Simple Pendulum

Description and modeling

The system consists in a simple pendulum, as depicted below. A mass is connected to a rigid rod which is suspended from fixed point. Let θ be the angle of the rod with respect to the vertical axis, L the length of the rod and m the mass of the body. We consider that the mass of the rod is negligible. The friction is modeled as a linear dynamic friction with coefficient β acting on the pivot. Let the input to the system be the torque τ applied to the rod. So, the model can be written as:

$$mL^2\ddot{\theta} = -\beta\dot{\theta} - mgL\sin\theta + \tau$$

Numerical values: $m = 1, L = 2, \beta = 2, g = 9.8$

Experience Goal

• Control the pendulum angle in order to track a given reference signal.

Assignments

1. Build a Simulink model implementing the simple pendulum.

Hint: provide an output related to the system states (it will be useful later).

Hint: to derive a signal, use a transfer function block $D(s) = \frac{s}{s/1000 + 1}$.

- 2. Linearize (with standard linearization techniques) the system around the equilibrium point $\theta_0 = \pi$, $\dot{\theta}_0 = 0$.
- 3. Find the values for which a proportional controller stabilizes the linearized system.
- 4. Choose a proportional controller which stabilizes the system and simulate it both on the nonlinear model and on the linearized one. Comment the result.
- 5. Design a controller based on I/O Feedback linearization. Assume the following reference (warning: y_d is expressed in degrees)

$$y_d(t) = A_1 \sin(\omega_1 t) + A_2 \sin(\omega_2 t + \phi)$$

with
$$A_1 = 100$$
, $\omega_1 = \frac{2\pi}{10}$, $A_2 = 70$, $\omega_2 = \frac{2\pi}{3}$, $\phi = \frac{\pi}{2}$.

- 6. Find the intervals of the controller parameters which guarantee asymptotic stability of the controlled system.
- 7. Change the controller parameters and comment the results.
- 8. Change the reference signal (try steps, square waves, etc.) and comment.
- 9. Insert an additive noise (e.g., a white noise) on the states and evaluate the performance of the previously designed controller. Try with disturbances of different amplitude.