
Chapter 1

Absolute stability

1.1 Analysis of absolute stability (Lure system)

Let us consider systems which can be written as a linear strictly proper block G(s)
in the forward path and a static nonlinear block Ψ(t, y) in the feedback path.

-
G(s)

Ψ(t, ·)

yr = 0 u

Figure 1.1: General scheme of a Lure system.

Many systems can be represented in this way, like e.g., systems where the non-
linearity affects the actuator. Let us describe the linear function in its state-space
form, i.e., 

ẋ = Ax+Bu

y = Cx

u = −Ψ(t, y)

(1.1)

where x ∈ Rn and y ∈ Rp. Moreover, we assume that the reference input is null,
i.e., r = 0 and that the couple (A,B) is controllable and (A,C) is observable.

The block Ψ(·, ·) : [0,∞) × Rp → Rp is a memoryless (static) nonlinearity,
possibly time-varying, piecewise continuous in t and locally Lipschitz in y. Such
nonlinearity must satisfy a sector condition as explained below.

Let us analyze the sector condition in the scalar case, i.e., p = 1. The function
Ψ(·, ·) : [0,∞)×R → R satisfies the sector condition if there exist constants α, β, a, b
such that

αy2 ≤ yΨ(t, y) ≤ βy2 , ∀ t ≥ 0, ∀ y ∈ [a, b] (1.2)

subject to α < β and a < 0 < b

The sector condition may hold in an interval [a, b] or over the whole domain y ∈
(−∞,∞); in the latter case, we say that the sector condition holds globally. An
example is depicted in Fig. 1.2.

An equivalent formulation of (1.2) is as follows.

[Ψ(t, y)− αy][Ψ(t, y)− βy] ≤ 0, ∀ t ≥ 0, ∀y ∈ [a, b] (1.3)

1
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Figure 1.2: Graphical representation of nonlinearities satisfying the sector condition
(case: β > α > 0).

It is easy to show this statement. In fact, by (1.2) one has{
αy ≤ Ψ(t, y) ≤ βy , if y ≥ 0

βy ≤ Ψ(t, y) ≤ αy , if y ≤ 0

which clearly implies (1.3). The systems which satisfy this condition are called Lure
systems.

Let us generalize these results to the MIMO case.

Ψ(t, y) =


Ψ1(t, y1)
Ψ2(t, y2)

...
Ψp(t, yp)


→
→
...
→

 [α1, α2, · · · , αp], [β1, β2, · · · , βp] : αi < βi, i = 1, . . . , p

Now, we have p independent channels and we suppose that each component satisfies
the sector condition defined by αi, βi. Let us define the orthotope

Γ = {y ∈ Rp : ai ≤ yi ≤ bi, i = 1, . . . , p}

and the diagonal matrices

Kmin = diag{α1, α2, · · · , αp}
Kmax = diag{β1, β2, · · · , βp}

So, we can write the sector condition (1.3) for MIMO systems as

[Ψ(t, y)−Kminy]
T [Ψ(t, y)−Kmaxy] ≤ 0, ∀t, ∀y ∈ Γ (1.4)

Notice that this is a special case, because we suppose that each Ψi is independent.
In general, Kmin and Kmax are matrices such that:

K = Kmax −Kmin > 0

with K symmetric and positive defined.
We may summarize the previous reasoning in the following definition.
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Definition 1.1. A memoryless nonlinearity ψ : [0,∞)× Rp → Rp satisfies a sector
condition if

[Ψ(t, y)−Kminy]
T [Ψ(t, y)−Kmaxy] ≤ 0, ∀t, ∀y ∈ Γ (1.5)

for some real matrices Kmin, Kmax such that Kmax − Kmin is a positive definite
symmetric matrix and the interior of Γ is connected and contains the origin.

Example 1.1. The concept of sector condition can be applied to more general
nonlinearities. Let us suppose the following inequality holds:

∥Ψ(t, y)− Ly∥2 ≤ γ∥y∥2 , γ > 0 (1.6)

We want to rewrite (1.6) as a sector condition. Let us square and take the difference.
One has

∥Ψ(t, y)− Ly∥22 − γ2∥y∥22 ≤ 0

Now, we can rewrite this inequality to obtain a form which is similar to the gener-
alized sector condition in (1.5).

[Ψ− Ly]T [Ψ− Ly]− γ2yTy ≤ 0

[Ψ− Ly]T [Ψ− Ly]− γ2yTy + γ[Ψ− Ly]Ty − γ[Ψ− Ly]Ty ≤ 0

[(Ψ− Ly) + γy]T [(Ψ− Ly)− γy] ≤ 0

[Ψ− (L− γI)︸ ︷︷ ︸
Kmin

y]T [Ψ− (L+ γI)︸ ︷︷ ︸
Kmax

y] ≤ 0

So, condition (1.6) can be stated as the following sector condition

[Ψ−Kminy]
T [Ψ−Kmaxy] ≤ 0

where Kmax − Kmin is a positive definite (diagonal) matrix. So, if the nonlinear
function satisfies the sector condition, (1.6) holds. △

By (1.1), it is easy to see that the origin x = 0 is an equilibrium point. The
aim of this chapter is to study if the origin is stable or not for all the possible
functions satisfying the sector condition. If the origin is asymptotically stable for
all the nonlinearities satisfying a sector condition, then the system is said absolutely
stable.

To study the absolute stability of the origin, we will use a Lyapunov approach.
In particular, let us consider the following Lyapunov function1:

V (x) = xTPx, P = P T > 0

Let ẋ = f(x), if the condition below holds, then the function is globally asymptoti-
cally stable (see Fig. 1.3).

V̇ (x) =

(
∂V

∂x

)T

︸ ︷︷ ︸
gradient

·f(x) < 0 , ∀x ̸= 0

If this condition does not hold, nothing can be concluded.

1A function V (x) : Rn → R is said a Lyapunov function if V (0) = 0 and V (x) > 0, ∀x ̸= 0.
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x3

x2

x1

x0

Figure 1.3: Sketch of global asymptotic stability in R3.

Consider a different Lyapunov function, called Lure-type Lyapunov function

V (x) = xTPx+ 2η

∫ y

0

ΨT (σ)K dσ

with η ∈ R+, K > 0 positive definite symmetric matrix and Ψ time invariant.

We will have different criteria based on the two different Lyapunov functions.

V (x) = xTPx Circle Criterion

V (x) = xTPx+ 2η

∫ y

0

ΨT (σ)Kdσ Popov Criterion

To analyze the absolute stability, we must introduce the concept of positive-real
transfer functions. We will find frequency-domain conditions on G(s) and K such
that V̇ < 0.

1.2 Positive-real transfer functions

Let us consider a square, proper, rational, t.f.m. Z(s) = {zij(s)} ∈ Cp×p.

Definition 1.2 (Positive-Real Transfer Function (PR)). A transfer function matrix
Z(s) is PR if:

1. all the poles of zij(s) /∈ RHP;

2. any pole of zij(s) on the imaginary axis is simple and the associated residue
matrix of Z(s) is positive semidefinite Hermitian;

3. for any ω such that jω is not a pole of any zij(s), one has Z(jω)+Z
T (−jω) ≥

0.

Definition 1.3 (Strictly Positive-Real Transfer Function (SPR)). A transfer func-
tion matrix Z(s) is SPR if:

� ∃ ϵ > 0 : Z(s− ϵ) is PR

Remark. Notice that, for SISO systems (p = 1), Condition 3 in Definition 1.2 be-
comes Re[Z(jω)] ≥ 0, i.e., the Nyquist plot of Z(jω) lies in the CRHP.

Remark. By Condition 3 in Definition 1.2, and by the previous remark, any scalar
function with relative degree > 1 cannot be PR.
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Example 1.2. For instance, G(s) = 1
s
is PR but not SPR. In fact, G(s) = 1

s−ϵ
is

not PR for any ϵ > 0 since it has a pole in RHP.

ǫ
∗

△

Let H denotes the space of Hurwitz transfer functions, i.e., the space of all
transfer functions which have all their poles in the open left half plane, i.e., no poles
in CRHP. Sometimes to assess SPR it is convenient to make use of the following
lemma.

Lemma 1.1. Assume Z(s) ∈ Cp×p and suppose det[Z(s)+ZT (−s)] is not identically
0, i.e. it has normal rank p. Then Z(s) is SPR if and only if:

� Z(s) ∈ H

� Z(jω) + ZT (−jω) > 0, ∀ω ∈ R

� one of the following conditions holds:

1. Z(∞) + ZT (∞) > 0

2. Z(∞) + ZT (∞) = 0, and limω→∞ ω2[Z(jω) + ZT (−jω)] > 0

3. Z(∞)+ZT (∞) ≥ 0, and ∃σ0, ω0 > 0: ω2σ[Z(jω)+ZT (−jω)] ≥ σ0, ∀|ω| ≥ ω0

Example 1.3. Let us report some examples of PR and SPR functions.

� Z(s) =
1

s+ a
, a > 0 is SPR.

� Z(s) =
1

s2 + s+ 1
is not PR.

� Z(s) =
1

s+ 1

[
1 1
1 1

]
. Since det[Z(s) + Z(−s)T ] = 0, we cannot apply

Lemma 1.1. However, by Definitions 1.2-1.3, we may conclude that Z(s) is
SPR.

� Z(s) =
1

s+ 1

[
s+ 1 1
−1 2s+ 1

]
is SPR by Lemma 1.1, condition 1.

� Z(s) =


s+ 2

s+ 1

1

s+ 2
−1

s+ 2

2

s+ 1

 is SPR by Lemma 1.1, condition 2.

△

The following lemma states some conditions to assess SPR.
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Lemma 1.2 (Kalman-Yakubovich-Popov (KYP) or Positive Real). Let

Z(s) = C(sI −A)−1B +D

with Z(s) ∈ Cp×p and A ∈ H (Hurwitz), (A,B) controllable, (A, C) observable. Z(s)
is SPR if and only if ∃P = P T > 0, L,W , and ϵ ∈ R : ϵ > 0 such that:

� PA+ATP = −LTL− ϵP

� PB = CT − LTW

� D +DT = W TW

The KYP Lemma will be useful since it links the SPR property to the existence
of a suitable Lyapunov function.

1.3 Circle criterion

Let us consider an asymptotically stable system (A ∈ H, (A,B) controllable, (A,C)
observable). Assume to have a memoryless nonlinearity in the feedback loop, as in
Fig. 1.1. 

ẋ = Ax+Bu

y = Cx

u = −Ψ(t, y)

→
{
ẋ = Ax−BΨ(t, y)

y = Cx

Assume that the nonlinearity satisfies a sector condition that has the lower bound
equal to 0, i.e., Kmin = 0. Moreover, assume that Kmax = K is symmetric and
positive definite (K > 0).

So, condition (1.5) becomes

ΨT (Ψ−Ky) ≤ 0 → ΨT (Ψ−KCx) ≤ 0

Let us consider the Lyapunov function V (x) = xTPx, P = P T > 0 and let us
derive it.

V̇ (x) =

(
∂V

∂x

)T

ẋ = (2xTP )(Ax−BΨ) = xT (2PA)x− 2xTPBΨ (1.7)

Note. Given a generic square matrix V , it can always be written as V = Vs + Va,
where Vs and Va denote the symmetric and anti-symmetric part, defined as Vs =
(V +V T )/2 and Va = (V −V T )/2. It is easy to see that, in a quadratic form, the anti-
symmetric part does not provide any contribution and then XTV X = XTVsX =
XT [(V + V T )/2]X.

So, we may write (1.7) as

V̇ (x) = xT (PA+ ATP )x− 2xTPBΨ
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Now, we subtract the sector condition:

V̇ (x) ≤ xT (PA+ ATP )x− 2xTPBΨ− 2ΨT (Ψ−KCx)

= xT (PA+ ATP )x+ 2xT [CTK − PB]Ψ− 2ΨTΨ

We want to show that the right-hand term is negative. Suppose that ∃P = P T >
0, L, ϵ > 0 such that {

PA+ ATP = −LTL− ϵP

PB = CTK −
√
2LT

(1.8)

Then,

V̇ (x) ≤ xT (PA+ ATP )x+ 2xT [CTK − PB]Ψ− 2ΨTΨ =

= −ϵxTPx− (xTLTLx− 2
√
2xTLTΨ+ 2ΨTΨ)︸ ︷︷ ︸

[
√
2Ψ−Lx]T [

√
2Ψ−Lx]

=

= −ϵxTPx− [
√
2Ψ− Lx]T [

√
2Ψ− Lx]︸ ︷︷ ︸

≥0

≤ −ϵxTPx < 0

This means that the derivative is strictly negative (under the above assumptions),
which means that the system is asymptotically stable. It remains to prove that
∃P = P T > 0, L, ϵ > 0 exist such that (1.8) holds.

Since (A,C) is observable and K is full rank, than also (A,KC) is observable.
Using the KYP Lemma, we can construct

A = A

B = B

C = KC

W =
√
2I → W TW = 2I → D = I

⇒ Z(s) = I +KC(sI − A)−1B

So, if Z(s) is SPR, then (1.8) holds and V̇ < 0 which implies that the system is
absolutely stable. Summarizing, if we consider G(s) = C(sI − A)−1B, then

Z(s) = I +KG(s) is SPR =⇒ absolute stability

We may summarize the above results in the following lemma.

Lemma 1.3. Let the system (1.1) be given, where A ∈ H, (A,B) is controllable and
(A,C) is observable. Let Ψ satisfy the sector condition ΨT (Ψ−Ky) ≤ 0. Then, the
system is absolutely stable if Z(s) = I +KG(s) is SPR.

Note. This condition is a sufficient condition but not necessary. So, Lemma 1.3 gives
only positive answer to the absolute stability problem.

1.3.1 Loop transformation (pole shifting)

If A is not Hurwitz or the nonlinearity does not satisfy ΨT (Ψ−Ky) ≤ 0, Lemma (1.3)
cannot be applied. A possible solution to overcome this problem is given by the so-
called loop transformation or pole shifting procedure (see Fig. 1.4).

As an exercise, one may show that the transformed system in Fig. 1.4 is equiva-
lent to the original one in Fig. 1.1. In practice, we rotate the original sector byKminy
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- -

-

G(s)

Kmin

Kmin

Ψ(t, ·)

y

GT

Ψ̃

GT = G[I +KminG]
−1 ∈ H

Ψ̃ = Ψ−Kminy

-
GT (s)

Ψ̃(t, ·)

y

Figure 1.4: Pole shifting procedure.

in order to obtain a new sector which satisfies the condition of Lemma 1.3, i.e., where
the new nonlinearity Ψ̃ is bounded in [0, (Kmax −Kmin)y] = [0, Ky]. This procedure
leads to a new system on which we can apply Lemma 1.3, provided that GT be
Hurwitz. In the following illustrations, we can visualize the procedure graphically.

By the circle criterion (Lemma 1.3), the sufficient conditions for absolute stability
of Lure systems are

� GT = G[I +KminG]
−1 ∈ H

� ZT = I +KGT = I + (Kmax −Kmin)GT is SPR

We may rewrite the second condition as

ZT = [I +KminG][I +KminG]
−1 + (Kmax −Kmin)G[I +KminG]

−1 =

= [I +KmaxG][I +KminG]
−1 is SPR

The overall procedure is summarized in the following theorem.

Theorem 1.1 (Multivariable circle criterion). Let the system (1.1) be given, where
(A,B) is controllable, (A,C) is observable, and Ψ satisfies the sector condition (1.5).
Then, the system is absolutely stable if

� GT = G[I +KminG]
−1 ∈ H

� ZT = [I +KmaxG][I +KminG]
−1 is SPR

Notice that, if G(s) ∈ H and Kmin = 0, Theorem 1.1 reduces to Lemma 1.3.
Moreover, since ZT (∞) = I, by Lemma 1.1 follows that ZT if SPR if and only if ZT

is Hurwitz and
ZT (jω) + ZT

T (−jω) > 0, ∀ω ∈ R
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1.3.2 Circle criterion for SISO systems

Let us consider a SISO system and let us refer to the scheme in Fig. 1.1. Matrices
Kmin and Kmax can be replaced by α and β, respectively. According to Theorem 1.1,
the conditions for absolute stability become:

1. GT =
G

1 + αG
∈ H

2. ZT =
1 + βG

1 + αG
is SPR

To guarantee the second condition, we require ZT ∈ H and

Re[ZT (jω)] = Re

[
1 + βG(jω)

1 + αG(jω)

]
> 0, ∀ω ∈ R (1.9)

Depending on the shape of the sector condition, we have to consider 3 cases: (β >
α > 0), (β > α = 0) and (β > 0 > α).

1. Case β > α > 0β > α > 0β > α > 0: In this case, the corresponding sector of Ψ is of the following
form

Since α and β are both positive, condition (1.9) can be rewritten as

Re

[
1
β
+G(jω)

1
α
+G(jω)

]
> 0 (1.10)

Looking at the Nyquist plot in Fig. 1.5, one may prove that to satisfy (1.10) it
suffices that the angle γ belongs to (−π

2
, π
2
), ∀ω. So, we need γ = (γ1 − γ2) ∈

(−π
2
, π
2
), ∀ω. In fact, the real part of the ratio of two complex numbers is

positive if and only if the phase difference between the two numbers belongs
to (−π

2
, π
2
). It can be proven that this condition holds for any point outside

the red circle in Fig. 1.5. Let us denote such a circle as C
(
− 1

α
,− 1

β

)
.

Moreover, GT is Hurwitz if and only if G(jω) does not cross the point −1/α
and encircles it m times counterclockwise, where m denotes the number of
poles of G in the RHP. Now, we may state the following theorem.

Theorem 1.2 (Circle criterion SISO, case β > α > 0). Let β > α > 0.
The SISO system (1.1) is absolutely stable if the Nyquist diagram of G(jω)
encircles the circle C(−1/α,−1/β) m times counterclockwise, where m denotes
the number of poles of G in RHP.

2. Case β > α = 0β > α = 0β > α = 0: In this case, Ψ must lie in the following sector
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Figure 1.5: Circle criterion for SISO systems in case β > α > 0.

So, we can imagine that − 1
α
→ −∞ for α → 0, and then the radius of the

forbidden circle goes to infinite. In practice, the circle C(−1/α,−1/β) collapses
to the half-space Re[G(jω)] ≤ − 1

β
, see Fig. 1.6.

Figure 1.6: Circle criterion for SISO systems in case β > α = 0.

Theorem 1.3 (Circle criterion SISO, case β > α = 0). Let β > α = 0. The
SISO system (1.1) is absolutely stable if G ∈ H and Re[G(jω)] > − 1

β
, ∀ω ∈ R.

Notice that, this case encloses Ψ(y) = 0, which implies that the open loop
function G(s) be stable.

3. Case β > 0 > αβ > 0 > αβ > 0 > α: In this case, the correspondent sector of Ψ is of the following
form

Also in this case, the sector contains the real axis which implies that G(s)
must be asymptotically stable. Moreover, the fact that α is negative inverts
the relative position of − 1

β
and − 1

α
which leads the forbidden zone to be the

complementary region of the first case, see Fig. 1.7.
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Figure 1.7: Circle criterion for SISO systems in case β > 0 > α.

The following theorem states the condition for absolute stability in this case.

Theorem 1.4 (Circle criterion SISO, case β > 0 > α). Let β > 0 > α. The SISO
system (1.1) is absolutely stable if G ∈ H and the entire Nyquist diagram of G(jω)
lies inside the circle C(−1/β,−1/α).

Example 1.4. Let us consider the following linear system

G(s) =
4

(1 + s)(1 + s
2
)(1 + s

3
)
∈ H

The Nyquist plot is depicted in Fig. 1.8.

Re[G(jω)]

Im[G(jω)]

4

Figure 1.8: Nyquist plot of G(jω) in Example 1.4.

We want to find under which sector conditions of the nonlinearity Ψ the overall
system is absolutely stable. Let us start looking to the third case, that is α < 0
and β > 0. What we are going to do is similar to the situation depicted in Fig. 1.7.
We can take for instance − 1

α
= 4 and − 1

β
= −4 choosing the origin as the center

of the admissible circular zone C(−4, 4). This procedure leads to an admissible but
very narrow sector. In fact, the nonlinearity must satisfy strict conditions, where
α = −0.25 and β = 0.25. Therefore, we try to extend the sector of Ψ by choosing
a different center of the circular zone and a different radius in order to enlarges the
sector. For example, we can choose as center the point on the real axis that is inside
the Nyquist plot and has the greatest distance from it, and as radius this distance.
The computation of this values gives as result the point 1.5 as center and 2.9 as
radius, i.e., the circle C(−1.4, 4.4). The corresponding sector is larger than before,
being α = −0.23 and β = 0.71.
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Now, let us assume that the nonlinearity Ψ is a saturation (see Fig. 1.9). To
study this case, we may impose α = 0. So, we can use the tangent on the left plane
to the Nyquist plot and enlarge the section to α = 0, β = 1.17. In other words, we
choose as − 1

β
the minω {Re[G(jω)]}. This situation is similar to the one depicted

in Fig. 1.6. △

y

Ψ

1

−1

1

−1

-
G(s) y

Figure 1.9: Example 1.4. The nonlinearity Ψ is a saturation.

Example 1.5. Assume that

G(s) =
4

(s− 1)(1 + s
2
)(1 + s

3
)
/∈ H

Since the transfer function is unstable, we must consider the first case, which implies
β > α > 0. To achieve absolute stability, we must impose that the Nyquist plot
encircles counterclockwise the forbidden disc (without crossing it) a number of times
equal to the number of unstable poles, in this case once. We obtain that a possible
center is −3.5, with radius 0.185 leading to the α = 0.27 and β = 0.30 (see Fig. 1.10).
In this case, we obtain a very narrow band because we aim at stabilizing an unstable
system affected by a sector nonlinearity. △

Figure 1.10: Example 1.5. Application of the circle criterion.

Example 1.6. Let

G(s) =
s+ 2

(s+ 1)(s− 1)

and assume that the nonlinearity be a saturation as in Fig. 1.9. In this case we
cannot guarantee the absolute stability in the whole domain. In fact, since G /∈ H,
to have absolute stability we must refer to the first case of the circle criterion, which
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enforces α > 0. It is clear that having α > 0, is not possible to guarantee the
absolute stability globally, but we must reduce the domain to a finite interval and
guarantee the absolute stability in this interval. Let us choose β = 1 in order to
include the linear part of the saturation, and then let us choose the circle for α in
order to enlarge the interval in which the system is absolutely stable (see Fig. 1.11).
By choosing α = 0.54 one has a = 1/α = 1.85 and the sector condition holds in the
interval [−1.85, 1.85]. Therefore, the system is absolutely stable if the Nyquist plot
of G(jω) encircles the disk C(−1/α,−1/β) = C(−1.85,−1) once counterclockwise,
as reported in Fig. 1.11. Notice that, enlarging α reduces both the domain and the
sector condition of the nonlinearity; on the contrary, choosing α small (close to 0)
leads to a big disk which is difficult to be encircled. △

a−a −1 1

−1

1
Ψ(y)

y

αy

βy

Figure 1.11: Sector condition and Nyquist plot of Example 1.6.

1.4 Popov Criterion

If the nonlinearity Ψ is time invariant, which means Ψ(t, y) = Ψ(y), we can use
a different Lyapunov function (Lure type Lyapunov function), which allows one to
derive the Popov criterion.

V (x) = xTPx+ 2η

∫ y

0

ΨT (σ)Kdσ (1.11)

with η ≥ 0. Let us consider again the following feedback system:

-
G(s)

Ψ(·)

yu


ẋ = Ax+Bu

y = Cx

u = −Ψ(y)

G(s) = C(sI − A)−1B

(1.12)

As for the circle criterion, assume

� x ∈ Rn, y ∈ Rp

� (A,B) controllable

� (A,C) observable
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Suppose the nonlinearity is sector bounded and assume we have already applied the
pole shifting procedure, in order to obtain

G ∈ H
ΨT (y)[Ψ(y)−Ky] ≤ 0, K > 0, ∀y ∈ Γ ⊆ Rp (1.13)

A further assumption is that KΨ be the gradient of a scalar function and∫ y

0

ΨT (σ)Kdσ ≥ 0, ∀y ∈ Γ ⊆ Rp (1.14)

These conditions are satisfied, for instance, when K = cI (c > 0 constant), the
Jacobian matrix ∂Ψ

∂y
is symmetric and

∫ y

0
ΨT (σ)dσ ≥ 0. In the SISO case, the

nonlinearity should be such that its integral is always greater than zero, because the
Lyapunov function must be positive defined (see Fig. 1.12).

Figure 1.12: Integral of Ψ in the SISO case.

Let us calculate the gradient of the Lure type Lyapunov function (1.11).

V̇ (x)=xT (ATP + PA)x− 2xTPBΨ+ 2ηΨTK

∂y
∂x︷︸︸︷
C

∂x
∂t︷ ︸︸ ︷

(Ax−BΨ)

≤xT (ATP + PA)x− 2xTPBΨ+ 2ηΨTKCAx− 2ηΨTKCBΨ

−2ΨT [Ψ−Ky]≥0︷ ︸︸ ︷
−2ΨTΨ+ 2ΨTKy

=xT (ATP + PA)x− 2xTPBΨ+ 2ηΨTKCAx+ 2ΨTK

y︷︸︸︷
Cx −2ηΨTKCBΨ−2ΨTΨ

=xT (ATP + PA)x− 2xT [PB − ηATCTK − CTK]Ψ−ΨT [2I + 2ηKCB]Ψ

=xT (ATP + PA)x− 2xT [PB−ηATCTK−CTK]Ψ−ΨT [2I+ηKCB+ηBTCTK]Ψ

In the last equality we exploit the property that ΨTQx = xTQTΨ for any p × p
matrix Q.

Now, let us choose η and matrix W such that

W TW = 2I + ηKCB + ηBTCTK ≥ 0

It can be proved that such η and W always exist.
Suppose that

∃P = P T > 0, L, ϵ

{
ATP + PA = −LTL− ϵP

PB = CTK + ηATCTK − LTW
(1.15)

One has,

V̇ (x) ≤ −ϵxTPx− xTLTLx+ 2xTLTWΨ−ΨTW TWΨ =

= −ϵxTPx− (xTLTLx− 2xTLTWΨ+ΨTW TWΨ) =

= −ϵxTPx− ([Lx−WΨ]T [Lx−WΨ]) ≤ −ϵxTPx
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which means that V̇ (x) < 0, ∀x ∈ Rn\{0}. So, V̇ is negative defined and therefore
the system is globally and asymptotically stable.

It remains to find when it is possible to choose P , L and ϵ as in (1.15). To
this purpose, we will make use of the KYP Lemma 1.2 that we report here for
convenience.

Let
Z(s) = C(sI −A)−1B +D

with Z(s) ∈ Cp×p and A ∈ H (Hurwitz), (A,B) controllable, (A, C) observable.
Then, Z(s) is SPR if and only if ∃P = P T > 0, L, W, ϵ, such that

� PA+ATP = −LTL− ϵP

� PB = CT − LTW

� D +DT = W TW

So, we can make a parallel between our function and the generic function of the
KYP lemma, and try to choose our parameters such that they satisfy the constrains
on V̇ and also the condition for SPR dictated by Lemma 1.2. In particular, by
choosing

� A = A

� B = B

� C = KC + ηKCA

� D = I + ηKCB

we find that
Z(s) = I + ηKCB + (KC + ηKCA)(sI − A)−1B (1.16)

which by Lemma 1.2 is SPR. Since G(s) = C(sI −A)−1B, we can rewrite (1.16) as

Z(s) = I + ηKCB +KC(sI − A)−1B + ηKCA(sI − A)−1B =

= I + ηKC[I + A(sI − A)−1]B +KC(sI − A)−1B =

= I + ηKC[(sI − A)(sI − A)−1 + A(sI − A)−1]B +KC(sI − A)−1B =

= I + ηKC[(sI − A) + A)](sI − A)−1B +KC(sI − A)−1B =

= I + ηKC(sI)(sI − A)−1B +KC(sI − A)−1B =

= I + ηsKG+KG =

= I + (1 + ηs)KG is SPR

Here, all variables are known except η. We must choose it such that W TW > 0.
Moreover, to preserve the observability of (A, C), −1/η cannot be an eigenvalue of
A. In fact, if η = −1/λi where λi is an eigenvalue of A with associated eigenvector
vi, one has

Cvi = (KC + ηKCA)vi = KC(I + ηA)vi = KC(1 + ηλi)vi = 0

and hence (A, C) is not observable.
Note. If G(s) ∈ H, by choosing η = 0 we obtain the circle criterion. So, by choosing
η > 0, the Popov criterion provides less conservative conditions with respect to the
circle criterion.
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Let us summarize the multivariable Popov criterion.

Theorem 1.5 (Multivariable Popov criterion). Let the system (1.12) be given, where
A ∈ H, (A,B) is controllable, (A,C) is observable, and Ψ is a time-invariant non-
linearity satisfies the sector condition (1.13). Assume KΨ is the gradient of a scalar
function and (1.14) holds. Then, the system is absolutely stable if there exists η ≥ 0
with −1/η not an eigenvalue of A such that

Z(s) = I + (1 + ηs)KG(s)

is SPR.

1.4.1 Popov criterion for SISO systems

Let us apply the Popov criterion to the SISO case. It is required that

Z(s) = 1 +(1 + ηs)︸ ︷︷ ︸
multiplicator

kG(s) is SPR

Since G ∈ H also Z ∈ H. Moreover, choose η such that Z(∞) > 0.
To guarantee SPR, we must verify that

Re[1 + (1 + ηjω)kG(jω)] > 0, ∀ω (1.17)

Let us define G(jω) = x(jω) + jy(jω). So, (1.17) becomes

1 + Re[(1 + ηjω)k(x(jω) + jy(jω))] > 0

1

k
+Re[x(jω) + jy(jω) + jωηx(jω)− ωηy(jω)] > 0

1

k
+ x(jω)− ηωy(jω) > 0

By defining y′(jω) ≡ ωy(jω), one gets

1

k
+ x(jω)− ηy′(jω) > 0

ηy′(jω) < x(jω) +
1

k

y′(jω) <
1

η
x(jω) +

1

kη

This conditions for absolute stability leads to the Popov diagram, in which the
vertical axis is not the imaginary axis, but the y′ axis (i.e., the imaginary axis
multiplied by ω). In conclusion, the system is absolutely stable if the Popov diagram
lies to the right of the mentioned line, as shown in Fig. 1.13.

Example 1.7. Find a sector condition for the nonlinearity Ψ (i.e., find α and β)
such that the following system is absolutely stable.

ẋ1 = x2

ẋ2 = −x2 + u

y = x1

u = −Ψ(y)

 ẋ =

[
0 1

0 −1

]
x+

[
0

1

]
u

y = [1 0]x
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Figure 1.13: Popov diagram.

Notice that G(s) /∈ H. In fact, an eigenvalue of the matrix A is 0, or equivalently
the corresponding transfer function has a pole in 0.

G(s) = C(sI − A)−1B =
[
1 0

]([s 0
0 s

]
−

[
0 1
0 −1

])[
0
1

]
=

1

s(s+ 1)

We apply the pole shifting technique as shown in the following scheme.

- -

-

G(s)

α

α

Ψ(·)

y

GT

ΨT

One obtains GT =
G

1 + αG
=

1
s(s+1)

1 + α
s(s+1)

=
1

s2 + s+ α

ΨT (y) = Ψ(y)− αy

Since α > 0, it holds GT ∈ H. Moreover, the sector [α, β] becomes [0, k], where
k = β − α. Therefore, we may apply the Popov criterion even if the original sector
condition is of the form β > α > 0, as in the following figure.
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Let Z(s) = 1 + (1 + ηs)kGT (s). It is easy to see that Z(∞) = 1 for any η. So,
it remains to study

1

k
+Re [(1 + jωη)GT (jω)] =

1

k
+Re

[
(1 + jωη)

(
1

α− ω2 + jω

)]
> 0

1

k
+Re

[
(1 + jωη)

(
α− ω2 − jω

(α− ω2)2 + ω2

)]
> 0

1

k
+

α− ω2

(α− ω2)2 + ω2
+

ηω2

(α− ω2)2 + ω2
> 0

which is satisfied for η ≥ 1. Let us draw the Popov diagram, remembering that{
x = Re[GT (jω)]

y′ = ω Im[GT (jω)]

In this case, with η = 1 the system is absolutely stable for every k (also k → ∞),
i.e., also for β → ∞ and α → 0. △

Figure 1.14: Popov diagram of Example 1.7 for η = 1.
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