed il valore di regime. In generale, si desidera avere un picco di risonanza

abbastanza piccolo, in quanto tanto maggiore è il picco e tanto minore risulterà essere lo

smorzamento della risposta del sistema.

Si definisce banda passante Bw (o B3) del sistema la frequenza alla quale il modulo di

T (jω) si riduce di 3 dB rispetto al valore di regime. Un aumento della banda passante si

traduce generalmente in un aumento della prontezza di risposta del sistema.
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10
−2

10
−1

10
0

−25

−20

−15

−10

−5

0

5

10

15

M
ag

ni
tu

de
 (

dB
)

T(s)

M
r

B
w

Bode Diagram

Frequency  (rad/sec)

Figura 1.3: Picco di risonanza e banda passante di un sistema in retroazione.

I cerchi M

Vogliamo adesso determinare per quali punti del piano X − Y il modulo della funzione

ad anello chiuso T (jω) risulta costante. Scriviamo G(jω) mettendo in evidenza la parte

reale ed immaginaria.

G(jω) = x(ω) + j y(ω).

Per semplificare la trattazione, nel seguito si ometterà la dipendenza da ω. La funzione

ad anello chiuso risulterà:

T =
G

1 + G
=

x + jy

(1 + x) + jy

e quindi:

|T |2 =
x2 + y2

(1 + x)2 + y2
, M2

da cui:

M2(1 + 2x + x2) + M2y2 = x2 + y2

(M2 − 1)x2 + 2M2x + (M2 − 1)y2 + M2 = 0

Supponendo M 6= 1, dividendo per (M2−1) e sommando e sottraendo M4

(M2−1)2
, si ottiene:

x2 + 2x
M2

M2 − 1
+

M4

(M2 − 1)2
−

M4

(M2 − 1)2
+ y2 +

M2

M2 − 1
= 0

che equivale a scrivere:
(

x −
M2

1 − M2

)2

+ y2 =
M2

(M2 − 1)2
. (1.1)
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La (1.1) è l’equazione di una famiglia di circonferenze, il cui centro C e raggio R valgono:

C =

(
M2

1 − M2
, 0

)

, R =
M

|M2 − 1|
.

Queste circonferenze vengono dette cerchi M. Sarà possibile tracciare il diagramma di

Nyquist di una funzione G(s) su un apposita carta graduata con tali cerchi; in questo

modo sarà possibile valutare il valore del modulo di T (jω) a partire dal grafico di G(jω)

(Fig. 1.4). Sarà quindi particolarmente semplice dedurre il valore del picco di risonanza

e della banda passante. Il picco di risonanza sarà infatti il valore del cerchio tangente al

diagramma, mentre la banda passante sarà il valore della frequenza alla quale la curva

interseca il cerchio corrispondente a -3 dB.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0 dB

−20 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figura 1.4: Diagramma di Nyquist tracciato sul piano X − Y in presenza dei cerchi M.

In modo analogo è possibile costruire delle curve a modulo costante in funzione del modulo

(espresso in dB) e della fase di G(jω) (anziché dalla parte reale ed immaginaria). Tali

curve rappresentano la cosiddetta carta di Nichols la quale permette di valutare il picco di

risonanza e la banda passante in modo analogo al precedente ma a partire dal diagramma

di Nichols. Un esempio è riportato in Fig. 1.5.

Nonostante i risultati forniti finora facciano riferimento alla funzione di sensitività com-

plementare T (s), risultano facilmente adattabili anche per l’analisi della funzione di
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Figura 1.5: Diagramma di Nichols tracciato sulla carta di Nichols.

sensitività. La funzione S(s) si può infatti scrivere come:

S(s) =
1

1 + G(s)
=

G−1(s)

1 + G−1(s)
.

Una volta tracciato il diagramma di Nichols di G(jω), per ottenere quello di G−1 è suf-

ficiente invertire il segno del modulo e della fase, ottenendo un diagramma simmetrico

rispetto all’origine. Da tale diagramma sarà quindi possibile valutare le caratteristiche di

S(jω), usando ancora la carta di Nichols.

1.2 Specifiche dei sistemi di controllo nel dominio del

tempo

Sia dato il sistema in retroazione in Fig. 1.6. Le specifiche nel dominio del tempo di un

sistema di controllo possono essere suddivise in 3 categorie:

1. Specifiche sul regime permanente
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2. Specifiche sul comportamento transitorio

3. Specifiche sul comando.

G(s)C(s)
yer

H

-

Figura 1.6: Sistema di controllo in retroazione.

1.2.1 Specifiche sul regime permanente

Per specifiche sul regime permanente si intendono quelle specifiche che impongono dei

vincoli alla risposta in regime permanente del sistema ad anello chiuso.

Rapporto ingresso/uscita

Facendo riferimento al sistema in Fig. 1.6, una prima specifica tipica riguarda il rappor-

to tra ingresso ed uscita (kd). Questo equivale a dire che, fissato il riferimento ad un

determinato valore y0, si vuole che

lim
t→∞

y

y0

= kd.

Risulta evidente che per soddisfare questa condizione è necessario imporre che:

H = k−1
d .

Se H è una funzione di trasferimento dinamica, allora H(s)|s=0 = k−1
d .

Inseguimento del riferimento: tipo di un sistema ed errore di inseguimento

Sia dato il sistema in Fig. 1.7. Poiché saremo interessati ad analizzare il comportamento

dell’uscita rispetto al riferimento, nel seguito assumeremo nullo il valore del disturbo d.

Il sistema di Fig. 1.7 potrà quindi essere trasformato nel sistema equivalente riportato in

Fig. 1.8, dove il segnale yr si dice uscita ridotta.
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Figura 1.7: Sistema di controllo in retroazione.
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Figura 1.8: Sistema di controllo equivalente a quello di Fig. 1.7 (d = 0).

Nel seguito analizzeremo l’andamento dell’errore di inseguimento al variare del segnale di

riferimento, che supporremo essere un gradino, una rampa lineare o una rampa parabolica.

Errore di inseguimento al gradino

Si supponga che il segnale di riferimento r sia un gradino unitario, cioè r(t) = 1 · u(t)

dove:

u(t) =

{

0 se t < 0

1 se t ≥ 0
.

Si definisce come errore di inseguimento al gradino il seguente valore:

egrad = lim
t→∞

(r(t) − y(t)) = lim
t→∞

(1 − y(t)) .

e(t)

t

y(t)

r(t)

1

Figura 1.9: Errore di inseguimento al gradino unitario.
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Errore di inseguimento alla rampa lineare

In modo analogo a quanto descritto in precedenza, è possibile valutare l’errore di insegui-

mento quando il segnale di riferimento è una rampa lineare, cioè r(t) = t · u(t).

erampa = lim
t→∞

(r(t) − y(t)) = lim
t→∞

(t − y(t)) .

e(t)

t

y(t)

r(t)

Figura 1.10: Errore di inseguimento alla rampa lineare.

Errore di inseguimento alla rampa parabolica

Se il riferimento è pari a r(t) = t2 · u(t) sarà possibile valutare l’errore di inseguimento

alla rampa parabolica come:

epar = lim
t→∞

(r(t) − y(t)) = lim
t→∞

(
t2 − y(t)

)
.

Per poter rappresentare i precedenti 3 casi, possiamo assumere la trasformata di Laplace

del riferimento pari a:

Rk(s) =
A

sk+1
con k ≥ 0.

L’errore di inseguimento risulterà:

Ek(s) =
1

1 + CGH
Rk(s) =

1

1 + CGH

A

sk+1
.

Supponiamo di scrivere la funzione G(s) nel seguente modo:

G(s) =
kG

sh
G′(s) dove G′(s) è tale che lim

s→0
G′(s) = 1.
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Figura 1.11: Errore di inseguimento alla rampa parabolica.

Analogamente possiamo scrivere C(s) = kc C ′(s) con C ′(0) = 1.

Per il teorema del valore finale risulterà che:

lim
t→∞

ek(t) = lim
s→0

s Ek(s) = lim
s→0

1

1 + CGH

A

sk
= lim

s→0

1

1 + CH kG

sh G′(s)

A

sk

= lim
s→0

sh

sh + CHkGG′(s)

A

sk
= lim

s→0

sh

sh + kcC ′(0)HkGG′(0)

A

sk

=
︸︷︷︸

se h 6=0

lim
s→0

sh

kcC ′(0)HkGG′(0)

A

sk
= lim

s→0

A

kcHkg

sh−k (1.2)

Quindi:

• se h > k −→ ek(∞) = 0;

• se h = k −→ ek(∞) 6= 0, ek(∞) < ∞;

• se h < k −→ ek(∞) = ∞.

Risulta evidente che il valore dell’errore di inseguimento dipende fortemente dal valore di

h, ovvero del numero di poli in zero del sistema. Tale numero di poli in zero identifica il

cosiddetto tipo del sistema (almeno nel caso in cui si assuma che H = k−1
d ).

E’ opportuno notare che, nel caso h = k, il valore dell’errore a regime risulta finito. In

questo caso bisogna porre attenzione al fatto che il segnale ek misura l’errore di insegui-

mento dell’uscita ridotta (essendo ek = r−Hy) e non sull’uscita reale. Nel caso si desideri

calcolare l’errore sull’uscita dovremo moltiplicare l’errore sul riferimento per kd = 1/H .
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Esempio 1.1

Supponiamo di voler valutare l’errore di inseguimento (sull’uscita) al gradino unitario

(A = 1) di un sistema di tipo 0. Mediante passaggi analoghi a quelli fatti in precedenza

avremo che:

e(∞) =
kd

kd + kc kG

.

L’errore sull’uscita risulterà quindi:

ey(∞) =
k2

d

kd + kc kG

.

Questo errore è evidentemente una quantità finita. Supponiamo adesso di voler annullare

questo errore. Sarà necessario aggiungere un polo nell’origine al controllore, in modo tale

che diventi del tipo:

C(s) =
kc

s
C ′(s).

Supponiamo adesso di avere un sistema di tipo maggiore o uguale ad 1. Se h = k avremo:

ey(∞) =
k2

d

kc kG

.

Solitamente, verrà richiesto che tale valore risulti minore od uguale ad un certo valore

prestabilito ε, ovvero:

ey(∞) =
k2

d

kc kG

≤ ε.

Essendo kG ed kd fissati, potremo dedurre il campo di ammissibilità per kc dalla precedente

disuguaglianza.

Problema di reiezione dei disturbi

Facendo riferimento alla Fig. 1.7, vogliamo adesso valutare l’influenza del disturbo d

sull’andamento del sistema. In questo caso fisseremo il riferimento a zero; la funzione di

trasferimento tra il disturbo e l’uscita risulta:

Td,y =
1

1 + CGH
= S

che è esattamente uguale alla funzione di trasferimento tra il riferimento e l’errore, ed

è pari alla funzione di sensitività. Sarà quindi possibile ripetere tutti i ragionamenti

esposti in precedenza, ottenendo risultati analoghi. Ad esempio, potremo affermare che

un sistema di tipo 1 reietta completamente eventuali disturbi a gradino.
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1.2.2 Specifiche sul comportamento transitorio

A differenza di quanto visto in precedenza, analizziamo adesso il comportamento dell’u-

scita in fase transitoria. A tal fine si usa considerare la risposta al gradino del sistema.

In generale, tale risposta risulta di tipo oscillatorio, come quella riportata in Fig. 1.12.

E’ quindi possibile definire i seguenti indici di prestazione:

• Tempo di salita (Ts): è il tempo necessario all’uscita per raggiungere per la

prima volta il valore di regime. Talvolta si può indicare con questo termine il tempo

necessario all’uscita per passare dal 10% al 90% del valore di regime. Solitamente

si adotta questa seconda definizione quando il valore di regime viene raggiunto

asintoticamente.

• Tempo di assestamento (Ta): è il tempo necessario perché l’uscita si assesti in

una banda (solitamente del 2% o 5%) attorno al valore di regime.

• Sovraelongazione massima (Overshoot) (ŝ): è definita come la differenza tra il

valore massimo assunto dall’uscita ed il valore di regime. Solitamente si usa esprime-

re tale valore in percentuale rispetto al valore di regime. Il valore di tempo Tm corri-

spondente alla massima sovraelongazione si dice tempo di massima sovraelongazione

(o di picco).

Step Response

Time (sec)

A
m

pl
itu

de

1 + ŝ

1 ± ε



Ts TaTm

Figura 1.12: Specifiche nel transitorio.
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1.2.3 Specifiche sul comando

Supponiamo di avere lo schema riportato in Fig. 1.13, in cui G(s) =
kT

1 + sT
.

r u y

d

−
Kc G(s)

Figura 1.13: Schema di sistema in retroazione.

Possiamo calcolare la funzione di sensitività complementare come:

T (s) =
kc G(s)

1 + kc G(s)
=

kc kT

1 + s T + kc kT

=
kc kT

1 + kc kT

·
1

1 + s T
1+kc kT

.

Analogamente la funzione di sensitività risulterà:

S(s) =
1

1 + kc G(s)
=

1 + s T

1 + s T + kc kT

=
1

1 + kc kT

·
1 + s T

1 + s T
1+kc kT

.

Un incremento di kc si tradurrà in un aumento della prontezza del sistema. D’altronde,

essendo il margine di fase maggiore di zero per qualunque kc > 0, non ci sarà il rischio

che il sistema diventi instabile, ed il sistema presenterà una sensitività sempre più bassa

al crescere di kc.

Andiamo adesso ad analizzare la funzione di eccitazione del comando, ovvero la funzione

di trasferimento tra il segnale di riferimento r ed il comando u. Risulterà:

Tr,u(s) =
kc

1 + kc G(s)
.

Assumendo un riferimento a gradino unitario, avremo:

U(s) = Tr,u(s) ·
1

s
=

1

s
·

kc

1 + kc kT

·
1 + s T

1 + s T
1+kc kT

la cui risposta temporale è riportata in Fig. 1.14. Un aumento di kc si traduce quindi in

un aumento del valore del comando u nei primi istanti di tempo. Valori troppo elevati

di kc potranno quindi non essere accettabili dal punto di vista della sicurezza, in quanto

potrebbero richiedere dei comandi troppo intensi e produrre quindi malfunzionamenti o

rotture dell’impianto.
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Figura 1.14: Andamento del segnale di comando u(t).

Oltre a quanto descritto in precedenza, una ulteriore specifica inerente il segnale di

comando può essere la seguente:

|Tr,u(jω)| ≤ α , ∀ω ≥ ω ,

dove i valori α ed ω sono fissati. In pratica viene imposto un limite superiore al modulo

di Tr,u per le alte frequenze.

1.3 Specifiche nel dominio della frequenza

Oltre alle specifiche nel dominio del tempo riportate in precedenza, è possibile definire

anche degli indici di prestazione in frequenza sul sistema in anello chiuso. Tali indici,

alcuni dei quali sono già stati anticipati in precedenza, sono:

• Picco di risonanza (Mr): è definito come il valore massimo del modulo della

funzione ad anello chiuso meno il valore di regime. Tale valore viene comunemente

espresso in decibel.

• Banda passante (Bw): è la frequenza alla quale il modulo della funzione ad anel-

lo chiuso è pari al valore di regime meno 3 dB. Essendo la banda passante una

pulsazione, essa viene espressa in rad/s.

• Margine di fase (φm): è definito dalla seguente espressione:

φm = ∠G(jωc) + 180◦

dove G è la funzione di trasferimento ad anello aperto e ωc è la frequenza a cui il

modulo di G(jω) ha valore unitario.
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• Pulsazione di risonanza (ωr): nel caso in cui il sistema ad anello chiuso presenti

una risonanza, ωr è la pulsazione di tale risonanza.

• Pulsazione di attraversamento (ωc): è la pulsazione alla quale il modulo della

funzione ad anello aperto è unitario.

• Coefficiente di smorzamento (ζ): assumendo che il sistema ad anello chiuso sia

approssimabile ad un sistema del secondo ordine con poli complessi coniugati ζ de-

nota il coefficiente di smorzamento di tali poli (ωn denoterà altres̀ı la loro pulsazione

naturale).

Di seguito vengono riportate alcune formule di conversione tra varie specifiche (sia tem-

porali che frequenziali). E’ opportuno notare che molte formule sono approssimate (le

formule esatte si riferiscono a sistemi del secondo ordine), e che i valori di Mr ed ŝ sono

espressi in scala assoluta.

φm ≃
2.3 − Mr

1.25
(φm espresso in radianti)

φm ≃ 100 ζ (φm espresso in gradi)

ωc ≃ (0.5 ÷ 0.8) Bw

ωr = ωn

√

1 − 2 ζ2

Mr ≃
1 + ŝ

[0.85 ÷ 1]

Mr =
1

2 ζ
√

1 − ζ2

Bw = ωn

√

1 − 2 ζ2 +
√

2 − 4 ζ2 + 4 ζ4

Ts Bw ≃ 3

Ts =
1

ωn

√

1 − ζ2

[

π − atan

√

1 − ζ2

ζ

]

ŝ = e
− πζ√

1−ζ2

T 2%
ass ≃

4

ξ ωn

T 5%
ass ≃

3

ξ ωn

.


