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I Controllori PID (ver. 1.0)

1.1 Generalita dei controllori PID

Una classe di controllori molto utilizzata in applicazioni industriali sono i controllori PID
(o controllori standard). Essi elaborano il segnale errore in ingresso attraverso tre blocchi
(uno ad azione proporzionale, uno ad azione integrativa e uno ad azione derivativa), i cui

guadagni sono i gradi di liberta in fase di progetto del controllore (Fig. 1.1).
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Figura 1.1: Schema di un PID ideale.

I controllori PID ideali

Il segnale di uscita di un controllore PID ideale ¢ dato da:

u(t) = Kpe(t) + K; /t e(r)dr + KDdZit)

con Kp, K;, Kp > 0 (nell'ipotesi che il guadagno di processo sia positivo).

Nella letteratura tecnica si denomina banda proporzionale il parametro PB = 100/ K.
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La funzione di trasferimento di un PID ideale é:

KDS2+KPS+K[

K
Rp[D(S):KP—i‘?I—i‘KDSI S

Una forma alternativa alla (1.1) piu utilizzata in pratica ¢ la seguente:

1 TiTps* +Trs + 1
Rprp(s) = Kp (1+T—8+TD3) :KP< 1Tps” + Tis )
I

T]S

T; = Kp/ K| «— costante di tempo integrale (o di reset).

Tp = Kp/Kp «— costante di tempo derivativa.

Realizzazione causale dei controllori PID

Poiché le funzioni di trasferimento (1.1)-(1.2) non sono proprie, risultano irrealizzabili in

pratica.

Per ottenere una funzione di trasferimento propria si aggiunge un polo ad alta frequenza

al blocco derivatore ottenendo:

1 TDS K] KDS
T =Kp|1+—/—+ = + —+
PID() P( T[S ]_—I—TDS) P 1—}—%8
La costante positiva N & scelta in modo tale che il polo s = —N/T) sia fuori dalla banda

del controllo (N = 5 =+ 20).

In Fig. 1.1 sono riportate le risposte in frequenza delle funzioni di trasferimento di un
PID ideale e reale.

In genere, nel seguito faremo riferimento sempre alla forma ideale.

Casi particolari

Casi particolari sono i regolatori P, PI e PD.

Rp = Kp

K K 14T,
RPI<S):$:KP R

s Trs
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Figura 1.2: Diagramma di Bode di un controllore PID ideale (—) e reale (— —).

RPD(S) =Kp+ Kps= Kp(l —|—TD8)

I regolatori PID ideali hanno un polo nell’origine e 2 zeri in

—Ty + /T (Ty — 4Tp)
27T

21,2

Al variare dei parametri, i due zeri possono essere complessi, reali distinti o reali coinci-
denti (se T; = 4Tp). Spesso, per semplificare la taratura, si preferisce avere 2 zeri reali

coincidenti.

1.2 Aspetti realizzativi dei controllori PID

Poiché il riferimento in un sistema controllato puo contenere segnali a gradino o comunque
segnali con rapida variazione, negli istanti in cui si ha una variazione, il blocco derivatore
fornisce un contributo al segnale di attuazione molto elevato. Si usa allora sottoporre ad

azione derivativa 'uscita y piuttosto che il segnale di errore e (Fig. 1.2b).

Vale che:

e [ poli ad anello chiuso delle due configurazioni sono gli stessi.
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Figura 1.3: Controllore PID con azione derivativa sul segnale di errore (a), e sull’uscita

(b).

e Le funzioni di trasferimento S(s) = Y (s)/D(s) e Q(s) = U(s)/D(s) sono identiche
nelle due configurazioni.

Infatti, nel caso di Fig. 1.2a si ha:

Vi) =5 fiéffiiﬁ (é)(s) B+ 13 Rpul)(s) a
Us) = 12 W) = Do)
mentre per quanto riguarda il caso in Fig. 1.2b, risulta:
Yis)=1 +R§;S?(§)(SG)(S) Wis)+ 13 le)(s) ae P
- Rpa(s) Reips) o

- 1 + RPID(S) G(S) W(S) B 1 + RPID(S) G(S)

e F(s) = Y(s)/W(s) ha sempre guadagno unitario e S(s) ha uno zero nell’origine;
quindi il sistema riesce ancora ad inseguire un riferimento a gradino senza errori e

garantire la reiezione dei disturbi costanti.

Esempio 1.1
5

(s+1)2(s+3)
Consideriamo un Rprp con: Kp =3, K; =2, Kp=1 (T =3/2, Tp = 1/3), ovvero

G(s) =

(s+1)(s+2)
5(s+2)
s(s+1)(s+3) "’

Rpip(s) =

L(s) = Rpip(s) G(s) =
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per cut st ha:
¢m ~ 400 ) Km - OO’

we~1.84rad/s

dove con w. denotiamo la frequenza di attraversamento degli 0dB, con ¢, il margine di

fase e con K, il margine di guadagno.
Se si considera un PID reale con N =5 (polo aggiuntivo in —N/Tp = —15) si ottiene:

=37 K, ~17dB.

we >~ 1.92rad/s |

E’ interessante notare l’andamento di y ed u per le due realizzazioni (derivazione di e o

di y) del controllore in corrispondenza ad un ingresso a gradino.
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Figura 1.4: (a) Risposta al gradino del sistema dell’esempio 1.1 con azione derivativa
sull’errore (—) e sull’'uscita (— —). (b) Relativo segnale di comando u(t) per i due casi.

Scelta del valore di N
Come enunciato in precedenza, la scelta di N determina la posizione del polo aggiuntivo.

Poiché al crescere di N, Ry, — Rpip, e |Rpip(jw)| — oo per w — oo, allora per
moderare ’eccitazione del comando da parte di componenti ad alta frequenza dei disturbi

in anello d, bisogna selezionare N il piu basso possibile, compatibilmente con il posizionare

il polo aggiuntivo fuori dalla banda del controllo.

A titolo esemplificativo, vale la pena osservare gli andamenti di y e u per N =5e N = 30
nel caso in cui il sistema di controllo dell’esempio 1.1 venga sottoposto ad un disturbo
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d a spettro costante. In Fig. 1.5 viene riportata I'uscita del sistema per le due scelte di
N; notare che le due uscite sono quasi perfettamente coincidenti. In Fig. 1.6 sono invece
riportati i valori del comando; in questo caso si puo notare come la scelta di un valore di

N = 5 risulti decisamente migliore.
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Figura 1.5: Andamento di w e y nell’esempio 1.1 con lo schema di derivazione dell’uscita
per N=5(—)e N=30(——).
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Figura 1.6: (a) Andamento del comando u per N = 5. (b) Andamento del comando u
per N = 30.

1.2.1 Struttura dei PID industriali

Per evitare di sollecitare molto la variabile di comando, a volte anche ’azione proporzio-

nale ¢ applicata solo a y, invece che a e. In generale, in ambito industriale, i regolatori
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PID sono strutturati in maniera flessibile, in modo da rendere agevole la loro taratura.
In particolare:
U(s) = KpEp(s) + %E@) + KpsEp(s) |
dove:
E(s) = Wi(s)=Y(s)
(s) = aW(s)—Y(s)
Ep(s) = BW(s)=Y(s)

I parametri a e 3 sono scelti in modo da ottimizzare le prestazioni del sistema di controllo.

Poiché I'analisi fatta in precedenza per lo schema del PID con azione derivativa sull’uscita
puo essere estesa a qualunque a e 3, se ne deduce che al variare di a e (3, mentre la
posizione dei poli del sistema ad anello chiuso non varia, cambiano invece gli zeri di
Y (s)/W(s) e U(s)/W(s), e di conseguenza le prestazioni del sistema.

1.3 Desaturazione dell’azione integrale (schemi anti-

windup)

Gli attuatori utilizzati nei sistemi di controllo hanno dei vincoli sull’ampiezza delle uscite,
che non possono superare dei valori massimi e minimi. Quando si utilizza un regolatore
con azione integrale, ¢ possibile che 1'uscita del controllore raggiunga i suddetti vincoli; in
tal caso l’azione dell’attuatore non puo crescere, anche se 'errore di regolazione e(t) non

¢ nullo.

Assumiamo per comodita di avere un compensatore puramente integrale del tipo K;/s.
La situazione reale che spesso si incontra ¢ quella riportata in Fig. 1.7 (attuatore in
saturazione), in cui:
Uy, seu(t) < —=Uy
m(t) =< u(t) , selu(t) < Uy
Uy , sewu(t) > Uy

Il fenomeno del wind-up
In presenza di saturazione, come detto in precedenza, puo verificarsi che I'uscita dell’attua-

tore non cresca, pur rimanendo l'errore di regolazione e(t) non nullo. Conseguentemente,

il termine integrale continua a crescere, ma tale incremento non produce alcun effetto
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Y

Figura 1.7: Schema in cui I’attuatore presenta una saturazione.

sulla variabile di comando dell’impianto. Tale situazione, oltre a non far funzionare cor-
rettamente il regolatore, rende inattivo il regolatore anche quando I’errore diminuisce o si
inverte di segno; infatti, il sistema di regolazione puo riattivarsi solo allorquando il segnale
u(t) rientra nella zona di linearita della caratteristica dell’attuatore (scarica del termine

integrale). Questo fenomeno si chiama comunemente carica integrale o integral wind-up.

Esempio 1.2
Sia data la sequente funzione di trasferimento:

4
s+ 2

G(s) =

Assumiamo di utilizzare un controllore integrale con K; = 1. In condizioni di linearita
risulta:
we >~ 1.57rad/s |, ¢y =~ 52°.

Supponiamo adesso che [attuatore presenti una saturazione con Uy = 0.53. [ risultati

della simulazione per un ingresso a gradino sono mostrati in Fig. 1.8.

Schema di desaturazione

Il problema del wind-up puo essere evitato interrompendo ’azione integrale non appena

I'uscita del controllore raggiunge il livello di saturazione dell’attuatore.
Una possibile soluzione e riportata in Fig. 1.9.

Supponiamo che il controllore PID che deve essere realizzato sia della forma generale

RPID(S) = gZEz;, con DR(O) = O,

in cui la condizione Dg(0) = 0 implica la presenza di un blocco integrale nel controllore.

Supponiamo che sia Ng(0) > 0. Allora, riferendosi allo schema riportato in Fig. 1.9, si
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Figura 1.8: (a) Risposta di un sistema in assenza (—) e in presenza (— —) di saturazione.
(b) Andamento dei segnali di e(t) (=), u(t) (— —) ed m(t) (—.) in presenza di saturazione.
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Figura 1.9: Schema di realizzazione di un controllore PID con dispositivo anti wind-up.

sceglie I'(s) in modo tale che la funzione di trasferimento

F(S) — DR(S)

U(s) = ()

sia asintoticamente stabile, strettamente propria e con guadagno unitario (V(0) = 1). Si

puo allora osservare che:

e Se l'attuatore opera in regione di linearita, la funzione di trasferimento fra e(t) e

m(t) coincide con la Rprp(s) desiderata.

e Se il segnale errore e(t) permane dello stesso segno per un tempo elevato, allora

anche ¢(t), in funzione della dinamica di I'(s), assumera lo stesso segno; m(t) satura
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al valore massimo Uy, dell’attuatore. Dato che W(0) = 1, anche z(¢) si assestera al
valore Uy, sempre con una dinamica che dipende da I'(s). Se e(t) cambia di segno,
anche ¢(t) cambia segno e quindi il segnale u(t) = ¢(t) + z(t) scende subito sotto
il valore di saturazione U);, attivando il comportamento lineare dell’attuatore. Le
prestazioni del sistema di desaturazione dipendono dalla scelta del polinomio I'(s),

che costituisce il nucleo del progetto del desaturatore.

Esempio 1.3

Facendo riferimento alle funzioni dell’esempio 1.2, assumiamo:

8

I'(s)=s+8 = \Il(s):s+8.

La risposta del sistema desaturato e riportata in Fig. 1.10.
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Figura 1.10: Risposta del sistema senza saturazione (-), con saturazione (—) e con

saturazione e anti wind-up (-.).

Specializzando il caso generale al caso PI, si ha che una scelta generale e:

Kps+ K 14+17s
RP[(S)I%:KPTSI — F(S):1+ST[
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Figura 1.11: Schema generale di anti wind-up per un controllore PI.

1.3.1 Metodi di taratura automatica

In molte applicazioni industriali, la costruzione di un buon modello dell'impianto puo
essere piuttosto onerosa, soprattutto a fronte di esigenze di controllo non particolarmente
spinte. Per questi casi sono disponibili delle tecniche di taratura dei parametri del PID
(Kp, Tr e Tp) che fanno riferimento a poche e semplici prove da eseguirsi sull’impianto.
Il metodo piu classico utilizzato ¢ quello di Ziegler-Nichols. Analizzeremo adesso questa
tecnica, sotto le ipotesi che il sistema sia asintoticamente stabile ad anello aperto e abbia

guadagno positivo.

Metodo di Ziegler-Nichols (in anello chiuso)

Si chiude il sistema in retroazione su un controllore proporzionale. Fornendo al sistema
un ingresso a gradino, si aumenta il guadagno del controllore finché il sistema oscilla
(condizione critica di stabilita). Si indicano con Kp e T il guadagno critico e il periodo

dell’oscillazione dell’uscita y(t).

I parametri del regolatore P, PI o PID vengono determinati utilizzando la Tabella 1.1.

RPID(S) Kp 17 Tp
P 0.5Kp
PI 0.45Kp | 0.8T
PID 0.6Kp | 0.5T | 0.125T

Tabella 1.1: Tabella di Ziegler-Nichols.
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Notare che se si pone 17 = 4T allora gli zeri del regolatore PID sono coincidenti in

posizione s = —4/T.

1.4 Interpretazione frequenziale dei PID

La taratura dei PID col metodo di Ziegler-Nichols utilizza due quantitda: Kp e T. Os-
serviamo che la prima quantita ¢ esattamente il margine di guadagno (assunto finito)
del sistema controllato G(s), mentre w, = 27/T ¢ la pulsazione per cui il diagramma
polare G(jw) attraversa il semiasse reale negativo. Si puo quindi vedere come il control-
lore venga tarato conoscendo soltanto un punto della risposta in frequenza del sistema
G(jwy) = —1/Kp. Per sistemi comuni, tale informazione ¢ sufficiente per progettare

controllori che garantiscano prestazioni soddisfacenti.

Esempio 1.4

Consideriamo:

G(s) = :
&) = a1y
St puo verificare che:

w, =265, K,, =64 = Kp=64, T =237

Dalla Tabella 1.1 risulta, per un controllore PI, Kp = 2.88 e Tt = 1.9, con i sequenti

indict di prestazione
Om ~10.5° , w.~1.81rad/s , K ~1.42.

Nel caso di un controllore PID, con N = 10, i parametri forniti dal metodo di Ziegler-

Nichols risultano Kp = 3.84, Tt = 1.19, Tp = 0.3 e le relative prestazioni:
Om = 27.6° , w,~214rad/s , K, ~10.3.

E’ utile notare come il controllore PID abbia aumentato sia il margine di guadagno che
quello di fase (rispetto al PI).

Valutazione delle prestazioni di un PID

Analizziamo adesso le prestazioni ottenute utilizzando i criteri di taratura automatica.
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e Nell’ipotesi di utilizzare un controllore puramente proporzionale, si ottiene che
KpG(jw,) = 05KpG(jw,) = —0.5,

ovvero il controllore proporzionale tarato automaticamente garantisce un margine

di guadagno K, pari a 2.

e Nel caso generale, fissata una frequenza w*, il diagramma polare di Rprp(s)G(s)

puo essere modificato variando i parametri del PID, secondo l'effetto indicato in
Fig. 1.12.

TEG(w

Jw

N

*

w

KpG(jw*) Jur KpGliwr)

Figura 1.12: Effetto dei termini proporzionale, integrale e derivativo di un controllore
PID.

In generale si puo vedere come il termine derivativo tenda a far aumentare il margine

di fase, mentre l'effetto integrativo tende a ridurlo.



