Programma del corso di

Identificazione e Analisi dei Dati

A.A. 2009-10

PRIMA PARTE (comune a tutti)

Introduzione al corso.

Richiami su variabili aleatorie. Distribuzioni univariate e multivariate, probabilità condizionata.

Processi stocastici. Definizioni; media e covarianza. Esempi: processi bianchi, processi esponenzialmente correlati. Rappresentazione frequenziale di processi stocastici. Sistemi dinamici stocastici, rappresentazione ingresso-uscita. Modelli AR, MA, ARMA.

Teoria della stima. Formulazione del problema. Stima a massima verosimiglianza. Stima a minimo errore quadratico medio. Stimatori di Gauss-Markov, stimatori ai minimi quadrati. Esempi di problemi di stima.

Predizione e filtraggio di serie temporali. Formulazione del problema. Filtro ottimo FIR, filtro di Wiener (cenni). Predittore ottimo FIR. Esempi.

Introduzione all'identificazione di sistemi dinamici. Modelli lineari ingresso-uscita. Errore di predizione. Stima parametrica. Stimatori ai minimi quadrati per modelli a regressione lineare.

Esercitazioni: processi stocastici, teoria della stima, predizione e filtraggio. *Ricevimento collettivo.*

Prima prova intermedia.

SECONDA PARTE (solo per studenti del Corso di Laurea Magistrale in Ingegneria Gestionale N.O., piano di studi standard)

Stima dello stato di sistemi dinamici.

Concetto di stato nei sistemi stocastici; processi di Markov. Il problema della stima dello stato. Filtro di Kalman per sistemi lineari: derivazione delle equazioni e proprietà. Filtro di Kalman come osservatore dello stato; confronto con filtri tempo-invarianti. Proprietà del filtro di Kalman.

Identificazione ricorsiva di sistemi dinamici.

Identificazione ricorsiva: motivazioni. Modelli a regressione lineare: algoritmo RLS. Interpretazione come filtro di Kalman. Algoritmi ricorsivi per modelli a regressione pseudo-lineare.

Algoritmi con finestra esponenziale.

Algoritmi di identificazione di sistemi dinamici. Calcolo della stima ottima, metodi numerici. Uso di strumenti software per l'identificazione.

Filtraggio non lineare.

Il filtro di Kalman esteso. Applicazioni di filtraggio nonlineare. Il ruolo del filtro di Kalman nell'analisi di serie temporali (cenni).

Esercitazioni: identificazione parametrica, filtro di Kalman. *Ricevimento collettivo*.

Seconda prova intermedia (project work).

Bibliografia

DISPENSE (solo per la prima parte del corso)

A. Garulli e A. Giannitrapani.
Dispense di Identificazione e Analisi dei Dati.
http://www.dii.unisi.it/~control/iead/dispense/Dispense_1_1.pdf (work in progress...)

TESTI DI CONSULTAZIONE

Modellistica di sistemi dinamici

• L. Ljung and T. Glad. *Modelling of dynamical systems*. Prentice-Hall, 1994.

Teoria della stima e filtraggio

• T. Soderstrom. *Discrete-time stochastic systems: estimation and control.* Prentice-Hall, 1994.

Identificazione di sistemi dinamici

• L. Ljung. *Identification: Theory for the user*, 2nd edition, Prentice-Hall, 1999.

Stima dello stato, filtraggio non lineare

- T. Soderstrom, Discrete-time Stochastic Systems, Springer, 2002.
- F. L. Lewis, Optimal Estimation, John Wiley, 1986.
- E. W. Kamen and J. K. Su, Introduction to Optimal Estimation, Springer, 1999.

Elementi di teoria della probabilità

• A. Papoulis. *Probability, random variables and stochastic processes*, 3rd edition, McGraw Hill, 1991.