
Chapter 2

Feedback linearization

2.1 Introduction to feedback linearization

This technique aims at transforming a nonlinear system into a linear one, by applying
a suitable feedback input. In this way, the obtained linearization is exact, and it is
not an approximation as in the “classical” linearization of the system dynamics. So,
we may proceed as follows.

• First, transform a nonlinear system (under certain hypothesis) in a linear one.

• Then, design a controller with usual linear methods.

Example 2.1 (Control of level in a tank). Referring to Fig. 2.1, by Bernoulli’s
equations (assuming that A(h) ≫ a), we can derive the following equations:

V (h) =

∫ h

0

A(h̄)dh̄

V̇ (h) = A(h) · ḣ = u− a
√

2gh (2.1)

ḣ = −a
√
2g

A(h)

√
h+

1

A(h)
u (2.2)

where A(h) and a denote the section of the tank (at level h) and of the output pipe,
respectively, and u is the control input (input flow).

Figure 2.1: Example 2.1.

So, in (2.2), we can see how the dependence on ḣ from h is nonlinear. The idea
of feedback linearization is to look for an input u such that it linearizes the equation.
For instance, by choosing

u = a
√

2gh+ A(h)v
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all parameters are known except v which must be determined. By substituting in
(2.2) one has,

ḣ = −a
√
2gh

A(h)
+

a
√
2gh

A(h)
+ v → ḣ = v

where v is a sort of “equivalent input”.
By denoting the tracking error e(t) as the difference between the output h(t)

and the desired output hd(t). For ease of notation, the dependence on time will be
omitted when clear from the context. So,

e = h− hd

If we choose v as

v = −αe , α > 0

one has
ḣ = −αe → ḣ+ αe = 0

Let us assume that hd is a step. Since hd is constant, ė = ḣ and then

ė = −αe

This means that the error goes to 0 for t → ∞. Summarizing, the input signal that
we use as input is

u(t) = a
√

2gh(t) + A(h)(−αe(t))

Notice that, in this reasoning, we do not introduce any approximation. Now, suppose
that our desired output is no more a step, but a generic function hd(t). We choose
the equivalent input v as

v(t) = ḣd(t)− αe(t)

so that

ḣ(t) = ḣd(t)− αe(t) → ḣ(t)− ḣd(t) = −αe(t) → ė(t) = −αe(t)

Since e(t) → 0 for t → ∞, the difference between the actual level and the desired
level asymptotically tends to 0. In this case, besides the desired reference, we also
suppose to know the derivative of it. △

Companion form

We say that a nonlinear system is in companion form (or controllability canonical
form) if it may be represented by

x(n) = f(x) + g(x)u (2.3)

where x = [x, ẋ, . . . , x(n−1)]T is the state vector, u is a scalar control input and f

and g are nonlinear functions of x. We may write (2.3) in state-space representation
as 





ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = f(x) + g(x)u
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where

x =








x1

x2
...
xn








If we choose

u =
1

g(x)
[v − f(x)]

paying attention on the division by g(x) and substituting in (2.3), we obtain

x(n) = v (2.4)

A possible choice for the equivalent input v is

v = −k0x− k1ẋ− · · · − kn−1x
(n−1)

By substituting in (2.4), one gets

x(n) + kn−1x
(n−1) + · · ·+ k1ẋ+ k0x = 0

Of course, ki, i = 0, . . . , n−1 are chosen in order to obtain an asymptotically stable
dynamics. If our aim is the reference tracking, setting e(t) = x(t) − xd(t), we can
choose v as

v = −k0e− k1ė− · · · − kn−1e
(n−1) + x

(n)
d

By substituting in (2.4), one has

x(n) − x
(n)
d = −k0e− k1ė− · · · − kn−1e

(n−1)

that is

e(n) + kn−1e
(n−1) + · · ·+ k1ė + k0e = 0

As before, ki, i = 0, . . . , n−1 must be chosen such that the corresponding dynamics
is stable.

Example 2.2 (Control of robotic arm). Let us consider the situation depicted in
Fig. 2.2. The dynamics of the robotic arm is governed by the following equations

[
H11 H12

H21 H22

]

︸ ︷︷ ︸
H

[
q̈1
q̈2

]

+

[
−hq̇2 −hq̇1 − hq̇2
hq̇1 0

]

︸ ︷︷ ︸
C

[
q̇1
q̇2

]

+

[
K1

K2

]

︸ ︷︷ ︸
g

=

[
τ1
τ2

]

︸︷︷︸
τ

where q = [q1, q2]
T are the joint angles and τ = [τ1, τ2]

T the joint commands. In
compact form, we may write

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ

If we choose

τ = Hv + Cq̇ + g



22 Chapter 2. Feedback linearization

q1, τ1

q2, τ2

l1,m1

l2,m2

Figure 2.2: Example 2.2. Two-link robotic arm.

by substituting one has

Hq̈ + Cq̇ + g = Hv + Cq̇ + g

that is

Hq̈ = Hv

It can be proved that H is not singular and so, by left multiplying by H−1, one has
q̈ = v. A possible choice for v is:

v = q̈d − 2λė− λ2e , λ > 0

which leads to

ë+ 2λė+ λ2e = 0 (2 poles in -λ)

△

Suppose to have a system in which we do not control directly u but u4. For
instance,

x(n) = f(x) + g(x)u4

By defining w = u4, one has

x(n) = f(x) + g(x)w

which is in companion form. So, we can apply the feedback linearization method
also if u enters in a nonlinear way. The important fact is that u be invertible in the
region of interest. In this example, assuming that u ≥ 0, one has

u = 4
√
w

If a nonlinear system is not in companion form, one has to use suitable algebraic
transformations to obtain a system which is (partly or fully) linear.

Summarizing, given a nonlinear system, the steps to be performed are:

1. Put the system in companion form;

2. Linearize the system through feedback linearization techniques;

3. Control the system with standard linear methods.
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2.2 Input-State Linearization

Consider the following single-input nonlinear system

ẋ = f(x, u)

In this section, we do not care about the output, but we aim at linearizing the
dynamics of the system. The idea is to transform the nonlinear relation into a linear
one, by exploiting a suitable mapping on the state variable. For instance:

z = z(x)

ż = Az+Bv

Example 2.3. Let us consider the following system
{

ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = −x2 cosx1 + u cos(2x1)
, a 6= 0

We can choose the following state transformation
{

z1 = x1

z2 = ax2 + sin x1 → x2 =
1
a
[z2 − sin z1]

{

ż1 = −2z1 + z2

ż2 = aẋ2 + ẋ1 cos x1 = a[−x2 cos z1 + u cos(2z1)] + [−2z1 + z2] cos z1






ż1 = −2z1 + z2

ż2 = a[− 1
a
(z2 − sin z1) cos z1 + u cos(2z1)] + [−2z1 + z2] cos z1 =

= −z2 cos z1 + sin z1 cos z1 + au cos(2z1)− 2z1 cos z1 + z2 cos z1
{

ż1 = −2z1 + z2

ż2 = sin z1 cos z1 − 2z1 cos z1 + au cos(2z1)

So, the input can be chosen as

u =
1

a cos(2z1)
[− sin z1 cos z1 + 2z1 cos z1 + v]

so our system becomes:
{

ż1 = −2z1 + z2

ż2 = v
→ ż =

[
−2 1
0 0

]

︸ ︷︷ ︸

A

z+

[
0
1

]

︸︷︷︸

B

v

After checking the controllability (see next Example 2.4), we may choose v as

v = −k1z1 − k2z2
{

ż1 = −2z1 + z2

ż2 = −k1z1 − k2z2
→ ż =

[
−2 1
−k1 −k2

]

︸ ︷︷ ︸

Ã

z

We can choose k1 = 0 and k2 = 2, obtaining v = −2z2

Ã =

[
−2 1
0 −2

]
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Matrix Ã has two poles in −2, and so it is asymptotically stable, which implies
z1, z2 → 0 as t → ∞. So, the original states are

{

x1 = z1

x2 = 1
a
[z2 − sin z1]

Since z1, z2 → 0 also x1, x2 → 0 as t → ∞. △

0 - v = −k
T
z ẋ = f(x, u)u = u(x, v)

z = z(x)

Plant

v u x

linearization loop

pole placement loop

Figure 2.3: Schematic view of the input-state linearization technique.

Comments:

• The results obtained are not global. In fact, input u is not feasible for
cos(2z1) = 0 → cos(2x1) = 0, i.e., for values of x1 such that

2x1 =
π

2
+ hπ, h ∈ Z

x1 =
π

4
+

hπ

2
, h ∈ Z

• To compute z1 and z2, the states x1 and x2 must be available. In particular,
it means that x must be available and z is computed accordingly.

• We rely on the fact that the model is exact. In real applications, uncertainties
may affect both the computation of z and the control input u.

• If we are interested in reference tracking, it is worthwhile to note that the
actual output y depends on x (and not on z). So, the desired reference must
be expressed in terms of z.

Notice that, not all the classes of nonlinear systems can be transformed into linear
systems. Moreover, given a nonlinear system that can be transformed in a linear
one, it does not exist a general procedure to find the right transformation.

Example 2.4. Let us consider the following linear system. By checking the con-
trollability matrix, one can easily state that such a system is not fully controllable.

{

ẋ1 = −3x1

ẋ2 = 2x1 − 4x2 + u
A =

[
−3 0
2 −4

]

B =

[
0
1

]

controllability matrix: [B|AB] =

[
0 0
1 −4

]

, rank 1

△
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2.3 Input-Output Linearization

Let us consider the following nonlinear system
{

ẋ = f(x, u)

y = h(x)

The goal is to choose an input u such that the output y tracks a desired output yd.
We assume to know all the derivatives of yd till a given order. To achieve our aim,
we want to find the relation between the input u and the output y.

Example 2.5.






ẋ1 = sin x2 + (x2 + 1)x3

ẋ2 = x5
1 + x3

ẋ3 = x2
1 + u

y = x1

Let us derive the output until the input u appears

ẏ = ẋ1 = sin x2 + (x2 + 1)x3

ÿ = ẋ2 cosx2 + ẋ2x3 + (x2 + 1)ẋ3 =

= (x5
1 + x3) cosx2 + (x5

1 + x3)x3 + (x2 + 1)(x2
1 + u)

= (x2 + 1)u+ (x5
1 + x3)(cosx2 + x3) + (x2 + 1)x2

1
︸ ︷︷ ︸

t(x)

So, we obtain

ÿ = (x2 + 1)u+ t(x)

Let us choose the input u in a similar way as done before, that is

u =
1

x2 + 1
[v − t(x)]

which leads to

ÿ = v (2.5)

Now, it remains to choose the equivalent input v. Let the error be e = y − yd, we
may choose v as

v = ÿd − k0e− k1ė

By substituting in (2.5), one has

ÿ − ÿd = −k0e− k1ė

that is

ë + k1ė+ k0e = 0

By choosing k0, k1 > 0, the error dynamics is asymptotically stable.
This method is very powerful, but unfortunately it has some drawbacks, like:
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• The control law u is defined everywhere excepts in x2 = −1.

• We need the knowledge of the full state for designing u.

△
Definition 2.1. We define as relative degree r, the number of times we must derive
the output to obtain the dependence on u.

For instance, the system in Example 2.5 has relative degree 2. It can be proved
that at most we have to derive the output n times, where n is the order of the
system. If after n differentiation the derivatives of the output do not depend on u,
then the system is not controllable.

Definition 2.2. We define as internal dynamics the part of the system which is not
observable using input-output linearization.

For instance, let us refer to Example 2.5 and choose as state vector (y, ẏ, x3).
Then,

ẋ3 = x2
1 + u = x2

1 +
1

x2 + 1
(ÿd − k1e− k2ė− t(x))

If the internal dynamics is stable, then everything is fine, otherwise this method
cannot be applied, because a state variable is unbounded.

Example 2.6.






ẋ1 = x3
2 + u

ẋ2 = u

y = x1

Let us derive y once

ẏ = ẋ1 = x3
2 + u

By setting

u = v − x3
2 and v = ẏd − e

one has

ẏ − ẏd + e = 0 → ė + e = 0

We derived the output once, while the system is of order 2, so we must check the
internal dynamics to be sure that it is stable.

ẋ2 = −x3
2 + ẏd − e → ẋ2 + x3

2 = ẏd − e

Since ẏd is bounded,

|ẏd − e| ≤ D, D > 0

Suppose that x2 > D
1
3 , then ẋ2 < 0. If instead x2 < −D

1
3 , then ẋ2 > 0. So, as

depicted in Fig. 2.4-a, the internal dynamics is stable. If we change the original
system as







ẋ1 = x3
2 + u

ẋ2 = −u

y = x1

then one can easily show that stability is not satisfied, and hence this method cannot
be applied (Fig. 2.4-b). △
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D
1
3

−D
1
3

ẋ2 < 0 ↓

ẋ2 > 0 ↑

D
1
3

−D
1
3

ẋ2 > 0 ↑

ẋ2 < 0 ↓

a) b)

Figure 2.4: Example 2.6. Stability analysis of the internal dynamics.

The input-output linearization can also be used to stabilize the system (and not
for tracking of the reference). In this case, we may set yd and all its derivatives to
zero. Then, we may choose as output (y) any function of the states (y may not have
a physical meaning, since it is an artificial output). The problem is that different
choices of y may lead to different internal dynamics which can be stable or not.

Remark. It is worthwhile to note that if the relative degree is equal to the system
order (i.e., r = n), there is no internal dynamics, which means that the input-output
linearization can be applied successfully.

The following example is related to the analysis of the internal dynamics for
linear systems.

Example 2.7. Let us consider the following linear system






ẋ1 = x2 + u

ẋ2 = u

y = x1

which can be written as {

ẋ = Ax+Bu

y = Cx

with

A =

[
0 1
0 0

]

B =

[
1
1

]

C =
[
1 0

]
D = 0

By deriving and proceeding as above,

ẏ = ẋ1 = x2 + u

u = −x2 + v = −x2 + ẏd − e

and hence,

ẏ = x2 − x2 + ẏd − e = ẏd − e → ė+ e = 0

The internal dynamics is

ẋ2 = −x2 + ẏd − e → ẋ2 + x2 = ẏd − e
︸ ︷︷ ︸

bounded

Since the internal dynamics has an eigenvalue (pole) in −1, it is stable. Instead, if
we change the system by setting ẋ2 = −u (like in Example 2.6), one has

ẋ2 − x2 = e− ẏd
︸ ︷︷ ︸

bounded
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Now, the internal dynamics has a pole in +1, and then it is unstable.
Let us write the transfer functions corresponding to the two cases:

G+(s) =
s+ 1

s2
, G−(s) =

s− 1

s2

△
Notice that the two functions have the same poles but different zeros. Moreover,

notice that the zeros of the system become the poles of the internal dynamics. So,
linear system at minimum-phase will lead to stable internal dynamics, while non
minimum-phase systems will conduct to unstable internal dynamics.

Example 2.8. Let us consider the following system of order 3 with one zero
{

ż = Az +Bu

y = Cz

It can be written in a general form as

y = C(sI −A)−1Bu =
b0 + b1s

a0 + a1s+ a2s2 + s3
u, zero = −b0

b1

The system can be equivalently represented in companion form











ẋ1

ẋ2

ẋ3




 =






0 1 0

0 0 1

−a0 −a1 −a2











x1

x2

x3




+






0

0

1




 u

y =
[

b0 b1 0
]






x1

x2

x3






Take the derivative of y = b0x1 + b1x2:

ẏ = b0ẋ1 + b1ẋ2 = b0x2 + b1x3

ÿ = b0ẋ2 + b1ẋ3 = b0x3 + b1(−a0x1 − a1x2 − a2x3 + u)

We may choose

u = a0x1 + a1x2 + a2x3 −
b0

b1
x3 +

1

b1
v

ÿ = v → v = ÿd − k1ė− k0e

that is

ë + k1ė+ k0e = 0

Since r = 2 and n = 3, there is an internal dynamics to be analyzed. We can
consider the change of variables: (x1, y, ẏ) ⇔ (x1, x2, x3).

Since y = b0x1 + b1x2, one has x2 =
y − b0x1

b1
, and then

ẋ1 = x2 =
y − b0x1

b1
=

y

b1
− b0

b1
x1

ẋ1 +
b0

b1
x1 =

y

b1
︸︷︷︸

bounded

So, the internal dynamics has a pole in − b0
b1
. Also in this general formulation, the

zeros of the original system become the poles of the internal dynamics. So, we can
apply this method only if the original system is a minimum-phase one. △
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Zero-dynamics

Since assessing the stability of a nonlinear internal dynamics is in general a complex
task, we look for an easier way to do this. Let us fix the output y to 0. For instance,
if we apply this technique in Example 2.8, the last equation becomes

ẋ1 +
b0

b1
x1 = 0

The input u will be chosen to keep y = 0. The obtained internal dynamics is
called “zero-dynamics”. Notice that the zero-dynamics is an intrinsic property of a
nonlinear system.

For linear systems, location of zeros implies the global stability or instability
of the internal dynamics. For nonlinear systems, the stability of zero-dynamics
implies the local stability of the internal dynamics. Of course, if the zero dynamics
is unstable then also the internal dynamics will be unstable. However, evaluating
stability of zero-dynamics is easier than that of internal dynamics.

Summarizing, the steps needed by the input-output linearization are:

1. Differentiate the output until the input u appears.

2. Choose the input u to cancel the nonlinearities and to guarantee the desired
output.

3. Study the stability of internal dynamics.

If the number of derivations are exactly equal to the order of the system, the third
point is not necessary.
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2.4 Mathematical Tools

Let us denote a function f(x) : Rn → R
n as a vector field in R

n. In particular, we
will work with smooth vector fields, which means that f(x) has continuous partial
derivative till a required order.

Given a scalar function h(x) : Rn → R, its gradient is given by the following row
vector

∇h =
∂h

∂x
=

[
∂h

∂x1
,
∂h

∂x2
, · · · , ∂h

∂xn

]

Given a vector field f(x), its Jacobian is

∇f =
∂f

∂x
=






∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn






2.4.1 Lie derivative and Lie bracket

Given a scalar function h(x) and a vector field f(x) we define the Lie derivative of
h with respect to f as the scalar function

Lfh = ∇h·f

So, the Lie derivative is the directional derivative of h along the direction of the
vector f . Properties:

• L0
fh = h

• Li
fh = Lf (L

i−1
f h) = ∇(Li−1

f h)f

• Lg(Lfh) = ∇(Lfh)g = ∇(∇hf)g

Let f and g be two vector fields, the Lie bracket of f and g is a vector field
defined as

[f , g] = adfg = ∇g · f −∇f · g
Notice that the Lie bracket of f and g can be indifferently written as [f , g] or adfg
(ad stands for adjoint).
Properties:

• ad0
fg = g

• adi
fg =

[
f , adi−1

f g
]
= adf (ad

i−1
f g)

• Skew commutative
[f , g] = −[g, f ]

• Bilinearity

[α1f1 + α2f2, g] = α1[f1, g] + α2[f2, g], α1, α2 ∈ R

[f , α1g1 + α2g2] = α1[f , g1] + α2[f , g2], α1, α2 ∈ R

• Jacobi identity
L[f ,g]h = Ladfgh = LfLgh− LgLfh (2.6)

This property can be applied recursively obtaining

Lad2
f g
h = L2

fLgh− 2LfLgLfh+ LgL
2
fh (2.7)
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Example 2.9. Let us consider the following system
{

ẋ = f(x)

y = h(x)

Let us derive the output

ẏ =
∂h

∂x
ẋ =

∂h

∂x
f = Lfh

ÿ =
∂Lfh

∂x
ẋ = L2

fh

Notice that, if V (x) denotes a Lyapunov function, its derivative is V̇ = LfV . △

Example 2.10. Given the system

ẋ = f(x) + g(x)u

with

f(x) =

[
−2x1 + ax2 + sin x1

−x2 cosx1

]

, g(x) =

[
0

cos(2x1)

]

one has

[f , g] =

[
0 0

−2 sin(2x1) 0

]

·
[
−2x1 + ax2 + sin x1

−x2 cosx1

]

−
[
−2 + cosx1 a

x2 sin x1 − cosx1

]

·
[

0
cos(2x1)

]

=

[
−a cos(2x1)

−2 sin(2x1)[−2x1 + ax2 + sin x1] + cosx1 cos(2x1)

]

△

2.4.2 Diffeomorphism

Definition 2.3. A vector field Φ : Rn → R
n, defined in a region Ω ⊆ R

n is a
diffeomorphism if it is smooth, and its inverse Φ−1 exists and is smooth.

If Ω = R
n → Φ is a global diffeomorphism (rare).

If Ω ⊂ R
n → Φ is a local diffeomorphism (common).

The following lemma help us to check if Φ is a local diffeomorphism.

Theorem 2.1. Let Φ(x) be a smooth function defined in Ω ⊂ R
n. If the Jacobian

matrix ∇Φ is not singular at a point x0 ∈ Ω, then Φ(x) is a local diffeomorphism
in a subregion of Ω.

A diffeomorphism provides a change of coordinates, that is it allows to transform
a nonlinear system in another nonlinear system. Let us consider the following system

{

ẋ = f(x) + g(x)u

y = h(x)

Let us define z = Φ(x). One has

ż =
∂Φ

∂x
ẋ =

∂Φ

∂x
(f(x) + g (x)u)
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By defining x = Φ−1(z), one gets
{

ż = f∗(z) + g∗(z)u

y = h∗(z)

where f∗, g∗ and h∗ are trivially defined.

Example 2.11. Let x ∈ R
2 and define Φ(x) as
[
z1
z2

]

= Φ(x) =

[
2x1 + 5x1x

2
2

3 sin x2

]

To know if Φ is a diffeomorphism, we compute the Jacobian of Φ at the point
x = [0 0]T .

∂Φ

∂x
=

[
2 + 5x2

2 10x1x2

0 3 cosx2

]

x0 =

[
0
0

]

,
∂Φ

∂x

∣
∣
∣
∣
x0

=

[
2 0
0 3

]

→ rank 2

Since the Jacobian is full rank, Φ is a local diffeomorphism around the origin.
However, it is not a global diffeomorphism, since the second row is equal to zero for
x2 = π

2
+ nπ, n ∈ Z. Then, we may conclude that Φ is a local diffeomorphism in

the region Ω defined as

Ω =

{[
x1

x2

]

: −π

2
< x2 <

π

2

}

△

2.4.3 Complete integrability and involutivity

Let us firstly introduce the concepts of integrability and involutivity by considering
the following example in R

3.
Let f , g be two independent vector fields in R

n, n = 3. The question is: does it
exist a scalar function h : R3 → R such that

{

Lfh = 0

Lgh = 0

Let us rewrite these condition in extended form

Lfh = ∇h · f = ∂h

∂x1
f1 +

∂h

∂x2
f2 +

∂h

∂x3
f3 = 0 (2.8)

Lgh = ∇h · g =
∂h

∂x1
g1 +

∂h

∂x2
g2 +

∂h

∂x3
g3 = 0 (2.9)

If there exists h such that (2.8)-(2.9) hold, then the set {f , g} is said completely
integrable.

If there exist two scalar functions α1, α2 of x such that

[f , g] = α1f + α2g

then the set {f , g} is said involutive (remember that [f , g] = ∇g · f −∇f · g).
Let us now give a formal definition of the above mentioned concepts.
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Definition 2.4. A set of linearly independent vector fields {f1, · · · , fm} on R
n

(m < n) is completely integrable, if and only if there exist n − m scalar functions
h1, · · ·hn−m satisfying

Lfjhi = ∇hi · fj = 0 , 1 ≤ i ≤ n−m, 1 ≤ j ≤ m

and all the gradients ∇hi are linearly independent.

It is easy to see that the number of partial differential equations to satisfy is
m(n−m).

Definition 2.5. A set of linearly independent vector fields {f1, · · · , fm} on R
n (m <

n) is involutive, if and only if there exist scalar functions αijk : R
n → R such that:

[fi, fj ] =

m∑

k=1

αijkfk ∀i, j

The notion of involutivity means that any pair of Lie brackets from the set
{f1, . . . , fm} can be expressed as a linear combination of the vector fields themselves.

Properties:

• Constant vector fields are always involutive. In fact, the Lie bracket of two
constant vector fields is the zero vector.

• A set including just one vector field is involutive. In fact,

[f , f ] = ∇f · f −∇f · f = 0

• To check involutivity of {f1, · · · , fm} one can check if

rank (f1(x), · · · , fm(x)) = rank (f1(x), · · · , fm(x), [fi, fj](x))

for all x and all i, j.

Now, we may state the Frobenius theorem, which is a fundamental result linking
complete integrability and involutivity.

Theorem 2.2 (Frobenius). Let {f1, · · · , fm} be a set of linearly independent vector
fields. Then, the set is completely integrable if and only if it is involutive.

Example 2.12. Let us consider the following two vector fields on R
3.

f1 =
[
4x3 −1 0

]T
, f2 =

[
−x1 (x2

3 − 3x2) 2x3

]T

Since n = 3 and m = 2, then m− n = 1. So the set {f1, f2} is completely integrable
if there exists h such that

Lf1h =
∂h

∂x1
4x3 −

∂h

∂x2
(−1) +

∂h

∂x3
0 = 0

Lf2h =
∂h

∂x1
(−x1) +

∂h

∂x2
(x2

3 − 3x2) +
∂h

∂x3
2x3 = 0
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Are we able to write [f1, f2] = α1f1 + α2f2?

[f1, f2] = ∇f2 · f1 −∇f1 · f2 =

=





−1 0 0
0 −3 2x3

0 0 2









4x3

−1
0



−





0 0 4
0 0 0
0 0 0









−x1

x2
3 − 3x2

2x3





=





−4x3

3
0



−





8x3

0
0



 =





−12x3

3
0



 = −3f1 + 0f2

So, {f1, f2} is involutive, which implies by Theorem 2.2 the complete integrability.
△

2.5 Input-State Linearization

Let us consider a generic nonlinear SISO system linear or affine in the control

ẋ = f(x) + g(x)u (2.10)

with f , g smooth vector fields. Notice that the input u enters linearly. If the system
has the form

ẋ = f(x) + g(x)w[u+ p(x)]

where w is an invertible scalar function, we may define an input q = w[u + p(x)]
such that the resulting system is linear in the control, i.e.,

ẋ = f(x) + g(x)q

Of course, the original input u is given by u = w−1(q)− p(x).

Definition 2.6. A system like that in (2.10) with f and g smooth is said to be
input-state linearizable if ∃Ω ⊆ R

n, a diffeomorphism Φ : Ω → R
n and a nonlinear

control
u = α(x) + β(x)v

such that the new state vector z = Φ(x) and the new input v satisfy the linear
time-invariant relation

ż = Az+Bv (2.11)

where

A =










0 1 0 0 0
0 0 1 0 0

. . .

1
0 0 0 0 0










B =










0
...

0
1










(2.12)

The new state vector z is said linearizing state and u is said linearizing control
law. Sometimes it is convenient to write z = z(x).

The system in (2.11)-(2.12) can be rewritten as










ż1
ż2
...

żn−1

żn










=










z2
z3
...
zn
0










+










0
0
...
0
v










⇒







ż1 = z2

ż2 = z3
...

żn−1 = zn

żn = v

⇒ z
(n)
1 = v
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Note. Remember that any linear controllable system can be transformed into an
equivalent one with A and b as in (2.12) through a suitable linear state transforma-
tion and pole placement.

Remark. Notice that, the input-state linearization is a special case of input-output
linearization when y = z1. This statement is formalized in the following lemma.

Lemma 2.1. A nonlinear system of order n is input-state linearizable if and only if
there exists z1(x) such that the input-output linearization with y = z1(x) has relative
degree n.

Unfortunately, this lemma does not provide information on how to choose the
output function z1(x).

2.5.1 Conditions for input-state linearization

Let us consider the nonlinear system in the form (2.10). We want to find under which
conditions the input-state linearization technique can be applied. Before stating the
theorem which answers to this question, let us introduce the following lemma which
is instrumental to prove the theorem.

Lemma 2.2. Let z(x) be a scalar, smooth function in a region Ω. Then, the set of
equations

Lgz = LgLfz = LgL
2
f z = · · · = LgL

k
f z = 0

is equivalent to
Lgz = Ladfgz = L

ad
2
f g
z = · · · = L

ad
k
f g
z = 0

for any positive integer k.

Proof. By induction, let us prove the lemma for k = 1, 2. Let k = 1 and assume

Lgz = LgLfz = 0

By the Jacobi’s identity in (2.6), one has

Ladfgz = Lf

=0
︷︸︸︷

Lgz −
=0

︷ ︸︸ ︷

LgLfz = 0

For k = 2, by (2.7), it holds

Lgz = LgLfz = LgL
2
f z = 0

Lad2
f g
z = L2

f

=0
︷︸︸︷

Lgz −2Lf

=0
︷ ︸︸ ︷

LgLfz+

=0
︷ ︸︸ ︷

LgL
2
f z = 0

This reasoning can be extended for any k > 2.

Theorem 2.3. The system
ẋ = f(x) + g(x)u

with f , g smooth in R
n is input-state linearizable if and only if there exists Ω ⊆ R

n

such that

1. The vector fields {g, adfg, ad2fg, · · · , adn−1
f g} are linearly independent in Ω.

2. The set {g, adfg, ad2fg, · · · , adn−2
f g} is involutive in Ω.
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Note. Notice that Condition 1 is related to the controllability of the system. As an
example, one may notice that for linear systems, the set {g, adfg, ad2

fg, · · · , adn−1
f g}

coincides with {B,AB, · · · , An−1B} which means that the controllability matrix

[B|AB| · · · |An−1B]

must be full rank. The second condition is less intuitive.

Proof. Necessity: Assume that there exists a state transformation z = z(x) and
u = α(x) + β(x)v such that we have input-state linearization, i.e., they satisfy
(2.11)-(2.12).







ż1 =
∂z1

∂x
ẋ =

∂z1

∂x
(f + gu) =

∂z1

∂x
f +

∂z1

∂x
gu = Lfz1 + Lgz1u = z2

ż2 =
∂z2

∂x
ẋ =

∂z2

∂x
f +

∂z2

∂x
gu = Lfz2 + Lgz2u = z3

...

żn−1 =
∂zn−1

∂x
ẋ =

∂zn−1

∂x
f +

∂zn−1

∂x
gu = Lfzn−1 + Lgzn−1u = zn

żn =
∂zn

∂x
ẋ =

∂zn

∂x
f +

∂zn

∂x
gu = Lfzn + Lgznu = v

(2.13)

By hypothesis, ż1, . . . , żn−1 (or equivalently z2, . . . , zn) do not depend on the input,
while żn (or equivalently v) does. Hence,

Lgz1 = Lgz2 = . . . = Lgzn−1 = 0 , Lgzn 6= 0

So, (2.13) becomes







ż1 = Lfz1 = z2

ż2 = Lfz2 = L2
f z1 = z3

...

żn−1 = Ln−1
f z1 = zn

żn = Ln
f z1 + Lgznu = Ln

f z1 + LgL
n−1
f z1u

and so

Lgz1 = LgLfz1 = LgL
2
f z1 = · · · = LgL

n−2
f z1 = 0 , LgL

n−1
f z1 6= 0

By Lemma 2.2, one has

{
Lgz1 = Ladfgz1 = Lad2

f g
z1 = · · · = Ladn−2

f
gz1 = 0 (2.14a)

Ladn−1
f

gz1 6= 0 (2.14b)

We want to prove that the elements of the set {g, adfg, · · · , adn−1
f g} are linearly

independent. By contradiction, suppose that ad2
fg is a linear combination of ad0

fg

and ad1
fg (a similar reasoning can be done for a generic index i), that is

ad2
fg = α0ad

0
fg + α1ad

1
fg



2.5. Input-State Linearization 37

Then,
ad3fg = adf (ad

2
fg) = adf (α0ad

0
fg + α1ad

1
fg) = α0ad

1
fg + α1ad

2
fg

ad4fg = α0ad
2
fg + α1ad

3
fg

...

adn−1
f g = α0ad

n−3
f g + α1ad

n−2
f g

So, one has

Ladn−1
f

gz1 = ∇z1 · adn−1
f g = α0∇z1(ad

n−3
f g) + α1∇z1(ad

n−2
f g)

= α0Ladn−3
f

gz1 + α1Ladn−2
f

gz1 = 0

where the last equality comes from (2.14a). So, Ladn−1
f

gz1 = 0 which contradicts

(2.14b). So, the set {g, adfg, · · · , adn−1
f g} is linearly independent. The fact that

Ladk
f g
z1 = 0 , ∀k = 0, · · · , n− 2

and that the elements of {g, adfg, · · · , adn−1
f g} are linearly independent implies

that the vector fields {g, adfg, · · · , adn−2
f g} are completely integrable and then, by

Theorem 2.2, they are involutive.
Sufficiency: Since the set {g, adfg, · · · , adn−2

f g} is involutive, by Theorem 2.2 it is
completely integrable. Thus, there exist z1 such that:

Lgz1 = Ladfgz1 = Lad2
f g
z1 = · · · = Ladn−2

f
gz1 = 0 (2.15)

By Lemma 2.2, one has

Lgz1 = LgLfz1 = LgL
2
f z1 = · · · = LgL

n−2
f z1 = 0

Let us choose the state vector as z =

[

z1 z2 z3 · · · zn
]T

︷ ︸︸ ︷
[
z1 Lfz1 L2

f z1 · · · Ln−1
f z1

]T
so that:







ż1 = z2

ż2 = z3
...

żn−1 = zn

żn = Lfzn + Lgznu = Ln
f z1 + LgL

n−1
f z1u

(2.16)

It remains to prove that LgL
n−1
f z1 6= 0. By contradiction, assume LgL

n−1
f z1 = 0.

Thus, by Lemma 2.2, it holds Ladn−1
f

gz1 = 0. Then, by (2.15), Ladi
fg
z1 = 0, for

i = 0, . . . , n− 1. So, one has

∇z1 · [ad0
fg, ad

1
fg, · · · , adn−1

f g] = 0

which means that, ∇z1 is orthogonal to adi
fg for i = 0, . . . , n− 1. Since by hypoth-

esis {g, adfg, · · · , adn−1
f g} are n linearly independent vectors in R

n, a contradiction
occurs. So, by taking

u =
v − Ln

f z1

LgL
n−1
f z1

one obtains
żn = v
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Notice that, without loss of generality, we may normalize (2.14b) as

Ladn−1
f

gz1 = 1

So, this condition along with (2.14a) can be written as

∇z1 · [ad0
fg, ad

1
fg, · · · , adn−1

f g] = [0, 0, . . . , 0, 1] (2.17)

Unfortunately, finding z1 satisfying (2.17) is not a simple task, in general. However,
numerical solutions can be easily obtained.

The proof of the sufficient condition of Theorem 2.3 gives us all the ingredients
to perform the input-state feedback linearization.

2.5.2 Steps to perform input-state linearization

Given the system
ẋ = f(x) + g(x)u

input-state linearization can be performed by the following steps.

1. Construct the vector fields g, adfg, · · · , adn−1
f g.

2. Check the controllability and involutivity conditions of Theorem 2.3.

3. If the above conditions are satisfied, find the first state variable z1 by solving

{

Ladi
fg
z1 = ∇z1 · adi

fg = 0 , i = 0 · · · , n− 2

Ladn−1
f

gz1 = ∇z1 · adn−1
f g 6= 0

4. Set the new state variables as

z =
[
z1 z2 · · · zn

]T
=

[
z1 Lfz1 L2

f z1 · · · Ln−1
f z1

]T

and the input:

u =
v − Ln

f z1

LgL
n−1
f z1

=
v − Lfzn

Lgzn

Example 2.13. Consider the flexible-joint mechanism depicted in the following
figure, where q1 and q2 denote the angular positions of the two joints, I, J the two
moments of inertia, L the distance between the link and the center of mass, and the
input u is the applied torque.

u q2 q1

k L
•

I,M

J

The system is governed by the following equations

{

Iq̈1 +MgL sin q1 + k(q1 − q2) = 0

Jq̈2 − k(q1 − q2) = u

To perform input-state linearization, let us follow the steps of Section 2.5.2.
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Step 1. Let us write the system in state-space form with the following state
variables

x =
[
x1 x2 x3 x4

]T
=

[
q1 q̇1 q2 q̇2

]T

By substituting, one has







ẋ1 = x2

ẋ2 = −MgL

I
sin x1 − k

I
x1 +

k
I
x3

ẋ3 = x4

ẋ4 =
k
J
x1 − k

J
x3 +

u
J

ẋ =







x2

−MgL

I
sin x1 − k

I
x1 +

k
I
x3

x4
k
J
x1 − k

J
x3







︸ ︷︷ ︸

f

+







0
0
0
1
J







︸︷︷︸
g

u

The Jacobian of f and g are

∇f =







0 1 0 0

−MgL

I
cosx1 − k

I
0 k

I
0

0 0 0 1
k
J

0 − k
J

0







, ∇g = 0

and hence

adfg =

0
︷︸︸︷

∇g ·f −∇f · g = −∇f · g =
[
0 0 − 1

J
0
]T

ad2
fg = adf (adfg) =

0
︷ ︸︸ ︷

∇(adfg) ·f −∇f · (adfg) =
[
0 k

IJ
0 − k

J2

]T

ad3
fg =

0
︷ ︸︸ ︷

∇(ad2
fg) ·f −∇f · (ad2

fg) =
[
− k

IJ
0 k

J2 0
]T

Therefore,

[
g adfg ad2

fg ad3
fg
]
=







0 0 0 − k
IJ

0 0 k
IJ

0
0 − 1

J
0 k

J2

1
J

0 − k
J2 0







which is full rank.

Step 2. So, the vector fields g, adfg, ad2
fg, ad3

fg are linearly independent.
Moreover, since g, adfg, ad2

fg are constant, they form an involutive set.

Step 3. We must find z1 which satisfies

{

Ladi
fg
z1 = ∇z1 · adi

fg = 0 i = 0, 1, 2

Lad3
f g
z1 = ∇z1 · ad3

fg 6= 0 (we may set it to 1 for simplicity)
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By expanding,

[
∂z1
∂x1

∂z1
∂x2

∂z1
∂x3

∂z1
∂x4

]







0 0 0
0 0 k

IJ

0 − 1
J

0
1
J

0 − k
J2






=

[
0 0 0

]

[
∂z1
∂x1

∂z1
∂x2

∂z1
∂x3

∂z1
∂x4

]







− k
IJ

0
k
J2

0






6= 0

If we choose z1 = x1, the above two equations are satisfied.
Step 4. The new state variables can be computed as

z1 = x1

z2 = Lfz1 = ∇z1 · f =
[
1 0 0 0

]
f = x2

z3 = Lfz2 = ∇z2 · f =
[
0 1 0 0

]
f = −MgL

I
sin x1 −

k

I
x1 +

k

I
x3

z4 = Lfz3 = ∇z3 · f =
[
−MgL

I
cosx1 − k

I
0 k

I
0
]
f =

= −MgL

I
x2 cos x1 −

k

I
x2 +

k

I
x4

u =
v − L4

f z1

LgL
3
f z1

=
v − Lfz4

Lgz4

The computation of the denominator of u is easy. In fact,

Lgz4 = ∇z4 · g =
[
· · ·

]







0
0
0
1
J






=

k

IJ

Regarding the numerator, let α(x) = Lfz4 where

Lfz4 =
MgL

I
sin x1

(

x2
2 +

MgL

I
cosx1 +

k

I

)

+
k

I
(x1 − x3)

(
k

I
+

k

J
+

MgL

I
cosx1

)

Finally, we can summarize,

u =
v − Lfz4

Lgz4
=

IJ

k
(v − α(x))







ż1 = z2

ż2 = z3

ż3 = z4

ż4 = v

⇒







x1 = z1

x2 = z2

x3 = z1 +
I
k
(z3 +

MgL

I
sin z1)

x4 = z2 +
I
k
(z4 +

MgL

I
z2 cos z1)

So, we have found a global diffeomorphism.

z
(4)
1 = v

Suppose we are interested in the tracking of x1 = q1 = z1. Let z1d denote the desired
reference, and let the error be e = z1 − z1d. One may choose

v = z
(4)
1d − k3e

(3) − k2ë− k1ė− k0e
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which leads to

e(4) + k3e
(3) + k2ë+ k1ė+ k0e = 0

It remains only to choose ki, i = 0, . . . , 3 in order to guarantee a stable behavior.
Notice that, the new state vector z denotes the link position, velocity, acceleration
and jerk. △

2.6 Input-output linearization

Consider the following system

{

ẋ = f(x) + g(x)u

y = h(x)
(2.18)

The aim of the input-output linearization is to find a linear relation between u and
y. Let us differentiate the output as many times until the input u appears. The
number of times we differentiate the output is called relative degree.

2.6.1 Well-defined relative degree

Let us consider an open set Ωx ⊂ R
n of the state space

ẏ = ∇h · ẋ = ∇h · (f + gu) = Lfh(x) + Lgh(x)u

Suppose Lgh(x) = 0, ∀x ∈ Ωx.

ÿ = L2
fh(x) + LgLfh(x)u

Suppose LgLfh(x) = 0, ∀x ∈ Ωx.
Let us continue to derive and assume LgL

i
fh(x) = 0, i = 0, 1, . . . , r− 2, ∀x ∈ Ωx.

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u

Suppose LgL
r−1
f h(x) 6= 0, for x0 ∈ Ωx. This means that there exists a neighbor-

hood Ω of x0 such that

LgL
r−1
f h(x) 6= 0 , ∀x ∈ Ω

So, one can choose the input u as

u =
v − Lr

fh(x)

LgL
r−1
f h(x)

→ y(r) = v

If the relative degree r is equal n, we obtain y(n) = v which coincides with the
input-state linearization.

Definition 2.7. A nonlinear SISO system has relative degree r in a region Ω, if
∀x ∈ Ω {

LgL
i
fh(x) = 0 , i = 0, 1, · · · , r − 2

LgL
r−1
f h(x) 6= 0

(2.19)
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2.6.2 Undefined relative degree

Suppose to be interested to work around a specific operating point x0 ∈ R
n. While

differentiating, it may happen that

LgL
r−1
f h(x0) = 0

LgL
r−1
f h(x) 6= 0 in a neighborhood of x0

In this case, we say that the relative degree is undefined at x0.

Example 2.14. Consider the system
{

ẍ = ρ(ẋ, x) + u

y = x

Let ρ be a smooth function and let the state vector be x = [x ẋ]T . By deriving, one
has

ẏ = ẋ

ÿ = ẍ = ρ+ u → relative degree 2 (well-defined)

Now, let us slightly change the system as
{

ẍ = ρ(ẋ, x) + u

y = x2

Let us differentiate

ẏ = 2xẋ

ÿ = 2ẋ2 + 2xẍ = 2ẋ2 + 2x(ρ+ u) = 2xρ+ 2ẋ2 + 2x
︸︷︷︸

LgLfh

u

LgLfh = 2x

{

6= 0 , if x 6= 0

= 0 , if x = 0

So, for x = 0, the system has an undefined relative degree (it is neither 1 nor 2). △

2.6.3 Normal forms

Consider a system with a well defined relative degree r < n. Then, by choosing
an appropriate state vector, the system can be transformed in the so-called normal
form, i.e., in a form which better emphasizes the internal dynamics. Let us define
by µ the states associated to the dynamics which can be linearized, and by Ψ the
states related to the internal dynamics, i.e., which do not depends on the input u.

µ =
[
µ1, · · · , µr

]T
=

[
y, ẏ, · · · , y(r−1)

]

One easily gets






µ̇1 = µ2

µ̇2 = µ3

...

µ̇r−1 = µr
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The system can be written in normal form as






µ̇ =









µ2

...

µr

α(µ,Ψ) + β(µ,Ψ)u









, r state variables

Ψ̇ = w(µ,Ψ) , (n− r) state variable

y = µ1

where α, β and w are nonlinear functions of µ and Ψ. Notice that µ̇ depends on u

while Ψ̇ does not. If it is possible to transform the system in normal form, then it
means that there exists a diffeomorphism

Φ(x) = [µ1, · · · , µr,Ψ1, · · · ,Ψn−r]
T

To prove that Φ is a diffeomorphism, by Theorem 2.1 it is sufficient to show that
its Jacobian is invertible, i.e., ∇µi and ∇Ψj be linearly independent ∀ i = 1, · · · , r
and ∀ j = 1, · · · , n− r.

∇Φ =












∇µ1
...

∇µr

∇Ψ1
...

∇Ψn−r












Lemma 2.3. If the relative degree of the system is r, then ∇µ1, · · · ,∇µr are linearly
independent.

Since µi+1 = y(i) = Li
fh, i = 0, . . . , r − 1, by (2.19), one has

{

Lgµi = 0, i = 1, · · · , r − 1

Lgµr 6= 0
⇔

{

∇µi · g = 0, i = 1, · · · , r − 1

∇µr · g 6= 0

So, ∇µi for i = 1, · · · , r − 1 are orthogonal to g while ∇µr is not. This fact is
illustrated in Fig. 2.5. The hyperplane that is represented as a 2D plane is in
reality of dimension (n− 1). Therefore, there is room for n− 1 linearly independent
vectors. By Lemma 2.3, r − 1 independent vectors are given by ∇µi, and so there
is room for other (n− r) linearly independent vectors, which we impose to be ∇Ψj ,
j = 1, . . . , n− r.

As a consequence, the following condition holds

∇Ψj · g = 0, j = 1, · · · , n− r (2.20)

Surely, Ψi does not depend on u and LgΨi = 0. We have also to impose that ∇Ψj

be linearly independent from each other and from ∇µi, i = 1, · · · r, j = 1, · · · , n−r.
Finding Ψ to complete the state vector needs to solve the n − r differential

equations in (2.20), which usually is not a trivial task.

Example 2.15. Let us consider the following system of order n = 3.






ẋ =






−x1

2x1x2 + sin x2

2x2






︸ ︷︷ ︸

f

+






e2x2

1
2

0






︸ ︷︷ ︸
g

u

y = h(x) = x3
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[n− 1]

g

∇µr−1

∇µ1

. . .

∇µr

∇Ψ1

∇Ψn−r

. . .

Figure 2.5: Sketch of the (n− 1)-dimension hyperplane orthogonal to g.

We differentiate until the output depends on the input.

ẏ = Lfh+ Lghu = ẋ3 = 2x2 → Lgh = 0

ÿ = L2
fh + LgLfhu = 2ẋ2 = 2(2x1x2 + sin x2)

︸ ︷︷ ︸

L2
f
h

+u → LgLfh = 1

So, the relative degree is r = 2, which implies that the internal dynamics is of order
n− r = 1. We want to write the system in normal form.







µ1 = y = x3

µ2 = ẏ = 2x2

Ψ such that ∇Ψ · g = 0, and ∇Ψ linearly independent from ∇µ1,∇µ2

Condition ∇Ψ · g = 0 means

∇Ψ · g =
[
∂Ψ
∂x1

∂Ψ
∂x2

∂Ψ
∂x3

]





e2x2

1
2

0



 = 0

∂Ψ

∂x1
e2x2 +

1

2

∂Ψ

∂x2
= 0

A possible choice is

Ψ = 1 + x1 − e2x2

In fact,

∇Ψ · g = e2x2 +
1

2
(−2e2x2) = e2x2 − e2x2 = 0

Now, to check the second condition, we write the new state vector z and compute
the Jacobian matrix.

z =





µ1

µ2

Ψ



 , ∇z =





0 0 1
0 2 0
1 −2e2x2 0





Since ∇z is full rank, we find the global diffeomorphism

z = Φ(x) =





x3

2x2

1 + x1 − e2x2




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Its inverse is

x = Φ−1(z) =





−1 + Ψ + eµ2

1
2
µ2

µ1



 =





−1 + z3 + ez2
1
2
z2
z1





To linearize this system, we set

u = v − 2(2x1x2 + sin x2)

Now, it remains to compute Ψ̇. One has

Ψ̇ = ẋ1 − 2e2x2 ẋ2 = −x1 + e2x2u− 2e2x2

(

2x1x2 + sin x2 +
u

2

)

= −x1(1 + 4x2e
2x2)− 2e2x2 sin x2 = (1−Ψ− eµ2)(1 + 2µ2e

µ2)− 2 sin
(µ2

2

)

eµ2

Summarizing, we obtains






µ̇1 = µ2

µ̇2 = v

Ψ̇ = (1−Ψ− eµ2)(1 + 2µ2e
µ2)− 2 sin

(µ2

2

)

eµ2 (does not depend on u) (2.21)

Assessing the stability of the internal dynamics requires to evaluate the stability
of (2.21) which is not an easy task. One may decide to study the zero-dynamics,
enforcing the output and all its derivative to zero. So, µ1 = µ2 = 0 and (2.21)
becomes

Ψ̇ = −Ψ

which is clearly stable. So, we may state that the internal dynamics is locally stable
in a neighborhood of y = 0. △

2.6.4 Zero-dynamics

In the zero-dynamics approach, we suppose to choose an input able to drive the
output to zero.

y = ẏ = ÿ = . . . = 0

This means to set µ = 0.

µ =






µ1
...
µr




 = 0

Then, assuming µi(0) = 0, i = 1, . . . , r, the corresponding input is obtained by
setting v = 0, i.e.,

u0(x) = − Lr
fh

LgL
r−1
f h

which leads to {

µ̇ = 0

Ψ̇(µ,Ψ) = Ψ̇(0,Ψ)

Definition 2.8. A nonlinear system is said asymptotically minimum-phase if its
zero-dynamics is asymptotically stable.

Remember that for linear systems, having stable zero-dynamics is equivalent to
consider minimum-phase systems.
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2.6.5 Local asymptotic stabilization

Let us consider the system (2.18). Let us choose v as

v = −kr−1y
(r−1) − · · · − k1ẏ − k0y

Define the polynomial P (s) as

P (s) = sr + kr−1s
r−1 + · · ·+ k1s+ k0

and assume ki are chosen such that P (s) is stable.

u =
v − Lr

fh

LgL
r−1
f h

=
1

LgL
r−1
f h

[
−Lr

fh− kr−1y
(r−1) − · · · − k1ẏ − k0y

]
(2.22)

y(r) = v

Theorem 2.4. Given a system with relative degree r and its zero-dynamics locally
asymptotically stable. Let ki be chosen such that P (s) is asymptotically stable. Then,
the control law u in (2.22) leads to a locally asymptotically stable closed-loop system.

Example 2.16. Consider the following system
{

ẋ1 = x2
1x2

ẋ2 = 3x2 + u
f =

[
x2
1x2

3x2

]

g =

[
0
1

]

ẋ = f(x) + g(x)u

∇f =

[
2x1x2 x2

1

0 3

]

Let us suppose to linearize the system with the classical linearization around x0 = 0.

x0 =

[
0
0

]

∇f |x0
=

[
0 0
0 3

] {

ẋ1 = 0

ẋ2 = 3x2 + u

Thus, one has

A =

[
0 0
0 3

]

B =

[
0
1

]

[B|AB] =

[
0 0
1 3

]

So, the controllability matrix is not full rank. In fact, it is apparent that the state
x1 is not controllable.

On the contrary, by applying the input-output feedback linearization method,
one has (choosing y = −2x1 − x2)

ẏ = −2ẋ1 − ẋ2 = −2x2
1x2 − 3x2 − u

which has relative degree r = 1. To study the zero-dynamics, let us impose y = 0,
that is x2 = −2x1. Since the zero-dynamics is related to the first equation, one has

ẋ1 = x2
1x2 = x2

1(−2x1) = −2x3
1 (asymptotically stable)

By choosing the input u as u = −2x2
1x2 − 3x2 − v, one obtains ẏ = v.

If we choose v = −y = 2x1+x2, it is guaranteed the system is locally asymptotic
stable. In fact, it holds

ẏ = −y

So, the overall input u which locally stabilizes the system around y = ẏ = 0 is

u = −2x2
1x2 − 3x2 − 2x1 − x2 = −2x2

1x2 − 2x1 − 4x2

△
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